13,791 research outputs found

    Feedback methods for inverse simulation of dynamic models for engineering systems applications

    Get PDF
    Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    Development of a general purpose airborne simulator

    Get PDF
    Variable stability system development for General Purpose Airborne Simulator /GPAS

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    Get PDF
    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees

    Design of a digital ride quality augmentation system for commuter aircraft

    Get PDF
    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs

    Flight control systems development and flight test experience with the HiMAT research vehicles

    Get PDF
    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time

    Use of a large jet transport as an inflight dynamic simulator

    Get PDF
    Modified jet transport used as inflight dynamic simulator for supersonic transport low speed approach and landing characteristic

    STOLAND

    Get PDF
    The STOLAND system includes air data, navigation, guidance, flight director (including a throttle flight director on the Augmentor Wing), 3-axis autopilot and autothrottle functions. The 3-axis autopilot and autothrottle control through parallel electric servos on both aircraft and on the augmentor wing, the system also interfaces with three electrohydraulic series actuators which drive the roll control surfaces, elevator and rudder. The system incorporates automatic configuration control of the flaps and nozzles on the augmentor wing and of the flaps on the Twin Otter. Interfaces are also provided to control the wing flap chokes on the Augmentor Wing and the spoilers on the Twin Otter. The STOLAND system has all the capabilities of a conventional integrated avionics system. Aircraft stabilization is provided in pitch, roll and yaw including control wheel steering in pitch and roll. The basic modes include altitude hold and select, indicated airspeed hold and select, flight path angle hold and select, and heading hold and select. The system can couple to TACAN and VOR/DME navaids for conventional radial flying
    • …
    corecore