236 research outputs found

    Expert System Applications in Sheet Metal Forming

    Get PDF

    An intelligent knowledge based cost modelling system for innovative product development

    Get PDF
    This research work aims to develop an intelligent knowledge-based system for product cost modelling and design for automation at an early design stage of the product development cycle, that would enable designers/manufacturing planners to make more accurate estimates of the product cost. Consequently, a quicker response to customers’ expectations. The main objectives of the research are to: (1) develop a prototype system that assists an inexperienced designer to estimate the manufacturing cost of the product, (2) advise designers on how to eliminate design and manufacturing related conflicts that may arise during the product development process, (3) recommend the most economic assembly technique for the product in order to consider this technique during the design process and provide design improvement suggestions to simplify the assembly operations (i.e. to provide an opportunity for designers to design for assembly (DFA)), (4) apply a fuzzy logic approach to certain cases, and (5) evaluate the developed prototype system through five case studies. The developed system for cost modelling comprises of a CAD solid modelling system, a material selection module, knowledge-based system (KBS), process optimisation module, design for assembly module, cost estimation technique module, and a user interface. In addition, the system encompasses two types of databases, permanent (static) and temporary (dynamic). These databases are categorised into five separate groups of database, Feature database, Material database, Machinability database, Machine database, and Mould database. The system development process has passed through four major steps: firstly, constructing the knowledge-based and process optimisation system, secondly developing a design for assembly module. Thirdly, integrating the KBS with both material selection database and a CAD system. Finally, developing and implementing a ii fuzzy logic approach to generate reliable estimation of cost and to handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods. The developed system has, besides estimating the total cost of a product, the capability to: (1) select a material as well as the machining processes, their sequence and machining parameters based on a set of design and production parameters that the user provides to the system, and (2) recommend the most economic assembly technique for a product and provide design improvement suggestion, in the early stages of the design process, based on a design feasibility technique. It provides recommendations when a design cannot be manufactured with the available manufacturing resources and capabilities. In addition, a feature-by-feature cost estimation report was generated using the system to highlight the features of high manufacturing cost. The system can be applied without the need for detailed design information, so that it can be implemented at an early design stage and consequently cost redesign, and longer lead-time can be avoided. One of the tangible advantages of this system is that it warns users of features that are costly and difficult to manufacture. In addition, the system is developed in such a way that, users can modify the product design at any stage of the design processes. This research dealt with cost modelling of both machined components and injection moulded components. The developed cost effective design environment was evaluated on real products, including a scientific calculator, a telephone handset, and two machined components. Conclusions drawn from the system indicated that the developed prototype system could help companies reducing product cost and lead time by estimating the total product cost throughout the entire product development cycle including assembly cost. Case studies demonstrated that designing a product using the developed system is more cost effective than using traditional systems. The cost estimated for a number of products used in the case studies was almost 10 to 15% less than cost estimated by the traditional system since the latter does not take into consideration process optimisation, design alternatives, nor design for assembly issue

    Knowledge-based automatic tolerance analysis system

    Get PDF
    Tolerance measure is an important part of engineering, however, to date the system of applying this important technology has been left to the assessment of the engineer using appropriate guidelines. This work offers a major departure from the trial and error or random number generation techniques that have been used previously by using a knowledge-based system to ensure the intelligent optimisation within the manufacturing system. A system to optimise manufacturing tolerance allocation to a part known as Knowledge-based Automatic Tolerance Analysis (KATA) has been developed. KATA is a knowledge-based system shell built within AutoCAD. It has the ability for geometry creation in CAD and the capability to optimise the tolerance heuristically as an expert system. Besides the worst-case tolerancing equation to optimise the tolerance allocation, KATA's algorithm is supported by actual production information such as machine capability, types of cutting tools, materials, process capabilities etc. KATA's prototype is currently able to analyse a cylindrical shape workpiece and a simple prismatic part. Analyses of tolerance include dimensional tolerance and geometrical tolerance. KATA is also able to do angular cuts such as tapers and chamfers. The investigation has also led to the significant development of the single tolerance reference technique. This method departs from the common practice of multiple tolerance referencing technique to optimise tolerance allocation. Utilisation of this new technique has eradicated the error of tolerance stackup. The retests have been undertaken, two of which are cylindrical parts meant to test dimensional tolerance and an angular cut. The third is a simple prismatic part to experiment with the geometrical tolerance analysis. The ability to optimise tolerance allocation is based on real production data and not imaginary or random number generation and has improved the accuracy of the expected result after manufacturing. Any failure caused by machining parameters is cautioned at an early stage before an actual production run has commenced. Thus, the manufacturer is assured that the product manufactured will be within the required tolerance limits. Being the central database for all production capability information enables KATA to opt for several approaches and techniques of processing. Hence, giving the user flexibility of selecting the process plan best suited for any required situation

    The application of knowledge based systems to the abstraction of design and costing rules in bespoke pipe jointing systems

    Get PDF
    This thesis presents the work undertaken in the creation of a knowledge based system aimed at facilitating the design and cost estimation of bespoke pipe jointing systems. An overview of the problem domain is provided and the findings from a literature review on knowledge based systems and applications in manufacturing were used to provide initial guidance to the research. The overall investigation and development process involved the abstraction of design and costing rules from domain experts using a sub-set of the techniques reviewed and the development and implementation of the knowledge based system using an expert system approach, the soft systems methodology (SSM) and the system development lifecycle methodology. Based on the abstracted design and costing rules, the developed system automates the design of pipe jointing systems, and facilitates cost estimation process within third party configuration software. The developed system was validated using two case studies and was shown to provide the required outputs

    Knowledge Based Systems: A Critical Survey of Major Concepts, Issues, and Techniques

    Get PDF
    This Working Paper Series entry presents a detailed survey of knowledge based systems. After being in a relatively dormant state for many years, only recently is Artificial Intelligence (AI) - that branch of computer science that attempts to have machines emulate intelligent behavior - accomplishing practical results. Most of these results can be attributed to the design and use of Knowledge-Based Systems, KBSs (or ecpert systems) - problem solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. These systems can act as a consultant for various requirements like medical diagnosis, military threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to make intelligent desisions. They are, however, not meant to replace the human specialists in any particular domain. A critical survey of recent work in interactive KBSs is reported. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive set of KBS-related references is provided at the end of the report

    An ergonomics design knowledge based expert system

    Get PDF
    The research scope and objectives are to investigate the use of 'geometric reasoning' using the knowledge based techniques established for expert systems. An Expert System is integrated within the SAMMIE (System for Aiding Man-Machine Interaction Evaluation) computer man modelling system and used for vehicle interior design. Vehicle design objectives are related to a rule base determined from national and international standards and legislation. Malaysia is now progressing towards becoming an Industrialised Country by the year 2020. In mid 1985 the Malaysian Motor Industry produced the Proton Saga which has since been exported to other countries. Although the Standards and Industrial Research Institute of Malaysia (SIRIM) is playing an important role in design activities and provision of standardisation information, some standards and legislation for vehicle interior design are not easily available. There is an important and urgent need for standards and legislation to facilitate vehicle design within Malaysia and Internationally. A literature survey on the relevance of ergonomics design to standards and legislation for vehicle interior design is presented. Knowledge and expertise required for the knowledge base were elicited from various resources; extracted from journals, research publications and standards reports from various international organisations. The SAMMIE system was used to develop a prototype design model for the vehicle interior and the KES expert systems hell was selected to develop the Ergonomics Design Knowledge Based Expert System (EDKBES). EDKBES has a modular structure for ease of software readability, editing and testing, and to readily facilitate further development. The knowledge base is divided into several sections related to the hierarchical structure of vehicle interior design

    Analysis and modeling methods for predicting functional robustness of integrated circuits during fast transient events

    Get PDF
    La miniaturisation des circuits intégrés se poursuit de nos jours avec le développement de technologies toujours plus fines et denses. Elle permet une intégration des circuits toujours plus massive, avec des performances plus élevées et une réduction des coûts de production. La réduction de taille des circuits s'accompagne aussi d'une augmentation de leur sensibilité électrique. L'électronique automobile est un acteur majeur dans la nouvelle tendance des véhicules autonomes. Ce type d'application a besoin d'analyser des données et d'appliquer des actions sur le véhicule en temps réel. L'objectif à terme est d'améliorer la sécurité des usagers. Il est donc vital de garantir que ces modules électroniques pourront effectuer leurs tâches correctement malgré toutes les perturbations auxquelles ils seront exposés. Néanmoins, l'environnement automobile est particulièrement sévère pour l'électronique. Parmi tous les stress rencontrés, les décharges électrostatiques (ESD - Electrostatic Discharge) sont une importante source d'agression électrique. Ce type d'évènement très bref est suffisamment violent pour détruire des composants électroniques ou les perturber pendant leur fonctionnement. Les recherches présentées ici se concentrent sur l'analyse des défaillances fonctionnelles. À cause des ESD, des fonctions électroniques peuvent cesser temporairement d'être opérantes. Des méthodes d'analyse et de prédiction sont requises au niveau-circuit intégré afin de détecter des points de faiblesses susceptibles de générer des fautes fonctionnelles pendant l'exposition à un stress électrostatique. Différentes approches ont été proposées dans ce but. Une méthode hiérarchique de modélisation a été mise au point afin d'être capable de reproduire la forme d'onde ESD jusqu'à l'entrée du circuit intégré. Avec cette approche, chaque élément du système est modélisé individuellement puis son modèle ajouté au schéma complet. Un cas d'étude réaliste de défaillance fonctionnelle d'un circuit intégré a été analysé à l'aide d'outils de simulation. Afin d'obtenir plus de données sur cette faute, une puce de test a été développée, contenant des structures de surveillance et de mesure directement intégrées dans la puce. La dernière partie de ce travail de recherche est concentrée sur le développement de méthodes d'analyse dans le but d'identifier efficacement des fautes par simulation. Une des techniques développées consiste à modéliser chaque bloc d'une fonction individuellement puis permet de chaîner ces modèles afin de déterminer la robustesse de la fonction complète. La deuxième méthode tente de construire un modèle équivalent dit boite-noire d'une fonction de haut-niveau d'un circuit intégré. Ces travaux de recherche ont mené à la mise au point de prototypes matériels et logiciels et à la mise en évidence de points bloquants qui pourront constituer une base pour de futurs travaux.Miniaturization of electronic circuits continues nowadays with the more recent technology nodes being applied to diverse fields of application such as automotive. Very dense and small integrated circuits are interesting for economic reasons, because they are cheaper to manufacture in mass and can pack more functionalities with elevated performances. The counterpart of size reduction is integrated circuits becoming more fragile electrically. In the automotive world, the new trend of fully autonomous driving is seeing tremendous progress recently. Autonomous vehicles must take decisions and perform critical actions such as braking or steering the wheel. Those decisions are taken by electronic modules, that have now very high responsibilities with regards of our safety. It is important to ensure that those modules will operate no matter the kind of disturbances they can be exposed to. The automotive world is a quite harsh environment for electronic systems. A major source of electrical stress is called the Electrostatic Discharge (ESD). It is a very sudden flow of electricity of large amplitude capable of destroying electronic components, or disturb them during their normal operation. This research focuses on functional failures where functionality can be temporarily lost after an ESD with various impact on the vehicle. To guarantee before manufacturing that a module and its components will perform their duty correctly, new analysis and prediction methods are required against soft-failures caused by electrostatic discharges. In this research, different approaches have been explored and proposed towards that goal. First, a modelling method for reproducing the ESD waveforms from the test generator up to the integrated circuit input is presented. It is based on a hierarchical approach where each element of the system is modelled individually, then added to the complete setup model. A practical case of functional failure at silicon-level is analyzed using simulation tools. To acquire more data on this fault, a testchip has been designed. It contains on-chip monitoring structures to measure voltage and current, and monitor function behavior directly at silicon-level. The last part of this research details different analysis methods developed for identifying efficiently functional weaknesses. The methods rely heavily on simulation tools, and prototypes have been implemented to prove the initial concepts. The first method models each function inside the chip individually, using behavioral models, then enables to connect the models together to deduce the full function's robustness. It enables hierarchical analysis of complex integrated circuit designs, to identify potential weak spots inside the circuit that could require more shielding or protection. The second method is focused on constructing equivalent electrical black box models of integrated circuit functions. The goal is to model the IC with a behavioral, black-box model capable of reproducing waveforms in powered conditions during the ESD. In summary, this research work has led to the development of several hardware and software prototypes. It has also highlighted important modelling challenges to solve in future works to achieve better functional robustness against electrostatic discharges

    Modelling and controlling variation propagation in mechanical assembly of high speed rotating machines

    Get PDF
    Assembly plays a vital role in the quality of a final product and has a great impact on the manufacturing cost. The mechanical assemblies consist of parts that inevitably have variations from their ideal dimensions. These variations propagate and accumulate as parts are assembled together. Excessive amount of variations in an assembly may cause improper functionality of the product being assembled. Improving assembly quality and reducing the assembly time and cost are the main objectives of this thesis. The quality of an assembly is determined in terms of variations in critical assembly dimensions, also known as Key Characteristics (KCs). Key Characteristics are designated to indicate where excess variation will affect product quality and what product features and tolerances require special attention. In order to improve assembly quality and reduce assembly time and cost, it is necessary to: (1) model non-ideal parts based on tolerances defined in design standards or current industrial practice of component inspection, (2) model assemblies and their associated assembly processes to analyse tolerance stack-up in the assembly, (3) develop probabilistic model to predict assembly variation after product assembly, and (4) implement control strategies for minimising assembly variation propagations to find optimum configuration of the assembly. Two assembly models have been developed, a linear model and a fully non-linear model for calculating assembly variation propagations. The assembly models presented in this thesis also allows for inclusion of geometric feature variation of each assembly component. Methods of incorporating geometric feature variations into an assembly variation model are described and analysis techniques are explained. The assembly variation model and the geometric variation models have been developed for 20 and 3D assemblies. Modelling techniques for incorporating process and measurement noise are also developed and described for the nonlinear assembly model and results are given to demonstrate the calculation of assembly variations while considering part, process and measurement errors. Two assembly case studies originating in sub-assemblies of aero-engines have been studied: Case Study 1, representing the rotating part (rotor) of an aero-engine, and Case Study 2, representing non-rotating part (stator) of an aero-engine. A probabilistic method based on the linear model is presented as a general analytical method for analysis of 3D mechanical assemblies. Probability density functions are derived for assembly position errors to analyse a general mechanical assembly, and separate probability functions are derived for the Key Characteristics (KCs) for assembly in Case Studies 1 and 2. The derived probability functions are validated by using the Monte Carlo simulation method based on the exact (full non-linear) model. Results showed that the proposed probabilistic method of estimating tolerance accumulation in mechanical assemblies is very efficient and accurate when compared to the Monte Carlo simulation method, particularly if large variations at the tails of the distributions are considered. Separate control strategies have been implemented for each case study. Four methods are proposed to minimise assembly variations for Case Study 1, and one error minimisation method is suggested for assemblies of Case Study 2. Based on the developed methods to optimise assembly quality, the two case studies were investigated, and it was found that the proposed optimisation methods can significantly improve assembly quality. The developed optimisation methods do not require any special tooling (such as fixtures) and can easily be implemented in practice
    • …
    corecore