865 research outputs found

    A FRACTIONAL DELAY FIR FILTER BASED ON LAGRANGE INTERPOLATION OF FARROW STRUCTURE

    Get PDF
    An efficient implementation technique for the Lagrange interpolation is derived. This formulation called the Farrow structure leads to a version of Lagrange interpolation that is well suited to time varying FD filtering. Lagrange interpolation is mostly used for fractional delay approximation as it can be used for increasing the sampling rate of signals and systems. Lagrange interpolation is one of the representatives for a class of polynomial interpolation techniques. The computational cost of this structure is reduced as the number of multiplications are minimised in the new structure when compared with the conventional structure

    Variable Fractional Digital Delay Filter on Reconfigurable Hardware

    Get PDF
    This thesis describes a design for a variable fractional delay (VFD) finite impulse reponse (FIR) filter implemented on reconfigurable hardware. Fractionally delayed signals are required for several audio-based applications, including echo cancellation and musical signal analysis. Traditionally, VFD FIR filters have been implemented using a fixed structure in software based upon the order of the filter. This fixed structure restricts the range of valid fractional delay values permitted by the filter. This proposed design implements an order-scalable FIR filter, permitting fractionally delayed signals of widely varying integer sizes. Furthermore, the proposed design of this thesis builds upon the traditional Lagrange interpolator FIR filter using either asoftware-based coefficient computational unit or hardware-based coefficient computational unit in reconfigurable hardware for updating the FIR coefficients in real-time. Traditional Lagrange interpolator FIR filters have only permitted fixed fractional delay. However, by leveraging todays (2012) low-cost high performance reconfigurable hardware, an FIR-based fractional delay filter was created to permit varying fractional delay. A software/hardware hybrid VFD filter was prototyped using the Xilinx System Generator toolkit. The resulting real-time VFD FIR filter was tested usingSystem Generator, as well as Xilinx ISE and ModelSim.M.S., Computer Engineering -- Drexel University, 201

    Robust Sampling Clock Recovery Algorithm for Wideband Networking Waveform of SDR

    Get PDF
    A novel technique for sampling clock recovery in a wideband networking waveform of a software defined radio is proposed. Sampling clock recovery is very important in wideband networking radio operation as it directly affects the Medium Access adaptive time slot switching rate. The proposed Sampling clock recovery algorithm consists of three stages. In the first stage, Sampling Clock Offset (SCO) is estimated at chip level. In the second stage, the SCO estimates are post-filtered to improve the tracking performance. We present a new post-filtering method namely Steady-State State-Space Recursive Least Squares with Adaptive Memory (S4RLSWAM). For the third stage of SCO compensation, a feedforward Lagrange interpolation based algorithm is proposed. Real-time hardware results have been presented to demonstrate the effectiveness of the proposed algorithms and architecture for systems requiring high data throughput. It is shown that both the proposed algorithms achieve better performance as compared to existing algorithms

    Slepian Beamforming: Broadband Beamforming using Streaming Least Squares

    Full text link
    In this paper we revisit the classical problem of estimating a signal as it impinges on a multi-sensor array. We focus on the case where the impinging signal's bandwidth is appreciable and is operating in a broadband regime. Estimating broadband signals, often termed broadband (or wideband) beamforming, is traditionally done through filter and summation, true time delay, or a coupling of the two. Our proposed method deviates substantially from these paradigms in that it requires no notion of filtering or true time delay. We use blocks of samples taken directly from the sensor outputs to fit a robust Slepian subspace model using a least squares approach. We then leverage this model to estimate uniformly spaced samples of the impinging signal. Alongside a careful discussion of this model and how to choose its parameters we show how to fit the model to new blocks of samples as they are received, producing a streaming output. We then go on to show how this method naturally extends to adaptive beamforming scenarios, where we leverage signal statistics to attenuate interfering sources. Finally, we discuss how to use our model to estimate from dimensionality reducing measurements. Accompanying these discussions are extensive numerical experiments establishing that our method outperforms existing filter based approaches while being comparable in terms of computational complexity

    Computationally efficient music synthesis : methods and sound design

    Get PDF
    Tässä diplomityössä esitetään musiikkisyntetisaattorin suunnittelua systeemille, jonka laskentateho ja muistikapasiteetti ovat rajoitettuja. Ensiksi kerrataan mahdollisia synteesitekniikoita sekä arvioidaan niiden käyttökelpoisuutta laskennallisesti tehokkaassa musiikkisynteesissä. Käytännössä käyttökelpoiset tekniikat ovat lisäävä ja lähde-suodinsynteesit, ja erikoistapauksissa taajuusmodulaatio-, aaltotaulukko- ja samplaussynteesit. Tämän jälkeen käyttökelpoisten tekniikoiden rakenteiden suunnittelua esitetään tarkemmin, sekä esitetään näiden rakenteiden ominaisuuksia ja suunnitteluongelmia. Suurin ongelma kohdataan digitaalisessa lähde-suodinsynteesissä, jossa klassisten aaltomuotojen, kuten saha-aallon käyttö lähdesignaalina on ongelmallista laskostumisen takia, joka johtuu aaltomuodossa olevista epäjatkuvuuksista. Olemassa olevia kaistarajoitettuja aaltomuotosynteesimenetelmiä kerrataan, ja polynomimuotoiseen kaistarajoitetuun askelfunktioon perustuvaa menetelmää esitellään tarkemmin antamalla suunnittelusääntöjä käyttökelpoisille polynomeille. Menetelmää testataan lisäksi kahdella kolmannen asteen polynomilla. Nämä polynomit vähentävät laskostumista korkeilla taajuuksilla enemmän verrattuna ensimmäisen asteen polynomiin, mutta pienillä taajuksilla ensimmäisen asteen polynomi tuottaa parempia tuloksia. Lisäksi kerrataan muita mahdollisia ääniefektialgoritmeja ja arvioidaan niiden käyttökelpoisuutta laskennallisesti tehokkaassa musiikkisynteesissä. Useasti äänisynteesisysteemin täytyy pystyä generoimaan musiikkia, jossa käytetään monia erilaisia ääniä, jotka ulottuvat oikeista akustisista soittimista elektronisiin soittimiin ja luonnon ääniin. Siksi tällainen systeemi tarvitsee huolellista äänten suunnittelua. Tässä diplomityössä esitetään suunnittelusääntöjä erilaisten äänien imitoimiseksi. Lisäksi esitellään synteesimenetelmien parametrien vaikutus äänivarianttien suunnitteluun.In this thesis, the design of a music synthesizer for systems suffering from limitations in computing power and memory capacity is presented. First, different possible synthesis techniques are reviewed and their applicability in computationally efficient music synthesis is discussed. In practice, the applicable techniques are limited to additive and source-filter synthesis, and, in special cases, to frequency modulation, wavetable and sampling synthesis. Next, the design of the structures of the applicable techniques are presented in detail, and properties and design issues of these structures are discussed. A major implementation problem is raised in digital source-filter synthesis, where the use of classic waveforms, such as sawtooth wave, as the source signal is challenging due to aliasing caused by waveform discontinuities. Methods for existing bandlimited waveform synthesis are reviewed, and a new approach using polynomial bandlimited step function is presented in detail with design rules for the applicable polynomials. The approach is also tested with two different third-order polynomials. They reduce aliasing more at high frequencies, but at low frequencies their performance is worse than with the first-order polynomial. In addition, some commonly used sound effect algorithms are reviewed with respect to their applicability in computationally efficient music synthesis. In many cases the sound synthesis system must be capable of producing music consisting of various different sounds ranging from real acoustic instruments to electronic instruments and sounds from nature. Therefore, the music synthesis system requires careful sound design. In this thesis, sound design rules for imitation of various sounds using the computationally efficient synthesis techniques are presented. In addition, the effects of the parameter variation for the design of sound variants are presented

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore