78,147 research outputs found

    A Recursive Bateson-Inspired Model for the Generation of Semantic Formal Concepts from Spatial Sensory Data

    Full text link
    Neural-symbolic approaches to machine learning incorporate the advantages from both connectionist and symbolic methods. Typically, these models employ a first module based on a neural architecture to extract features from complex data. Then, these features are processed as symbols by a symbolic engine that provides reasoning, concept structures, composability, better generalization and out-of-distribution learning among other possibilities. However, neural approaches to the grounding of symbols in sensory data, albeit powerful, still require heavy training and tedious labeling for the most part. This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex spatial sensory data. The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept. Following his suggestion, the model extracts atomic features from raw data by computing elemental sequential comparisons in a stream of multivariate numerical values. Higher-level constructs are built from these features by subjecting them to further comparisons in a recursive process. At any stage in the recursion, a concept structure may be obtained from these constructs and features by means of Formal Concept Analysis. Results show that the model is able to produce fairly rich yet human-readable conceptual representations without training. Additionally, the concept structures obtained through the model (i) present high composability, which potentially enables the generation of 'unseen' concepts, (ii) allow formal reasoning, and (iii) have inherent abilities for generalization and out-of-distribution learning. Consequently, this method may offer an interesting angle to current neural-symbolic research. Future work is required to develop a training methodology so that the model can be tested against a larger dataset

    An Agent-based Simulation of the Effectiveness of Creative Leadership\ud

    Get PDF
    This paper investigates the effectiveness of creative versus\ud uncreative leadership using EVOC, an agent-based model of\ud cultural evolution. Each iteration, each agent in the artificial society invents a new action, or imitates a neighbor’s action. Only the leader’s actions can be imitated by all other agents, referred to as followers. Two measures of creativity were used: (1) invention-to-imitation ratio, iLeader, which measures how often an agent invents, and (2) rate of conceptual change, cLeader, which measures how creative an invention is. High iLeader increased mean fitness of ideas, but only when creativity of followers was low. High iLeader was associated with greater diversity of ideas in the early stage of idea generation only. High Leader increased mean fitness of ideas in the early stage of idea generation; in the later stage it decreased idea fitness. Reasons for these findings and tentative implications for creative leadership in human society are discussed

    Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.

    Get PDF
    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition

    Predictive Processing and the Phenomenology of Time Consciousness: A Hierarchical Extension of Rick Grush’s Trajectory Estimation Model

    Get PDF
    This chapter explores to what extent some core ideas of predictive processing can be applied to the phenomenology of time consciousness. The focus is on the experienced continuity of consciously perceived, temporally extended phenomena (such as enduring processes and successions of events). The main claim is that the hierarchy of representations posited by hierarchical predictive processing models can contribute to a deepened understanding of the continuity of consciousness. Computationally, such models show that sequences of events can be represented as states of a hierarchy of dynamical systems. Phenomenologically, they suggest a more fine-grained analysis of the perceptual contents of the specious present, in terms of a hierarchy of temporal wholes. Visual perception of static scenes not only contains perceived objects and regions but also spatial gist; similarly, auditory perception of temporal sequences, such as melodies, involves not only perceiving individual notes but also slightly more abstract features (temporal gist), which have longer temporal durations (e.g., emotional character or rhythm). Further investigations into these elusive contents of conscious perception may be facilitated by findings regarding its neural underpinnings. Predictive processing models suggest that sensorimotor areas may influence these contents

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Incorporating characteristics of human creativity into an evolutionary art algorithm

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Ideas are not replicators but minds are

    Get PDF
    An idea is not a replicator because it does not consist of coded self-assembly instructions. It may retain structure as it passes from one individual to another, but does not replicate it. The cultural replicator is not an idea but an associatively-structured network of them that together form an internal model of the world, or worldview. A worldview is a primitive, uncoded replicator, like the autocatalytic sets of polymers widely believed to be the earliest form of life. Primitive replicators generate self-similar structure, but because the process happens in a piecemeal manner, through bottom-up interactions rather than a top-down code, they replicate with low fidelity, and acquired characteristics are inherited. Just as polymers catalyze reactions that generate other polymers, the retrieval of an item from memory can in turn trigger other items, thus cross-linking memories, ideas, and concepts into an integrated conceptual structure. Worldviews evolve idea by idea, largely through social exchange. An idea participates in the evolution of culture by revealing certain aspects of the worldview that generated it, thereby affecting the worldviews of those exposed to it. If an idea influences seemingly unrelated fields this does not mean that separate cultural lineages are contaminating one another, because it is worldviews, not ideas, that are the basic unit of cultural evolution

    Music Generation by Deep Learning - Challenges and Directions

    Full text link
    In addition to traditional tasks such as prediction, classification and translation, deep learning is receiving growing attention as an approach for music generation, as witnessed by recent research groups such as Magenta at Google and CTRL (Creator Technology Research Lab) at Spotify. The motivation is in using the capacity of deep learning architectures and training techniques to automatically learn musical styles from arbitrary musical corpora and then to generate samples from the estimated distribution. However, a direct application of deep learning to generate content rapidly reaches limits as the generated content tends to mimic the training set without exhibiting true creativity. Moreover, deep learning architectures do not offer direct ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Furthermore, deep learning architectures alone are autistic automata which generate music autonomously without human user interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such as: control, structure, creativity and interactivity are the focus of our analysis. In this paper, we select some limitations of a direct application of deep learning to music generation, analyze why the issues are not fulfilled and how to address them by possible approaches. Various examples of recent systems are cited as examples of promising directions.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:1709.01620. Accepted for publication in Special Issue on Deep learning for music and audio, Neural Computing & Applications, Springer Nature, 201
    • 

    corecore