iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Hardward and algorithm architectures for real-time
additive synthesis

Thesis

How to cite:

Symons, Peter Robert (2005). Hardward and algorithm architectures for real-time additive synthesis. PhD
thesis The Open University.

For guidance on citations see FAQs!

(© 2005 Peter Robert Symons

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

UNLESTEACTED.

Hardware and Algorithm Architectures for

Real-Time Additive Synthesis

A thesis submitted to the Open University
in partial fulfilment of the requirements for
the degree of

Doctor of Philosophy.

By
Peter Robert Symons

BSc (Eng) Hons, BSc (Open) Hons

Department of Information and Communication Technologies

of the Open University

June 2005

DATTE OF SURFUSTIoND 291 WMa[CH 200%

DATE OF Awpel 28 Tuws 2o0S

ProQuest Number: 13917246

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13917246

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

Additive synthesis is a fundamental computer music synthesis paradigm tracing its
origins to the work of Fourier and Helmholtz. Rudimentary implementation linearly
combines harmonic sinusoids (or partials) to generate tones whose perceived timbral
characteristics are a strong function of the partial amplitude spectrum. Having evolved
over time, additive synthesis describes a collection of algorithms each characterised by
the time-varying linear combination of basis components to generate temporal evolution
of timbre. Basis components include exactly harmonic partials, inharmonic partials with
time-varying frequency or non-sinusoidal waveforms each with distinct spectral
characteristics. Additive synthesis of polyphonic musical instrument tones requires a
large number of independently controlled partials incurring a large computational
overhead whose investigation and reduction is a key motivator for this work.

The thesis begins with a review of prevalent synthesis techniques setting additive
synthesis in context and introducing the spectrum modelling paradigm which provides
baseline spectral data to the additive synthesis process obtained from the analysis of
natural sounds. We proceed to investigate recursive and phase accumulating digital
sinusoidal oscillator algorithms, defining specific metrics to quantify relative
performance. The concepts of phase accumulation, table lookup phase-amplitude
mapping and interpolated fractional addressing are introduced and developed and
shown to underpin an additive synthesis subclass — wavetable lookup synthesis (WLS).
WLS performance is simulated against specific metrics and parameter conditions
peculiar to computer music requirements. We conclude by presenting processing
architectures which accelerate computational throughput of specific WLS operations
and the sinusoidal additive synthesis model. In particular, we introduce and investigate
the concept of phase domain processing and present several “pipeline friendly”
arithmetic architectures using this technique which implement the additive synthesis of

sinusoidal partials.

ii

Acknowledgements

I would like to thank Dr Mike Meade and Dr Terry McCarthy of the Open University
Department of Information and Communication Technologies for their support,
guidance and constructive input throughout the duration of this project. I would
particularly like to thank Karen, my ever-loving wife and three children Chris, Ben and
Jenny, without whose support, tolerance and love this project would never have
concluded. Thanks are also due to my old friend Mike McNabb for typographical advice

during the formatting of this thesis.

I dedicate this work to Karen and my parents Kath and Bob Symons.

iii

Contents

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

Glossary of Definitions and Common Terms
Glossary of Acronyms

Publications Related to this Research

Chapter1 Introduction
1.1 Background
1.2 An Historical Overview of Computer Music and Additive Synthesis
1.3 Research Motivation and Objectives
1.3.1 Introduction
1.3.2 Motivation
1.3.3 Objectives
1.3.4 Assumptions
1.4 Thesis Structure
1.5 Original Work

Chapter2 Computer Music Synthesis Techniques
2.1 Introduction
2.2 Processed Recording
2.2.1 Sampling Synthesis
2.2.2 Wavetable Lookup Synthesis
2.3 Spectrum Modelling
2.3.1 The Fourier Transform
2.3.2 Sinusoidal Additive Synthesis
2.3.3 Baseline Spectrum Representation
2.3.4 Subtractive Synthesis
2.4 Physical Modelling
2.5 Abstract Algorithm
2.5.1 Frequency Modulation (FM) Synthesis
2.5.2 Synthesis by Discrete Summation Formulae
2.5.3 Waveshaping Synthesis
2.6 Generalised Additive Synthesis
2.6.1 Partial Additive Synthesis — Advantages and Disadvantages
2.6.2 The PAS Algorithm — Decomposition and Assessment
2.6.3 The Significance of Partial Phase
2.6.4 Piecewise-Linear Envelope Representation
2.6.5 Metaparameters — Context and the PAS Processing Model
2.6.6 Additive Synthesis using the Inverse FFT
2.7 Conclusions

Chapter 3 Digital Sinuseoidal Oscillators

3.1 Overview
3.2 Recursive Oscillators

iv

ii
iii
iv
vii
XV
xvi
Xix
xxii

23
23
24
29
29
30
31
32
33
35

37
37
39
39
40
43
43
46
52
57
61
64
64
65
66
67
68
70
73
74
71
81
83

84
84
86

3.2.1 Direct-form

3.2.2 Coupled-form

3.2.3 Modified Coupled-form

3.2.4 Waveguide-form

3.2.5 Frequency Control and Quantisation Effects

3.2.6 Initial Conditions and Phase Continuity
3.3 Phase Accumulating Sinusoidal Oscillators

3.3.1 Phase Sequence Generation

3.3.2 Sinusoidal Phase-mapping by Table Lookup

3.3.3 Truncated Taylor Series Sinusoidal Phase-mapping
3.4 The CORDIC Algorithm

3.4.1 The CORDIC Algorithm as a Vector Rotation

3.4.2 CORDIC Application in Digital Sinusoidal Oscillators

3.4.3 Sequential and Recursive CORDIC Implementation
3.5 Conclusions

Chapter4 Wavetable Lookup Synthesis
4.1 Background
4.1.1 Foundations of Wavetable Lookup Synthesis
4.1.2 Wavetable Signal Tabulation
4.1.3 Sampling a Tabulated Function
4.1.4 Fractional Addressing
4.1.5 The Sample-Rate-Conversion View
4.2 Frequency Control
4.2.1 The Phase-Frequency Relationship in DT Sinusoid Synthesis
4.2.2 Frequency Control Precision
4.2.3 Phase Accumulation and Phase Continuity
4.2.4 Optimal Phase Mapping
4.2.5 Phase Control
4.3 Sampling Synthesis
4.3.1 Overview
4.3.2 Asynchronous Pitch Shifting
4.3.3 Synchronous Pitch Shifting
4.3.4 Interpolation Filtering
4.3.5 Pitch Shift Resolution and Phase Fraction Field Width
4.4 Conclusions

Chapter S Interpolated Phase Mapping
5.1 Introduction
5.1.1 Truncated Phase Mapping
5.1.2 Fractional Phase Representation
5.2 Fractional Wavetable Addressing and Polynomial Interpolation
5.2.1 Preliminaries
5.2.2 The Cubic Interpolation Polynomial
5.2.3 The Optimal Order N Polynomial Interpolator
5.2.4 Interpolation Arithmetic Overhead
5.3 Trigonometric Identity Phase Mapping (TIPM)

86

91

98

99

101
106
119
119
121
124
127
127
131
133
135

139
139
140
145
149
153
157
161
161
165
169
176
180
182
182
183
183
185
188
190

191
191
192
195
198
198
199
200
203
207

5.3.1 The Trigonometric Addition Identity and Sinusoidal Phase Mapping 207

5.3.2 Optimal Phase Word Partitioning
5.3.3 The Reduced-Multiplier Quadrature TIPM Form

210
211

5.3.4 Arithmetic Precision and Sample Word Size
5.4 Simulation Development
5.4.1 The Signal-to-Noise Ratio (SNR) Metric
5.4.2 Phase Increment and Phase Truncation Error
5.4.3 The Amplitude Error Spectrum
5.4.4 Defining the Wavetable Spectrum
5.4.5 Simulation Record Length
5.5 Simulation Results
5.5.1 Introduction

5.5.2 Sinusoidal Phase-Mapping — Non-Truncated Phase Fraction

5.5.3 Sinusoidal Phase Mapping — Truncated Phase Fraction
5.5.4 Sinusoidal Phase Mapping — Amplitude Error Spectra
5.5.5 Multi-Harmonic Phase Mapping

5.6 Conclusions

Chapter 6 Arithmetic Processing Architectures

6.1 Introduction

6.2 Memory Access and Interpolated Fractional Addressing
6.2.1 Consecutive Access Vector Memory
6.2.2 The Order-2 CAVM and Linear Interpolation
6.2.3 The Order-4 CAVM and Cubic Interpolation

6.2.4 The Generalised CAVM and Interpolation Process Model

6.2.5 Linear Wavetable Combination
6.3 Phase Domain Processing
6.3.1 Introduction

6.3.2 Block Pipelining and the Phase Accumulating Oscillator

6.3.3 Pitch Control in the Phase Accumulating Oscillator
6.3.4 Synthesising Consecutive Harmonic Phase Sequences

6.3.5 Synthesising Non-Consecutive Harmonic Phase Sequences

6.3.6 Synthesising Partial Phase Sequences
6.3.7 A Multiple Voice PAS Processing Architecture
6.3.8 Simulation Results

6.4 Conclusions

Chapter 7 Conclusions

7.1 Introduction

7.2 Research Objectives

7.3 Limitations and Areas for Further Investigation

Bibliography

References

Appendix A Polynomial Interpolation

Appendix B Performance Simulation

Appendix C The Order-3 Consecutive Access Vector Memory

vi

213
215
216
218
223
225
228
230
230
232
236
238
241
258

262
262
263
263
265
270
274
279
283
283
283
290
292
297
302
308
316
320

322
322
323
327
329
331
337
344

363

List of Figures

(Figure captions have been précised for brevity.)

2.2.1)
(2.2.2)
2.3.1)

(23.2)

(2.3.3)

2.3.4)
2.3.5)
(2.3.6)

(2.3.7)

2.4.1)
2.4.2)
2.6.1)
(2.6.2a)

(2.6.2b)

(2.6.3)

2.6.4)

(2.6.5)

(2.6.6)

The multiple wavetable synthesis algorithm.
Generalisation of multiple wavetable synthesis to group additive synthesis.
The discrete Fourier transform pair.

Simplified harmonic additive synthesis processing model using pre-
computed wavetable lookup.

Partial additive synthesis of periodic and non-periodic sounds by time-
varying linear combination of N, partials.

Top-level information flow in spectrum modelling AS.
The subtractive synthesis processing model.
An IIR resonant filter with normalised peak gain.

Weighted linear combination of multiple second-order resonant filter
sections.

The Karplus-Strong plucked string model.

Simplified waveguide model of a woodwind instrument.

A taxonomy of additive synthesis subclasses.

Hypothetical PWL approximation of a partial amplitude envelope.

Original envelope exhibiting noise-like variation about an underlying
contour.

PWL amplitude envelope approximation of the first 8 partials of a trumpet
tone [Grey, 1975].

PWL approximations of the fundamental and 2™ partial frequency
envelopes of a trumpet tone [Grey, 1975].

PWL partial amplitude response for various # and r, values.

The partial additive synthesis processing model incorporating
metaparameterisation of partial amplitude and frequency.

vii

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.52)

(3.2.5b)

(3.2.6)

(3.2.7)

(3.2.8)
(3.2.9)

(3.2.102)

(3.2.10b)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.142)
(3.2.14b)

(3.2.14c)

(3.2.15)
(3.2.16)
(3.2.17)

(3.3.1)

The direct-form recursive oscillator.

y(n) for the direct-form oscillator with frequency transition at »=150.

Normalising y(») to unit amplitude introduces an amplitude-discontinuity
at the transition point.

The coupled-form recursive oscillator.

Pole distribution around the first quadrant of the unit-circle for the direct-
form recursive oscillator with quantised arithmetic.

Pole distribution around the first quadrant of the unit-circle for the coupled-
form recursive oscillator with quantised arithmetic.

Pole distribution around the unit circle in the complex z-plane.

Elapsed samples for a given oscillation amplitude change against word size
assuming a fixed-point number representation.

The modified coupled-form recursive oscillator.
The waveguide-form recursive oscillator.

Quantised frequency control characteristics for the direct-form and
modified coupled-form oscillators.

Relative tuning error for the direct and waveguide-form oscillators.

Simulated phase error between the phase accumulator and direct-form
oscillators.

Constant amplitude, phase continuous frequency transition in each phase
quadrant.

Contour plot illustrating the performance of Egs. (3.2.15).

Discriminating the phase of y(n) between quadrants 1 and 2 by examining
the slope of the line between y(n) and y(n-1).

The error interval where y(n) can be placed in the incorrect quadrant.

Phase intervals corresponding to the test conditions in Eq. (3.2.17).
Contour plot illustrating the performance of Egs. (3.2.18).
Variation of peak phase error with quantisation bits for Eq. (3.2.17).

The phase-accumulating sinusoidal oscillator process model.

viii

(3.3.2)

(3.3.3)

(3.3.4)

(3.4.1)

(3.4.2)
(3.4.3)
(3.4.4)

(4.1.1a)

(4.1.1b)
(4.12)

(4.1.3)

(4.1.4)

(4.1.5)
(4.1.6)
4.1.7)
(4.1.8)

4.1.9)
(4.1.10)

4.2.1)

(4.2.2)

Linearly interpolated phase mapping using multiplexed access of a single
lookup table.

Linear interpolation using two lookup tables to eliminate consecutive
access of a single memory.

Error function for various order Taylor series approximations of sin(x).

An example of the CORDIC algorithm computing sin(%) over 15

iterations.

CORDIC phase mapping architecture.

Sequential and recursive implementation of the CORDIC algorithm.
CORDIC processing element architecture.

A single-cycle wavetable tabulating precisely one cycle of a sinusoid over
16 samples.

A multi-cycle wavetable tabulating a complex signal over L samples.
Single and multi-cycle wavetable classification.

Decomposing a multi-cycle wavetable into a sequence of contiguous single-
cycle wavetables.

Hypothetical arrangement for tabulating a CT signal and resampling to
effect resynthesis at a new frequency.

Data fields for fractional phase accumulation and wavetable addressing.
Down-sampling a tabulated sinusoid.

Up-sampling a tabulated sinusoid.

An analytical view of the sample rate conversion process.

Frequency domain view of wavetable resampling with ¢ = 3.
Frequency domain view of wavetable resampling with ¢ = 3.

An M -bit accumulator addressing a 2 location wavetable to effect phase-
amplitude mapping.

Variation of pitch tuning error with M for f. =27.5Hz.

ix

(4.2.3) Variation of frequency resolution with M for three values of f;.
“4.24) Phase accumulator output sequence with M =5 and p=7.

(4.2.5a) A DT sinusoid with phase discontinuous frequency transition at n = 50.
(4.2.5b) Corresponding phase sequence.

(4.2.6) Graphical representation of phase-discontinuous and continuous sequences.
(4.2.7a) A DT sinusoid with phase continuous frequency transition at n =50.
(4.2.70) Corresponding phase sequence.

(4.2.8a) A typical phase accumulator output sequence with M =6, p =2, ¢'=5
and m=50.

(4.2.8b) Corresponding phase mapped sinusoidal sequence with M =6, ¢ =2,
o' =5 and m=50.

4.2.9) Resynthesised spectrum from a 4 harmonic wavetable.
(4.2.10) Phase accumulator with phase offset adder.

(4.3.1a) Zero-order frequency response for U =4.

(4.3.1b) First-ordgr hold frequency response for U =4.

(4.3.2) Sample rate conversion of a tabulated signal using a K sample
interpolation filter [Massie, 1998].

(5.1.1a) Reference phase sequence with M =12 and ¢ =217.
(5.1.1b) Four bit truncated phase sequence.

(5.1.1c) Phase error sequence in radians.

(5.12a) Reference sinusoid with L=2".

(5.1.2b) Phase truncated sinusoid with L =2".

(5.1.2c) Amplitude error sequence.

(5.1.3a) Phase truncation and reference error spectra corresponding to Figure
(5.1.2¢).

(5.1.3b) Phase truncation and reference error spectra corresponding to Figure
(5.1.2a).

(5.1.4) Phase word partitioning showing truncation of the fraction field.

(5.2.1) Illustration of the optimal fractional address interval for the cubic
interpolation polynomial.

(5.2.2) Multiplication count as a function of interpolation order for three
interpolating polynomials.

(5.2.3) Addition count as a function of interpolation order for three interpolating
polynomials.

(5.3.1) Arithmetic process model for quadrature trigonometric identity phase
mapping.

(5.3.2) Arithmetic process model for non-quadrature (single sinusoid)
trigonometric identity phase mapping.

(5.3.3) Wavetable memory reduction ratio as a function of integer field width.
(5.3.4) Arithmetic process model of the reduced multiplier TIPM algorithm.
(5.4.1) Variation of SNR with @ €[1,2" —1] for M =12 and I=F =6.
(54.2) Variation of A with p e[1,2 -1], M =12 and 1 =6.

(5.4.3a) Time domain response of the Hamming window for N, =1024.

(5.4.3b) Frequency response of the Hamming window.

(5.4.4) Single slope spectra ranging over 1000 harmonics covering a bandwidth of
16.35 Hz to 16,350 Hz.

(5.4.5) Piecewise-linear spectrum ranging over 100 harmonics, covering a
bandwidth of 130.81 Hz to 13,081 Hz.

(5.4.6) Piecewise-linear spectrum ranging over 1000 harmonics covering a
bandwidth of 16.35 Hz to 16,350 Hz.

5.4.7 Behaviour of &,(N,) over N, for ¢ =5715 and M =24.
(5.4.8) Behaviour of &,(N,) over N, for ¢ =45721 and M =24.

(5.5.1) SNR variation with 7 for interpolated sinusoidal phase mapping, with full
precision arithmetic.

(5.5.2) SNR variation with I for interpolated sinusoidal phase mapping, with 24
bit arithmetic.

xi

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)
(5.5.8)

(5.5.9)

(5.5.10)

(5.5.11)

(5.5.12)

(5.5.13)

(5.5.14)

(5.5.15)

(5.5.16)

(5.5.17)

(5.5.18)

(5.5.19)

SNR variation with I for interpolated sinusoidal phase mapping, with 16
bit arithmetic.

SNR variation with N € [0, 10] using full precision, 24 bit and 16 bit
arithmetic.

SNR variation with N € [0, 10] using full precision, 24 bit and 16 bit
arithmetic.

SNR as a function of R for TIPM using full precision, 24 bit and 16 bit
arithmetic.

SNR as a function of R for LIPM using full precision arithmetic.
Amplitude error spectra for six interpolated phase mapping techniques.

SFDR variation with 7 € [6,18] for six interpolated phase mapping
techniques.

SNR variation with I for two N, values and the phase mapping wavetable
tabulating a -3 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -3 dB/octave spectrum.

SFDR variation with 7 €[8,18] and the phase mapping wavetable
tabulating a -3 dB/octave spectrum.

SNR variation with I for two N, values and the phase mapping wavetable
tabulating a -6 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -6 dB/octave spectrum.

SFDR variation with I €[8, 18] and the phase mapping wavetable
tabulating a -6 dB/octave spectrum.

SNR variation with 7 for two N, values and the phase mapping wavetable
tabulating a -12 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -12 dB/octave spectrum.

SFDR variation with 7 €[8,18] and the phase mapping wavetable
tabulating a -12 dB/octave spectrum.

SNR variation with I for two N, values and the phase mapping wavetable
tabulating a -12 dB/octave low-pass spectrum.

xii

(5.5.20)

(5.5.21)

(5.5.22)
(5.5.23)

(5.5.24)
(5.5.25)

(6.2.1)
(6.2.2)

(6.2.3)

(6.2.4)
(6.2.5)

(6.2.6)

6.2.7)

(6.2.8)
(6.3.1)
(6.3.2)
(6.3.3)
(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -12 dB/octave low-pass spectrum.

SFDR variation with I €8, 18] and the phase mapping wavetable
tabulating a -12 dB/octave low-pass spectrum.

SNR variation with 7 and wavetable spectrum roll-off slope using TPM
and LIPM.

SNR variation with / and wavetable spectrum roll-off slope using QIPM
and CIPM.

Memory allocation for the order-2 CAVM with L=8.
Order-2 CAVM and linear interpolation processing model.

Order-2 CAVM and linear interpolation processing with reduced
multiplexer count.

Memory allocation for the order-4 CAVM with L=8.
Order-4 CAVM and cubic interpolation processing model.

An order-4 CAVM process model using augmented coefficient lookup
tables to obviate reordering multiplexers.

Variation of SNR with phase fraction truncation and three levels of
arithmetic precision.

Linear interpolation between two consecutive wavetables.
Rudimentary block pipeline process model.

Multiplexed phase accumulator process model.

Block pipeline signal flow for the synthesis of multiple partials.
Phase accumulator incorporating lookup table to effect pitch control.

Generating a time-multiplexed phase sequence having a contiguous
harmonic frequency distribution.

Timing diagram illustrating initialisation of the harmonic phase multiplier
accumulator at the beginning of a sample cycle.

Implementation of the HAS arithmetic process model.

The linearly interpolated phase mapping process model using a first-order
difference table to eliminate consecutive table lookup operations.

xiii

(6.3.9) Implementation of the HAS arithmetic process using phase domain
processing.

(6.3.10) Pipelined integer phase multiplier.

(6.3.11) Implementation of the PAS arithmetic process model using phase domain
processing.

(6.3.12) Multiple voice implementation of the PAS arithmetic process using phase
domain processing.

(6.3.13a) Pipelined processing model of the multiple voice PAS algorithm.

(6.3.13b) Pipelined processing model of the sinusoidal phase-amplitude mapping
block used in Figure (6.3.13a).

(6.3.14) Dual port memory addressing.

(6.3.15) Simplified timing diagram of the pipelined processing model shown in
Figure (6.3.13).

(6.3.16) Modification to the processing model of Figure (6.3.13) to effect partial
frequency offset according to the S;(n) parameter.

(6.3.17) Example waveform synthesised using the PAS processing model.

(6.3.18) SNR variation over 200 pseudo-random partial fractional multiplier
distributions with three spectrum roll-off slopes and full-precision
arithmetic.

(6.3.19) Spectrograms for the partial fractional multiplier model.

(6.3.20) Spectrograms for the partial frequency offset model.

xiv

List of Tables

(Table captions have been précised for brevity.)

(3.1.1)

(3.5.1)

4.2.1)

(5.5.1)

(5.6.1)

(5.6.2)

(6.2.1)

6.2.2)

(6.2.3)

Six key properties of digital sinusoidal oscillator algorithms requiring
consideration for optimal application in partial additive synthesis.

Summary of recursive oscillator performance against metrics defined in
Table (3.1.1).

Illustrating the precise average period of the sawtooth phase sequence
<7n>32 ‘

Simulation parameters and multi-harmonic wavetable characteristics
supporting the performance assessment of interpolated phase mapping.

Summary arithmetic overhead and SNR performance for our six
interpolation algorithms applied to sinusoidal phase-amplitude mapping.

Summary characteristics of four interpolation algorithms applied to multi-
harmonic phase-amplitude mapping.

Order 2 CAVM address sequences, memory block data values and sample
type indices for L =8.

Order 4 CAVM address sequences, memory block data values and sample
type indices for L =8. '

Interpolation coefficient lookup table organisation for the order 4 CAVM.

XV

Glossary of Definitions and Common Terms

x €[a,b]
x€la,b)
x € (a,b]

x €(a,b)
L]
[x]

(=),

ged(x, y)

4,(n)

a(n)

B;(n)
B;(a)

C,ld]

Fla]

S

a<x<b
asx<b
a<x<b
a<x<b

The integer part of x (i.e. the largest integer < x).

The smallest integer > x.

x modulo y and defined by <x)y =x- y{iJ .
y

Greatest common divisor of x and y.

Boolean AND operator.

Boolean OR operator.

™ time-varying amplitude sequence at time-index 7.
Phase fraction sequence at time-index #.

Base frequency within an equally tempered tuning model.
™ partial pitch or frequency control parameter.

™ interpolation coefficient function with argument o .

i™ interpolation coefficient lookup table vector with address a.

Fraction field width in bits after truncation by R bits.

Total available fraction field width in bits equivalentto M — 1.
First-order difference vector at address a.

Sample rate in Hz.

xvi

I Integer field width in bits.

k, ;™ harmonic integer multiplier.

L Wavetable length in samples.

M Phase accumulator word size in bits.

N Interpolation order.

N, Number of samples computed in a particular analysis vector.

N, Number of partials within an additive synthesis model.

N, Number of harmonics within an additive synthesis model.

N, Number of computation time-slots within an arithmetic model.

D, a™ consecutive access vector memory sample-type index.

R The set of all real numbers.

R Number of bits truncated from an F -bit fraction field.

K First roll-off slope pararheter for piecewise-linear envelopes.

r Second roll-off slope parameter for piecewise-linear envelopes.

T Sample period in seconds.

o(n) Phase sequence at time-index ».

¢, (n) Integer field of a phase sequence at time-index ».

¢, (n) Rounded integer field of a phase sequence at time-index #.

¢r(n) Fraction field of a phase sequence at time-index ».

é,(n) ;™ time-varying phase sequence at time-index 7.

4.(n) a™ consecutive access vector memory block address (denoted by ¢, for
brevity).

@ (n) ;™ time-varying phase offset sequence at time-index .

xvii

() j™ start phase parameter.

P Pitch control parameter.

1, Integer field width of pitch control parameter in bits.
F, Fraction field width of pitch control parameter in bits.
4 ' Minimum equally tempered tuning frequency ratio.
o(n) Phase increment sequence at time-index ».

Y[x] Value of the vector Y at location x.

y(n) n™ value of the discrete-time sequence y .

v,(n) Reference sequence at time-index 7.

y(=x) Initial condition at discrete-time time index —x.

VA The set of all integers.

{a, b,c,d...} The set of elements a,b,c,d... .

xviii

Glossary of Acronyms

ADC
AS
CAVM
CIPM
CORDIC
CPU
CT
DAC
DFT
DMA
DPM
DSP
DT
ENBW
FFT
FFT
FIR
FM
FPGA
GAS
HAS
IC

IDFT

Analogue to digital converter
Additive synthesis

Consecutive access vector memory
Cubic interpolation phase mapping
Coordinate rotation digital computer
Central processing unit
Continuous time

Digital to analogue converter
Discrete Fourier transform

Direct memory access

Dual-port memory

Digital signal processing

Discrete time

Equivalent noise bandwidth

Fast Fourier transform

Inverse fast Fourier transform
Finite impulse response

Frequency modulation

Field programmable gate array
Group additive synthesis
Harmonic additive synthesis
Initial condition

Inverse discrete Fourier transform

Xix

IFFT

IIR

LIPM
LSB
LTAS
LUT
MSB
MWS
PAS
PCA
PDF
PWL

QIPM

RMS
RMS
ROM
RPM
SFDR
SIS
SMS
SNR
SQNR

STFT

Inverse fast Fourier transform
Infinite impulse response

Just noticeable difference
Linear interpolation phase mapping
Least significant bit

Long term average spectrum
Lookup table

Most significant bit

Multiple wavetable synthesis
Partial additive synthesis
Principal components analysis
Probability density function
Piece-wise linear

Quadrature interpolation phase mapping
Random access memory

Root mean square

Root mean square

Read only memory

Rounded phase mapping
Spurious free dynamic range
Spectral interpolation synthesis
Spectral modelling synthesis
Signal to noise ratio

Signal to quantisation noise ratio

Short-time Fourier transform

STS Short time spectrum

TIPM Trigonometric identity phase mapping
TPM Truncated phase mapping

TSA Time slot address

VCO Voltage controlled oscillator

VLSI Very large scale integration

WLS Wavetable lookup synthesis

xxi

Publications Related to this Research

“DDEFS phase mapping technique.” IEE Electronics Letters, 10™ October 2002, Vol. 38,

No. 21, pp. 1291-1292.

“Phase-Continuous Frequency Change in the Direct-Form, Second Order Recursive

Oscillator.” Computer Music Journal, Volume 28, Issue 4, Winter 2004, pp. 40-48.

xxii

Chapter 1 Introduction

1.1 Background

The research reported in this thesis investigates algorithms and arithmetic processing
models which facilitate real-time synthesis of computer music audio signals. The results
of this work are also pertinent to signal processing problems which require precision
frequency synthesis of signals with time-varying spectra. The Fourier synthesis model
which underpins this work, represents a complex signal by a linear combination of
sinusoidal basis components with harmonic or inharmonic frequency distribution.
Conceptually, this model is extensible to include time-varying linear combination of
non-sinusoidal’ basis components and so we use additive synthesis to describe the
underlying synthesis model in line with the computer music literature.

The essence of additive synthesis is that complex musical sounds, or timbres’, may be
generated by linearly combining manifold basis components each having distinct, time-
varying amplitude and frequency. The perceptual contribution of an individual basis
component is relatively small, but collectively they combine to define the timbral
evolution® of a sound. The synthesis process begins with the extraction of basis
weightings (and in some cases basis functions) from the analysis of a natural sound
using the short-time Fourier transform (STFT*). The STFT maps an analysed signal into
a two-dimensional time-frequency space enabling extraction of basis amplitude and
frequency time-profiles or envelopes which are subsequently modified to realise new

sounds through additive resynthesis.

! We use non-sinusoidal as a generalisation of any complex signal composed of linearly combined
sinusoids with harmonic or inharmonic frequency distribution.

2 Timbre describes the tonal quality or “colour” of a synthesised sound.

3 Timbral evolution describes how the timbre of a synthesised sound changes over time.

% The STFT decomposes the signal to be analysed into overlapping segments bounded in time by a
window function.

23

1.2 An Historical Overview of Computer Music and Additive Synthesis

Max Mathews in his seminal Science article, envisioned “the digital computer as a
musical instrument” where sound is synthesised from a numerical description —
conceptually “sound from numbers”. Since the bandwidth and dynamic range of human
auditory perception are bounded, Mathews reasoned that “any perceivable sound can be
so produced” [Mathews, 1963]. In The Technology of Computer Music [Mathews,
1969], Mathews proposed what he considered as two fundamental problems with sound
synthesis using a digital computer:

e the enormous amount of data needed to specify the “pressure function” which
represents the ultimate abstraction of a particular sound and implies a very fast
computer program to resynthesise this function in real-time;

e the requirement for a powerful programming language which provides an
intuitive environment in which complex sound sequences can be coded
according to defined syntactic rules.

The first problem is being steadily abated by the geometric progression in
“performances-to-cost” ratio of digital computer building blocks, notably:
programmable logic arrays, digital signal processors, microprocessors and
semiconductor memory. Furthermore, this progression shows no sign of abating at the
present time. The second problem is presently unresolved, although a fundamental
observation is evident: sound samples must be computed algorithmically from a
“numerical specification” since it is both perceptually non-intuitive and logistically
infeasible to enter them individually from scratch — how would the user know where to

start? If we assume algorithmic sample computation, a further observation becomes

3 «performance” takes on many interpretations in this context: “instructions per second”, benchmark
execution time, “connectivity”, capacity and access time are typical examples.

24

apparent: a large number of sound samples are generated from a much smaller set of
“specification numbers” which we generalise as the synthesis parameters corresponding
to a particular synthesis algorithm. Smith [1991] observes a fundamental difficulty with
algorithmic digital synthesis as finding the smallest set of synthesis algorithms that span
“the gamut of musically desirable sounds”. A fundamental objective of computer music
research is to find a single synthesis technique that spans the universe of musically
desirable sounds and has an “intuitively predictable” relationship between the control
parameters and the synthesised sound. Indeed, Smith [1991] observes:

“It is helpful when a [synthesis] technique is intuitively predictable. Predictability is
good, for example, when analogies exist with well-known musical instruments, familiar
sounds from daily experience, or established forms of communication (speech
sounds).”

We therefore seek a synthesis algorithm having intuitive control parameterisation which
is capable of synthesising a broad range of musically desirable sounds and is
computationally feasible in real-time with suitably fast hardware.

The Music III programming language introduced the unit-generator concept for sound
synthesis which was developed and extended in the later Music IV and Music V
languages [Mathews, 1969]. A unit-generator represents a fundamental building block
which executes elemental functions within more complex sound synthesis algorithms
that are specified using the vocabulary and syntax of the particular language. A unit-
generator accepts both control and audio parameters depending on function and
produces a corresponding output signal. The Music V unit-generators included an
oscillator, filter, adder, multiplier, random number generator and envelope generator
which were similar in function to the voltage controlled oscillators, filters and

amplifiers used in analogue synthesisers of the time [Moog, 1965]. This complement of

25

elemental synthesis functions enabled research into various synthesis forms reported in
Roads [1996] and summarised in Smith [1991]. However, Music V synthesis
environments were constrained by being non real-time and “processor hungry”. It was
not uncommon for researchers to spend hundreds of seconds of mainframe CPU time to
produce just one second of synthesised sound samples which were stored in a peripheral
buffer and fed to a digital to analogue converter to allow them to be heard. This was
anything but real-time and did not encourage creativity. However, Music V and its
descendants, such as the much enhanced Mus10, helped promulgate computer music
research in the 1970s and motivated the development of specialised processing
hardware to speed up the computation process to the point where the results of a
particular algorithmic synthesis technique could be heard in real-time.

A cornerstone synthesis technique explored using the Music V environment was
additive synthesis. Additive synthesis is founded on the mathematical techniqué of
Fourier analysis and uses the linear combination of sinusoidal basis components whose
baseline Weightings are obtained from the analysis of a natural sound to synthesise new
sounds by appropriate modification. The first reported analysis-driven additive synthesis
of sound appears to be Jean-Claude Risset’s analysis and resynthesis of trumpet tones
using Music V in 1964 [Risset, 1985]. Additive synthesis provides generality and
accessibility to the lowest levels of a sound’s timbral composition.

The underlying concept of additive synthesis is centuries old, first applied in pipe
organs through their multiple register-stops. By appropriate register-stop settings, the
sounds of several pipes are combined for each key depressed on the organ keyboard,
greatly enriching the overall sound [Roads, 1996]. The arrival of Fourier analysis
originating from the work of Jean Baptiste Fourier on heat conduction in 1822,

introduced the concept of spectral analysis of sound. Helmholtz [1863], was the first

26

person to describe musical timbre in terms of the spectral components of a sound.
Helmholtz constructed a rudimentary additive synthesiser which comprised ten
electrically excited tuning forks each feeding a matching Helmholtz resonator via a
mechanical shutter to control amplitude. Varying the individual shutter settings
produced different timbres and was probably the first additive synthesiser based on the
concept of a Fourier series. In the early twentieth century, (circa 1901) Thaddeus
Cahill’s massive Teleharmonium summed the weighted outputs of numerous rotating
electrical tone generators to create complex musical sound textures transmitted directly
to subscriber’s households via the telephone system [Roads, 1996]. More recently,
Laurens Hammond developed the fonewheel, a miniature version of Cahill’s
Teleharmonium tone generator and incorporated it in the legendary Hammond organ
which is a pure additive synthesis instrument. The Compton Electrone organ used the
rotation of a disk in close proximity to a fixed plate to produce a periodically varying
capacitance which in turn generates elemental tones that are combined in an additive
synthesis fashion [Comerford, 1993].

The additive synthesis concept has been widely adopted by computer music researchers
because of its rigorous mathematical foundations and generality, albeit with a high
computational cost associated with the synthesis and combination of numerous basis
components. It now forms the foundation of the spectral modellz,'ng paradigm, which
provides an intuitive sound synthesis methodology from a frequency domain perspective
in line with the auditory timbral perception model.

Historically, implementation of additive synthesis had been confined to research
environments computing sound sequences in non real-time using mainframe computers.
However, in October 1977 the Centre for Computer Research in Music and Acoustics

(CCRMA) at Stanford University took delivery of the Systems Concepts Digital

27

Synthesiser, or “Samson Box” as it became known, named after its designer Peter
Samson. The Samson Box was a hardware implementation of all unit-generator
elements from the Music V environment, including 256 waveform generators, 128
modifiers and a comprehensive interconnection subsystem [Loy, 1981; Smith, 1991].
The waveform generators supported both amplitude and frequency envelopes and the
modifier functions could be reconﬁgured as second-order filter sections, random-
number generators or amplitude-modulators. The Samson Box provided one of the first
environments for real-time execution of additive synthesis and other algorithms.
However, Smith [1991] reports that the Samson Box was not a panacea and required
considerable effort in developing support software and debugging tools. Although the
Samson Box did not provide the ideal foundation for a generalised synthesis research
tool, it did point the way to what was possible with a dedicated “coprocessor” controlled
by software executing “man-machine interface” functions. The end of the 1970s saw the
introduction of two landmark systems spawned from research-oriented systems like the
Samson Box: the New England Digital Synclavier and the Fairlight Computer Musical
Instrument (CMI). The Synclavier was a modular, component based system that
supported multi-voice additive synthesis and other algorithmic synthesis techniques.
The Fairlight CMI possessed a similar modular architecture and supported both additive
and sampling synthesis under comprehensive software control. These systems enjoyed
huge commercial success despite price tags on the order of $100,000 for “fully loaded”
systems and demonstrated the need for both a live performance instrument and research-
oriented system where cost was secondary to performance. Real-time signal generation
is handled by dedicated hardware optimised to a particular synthesis algorithm. A host
micro-computer undertakes all control, user interface and performance management

functions with the dedicated synthesis hardware integrated as a coprocessor function.

28

1.3 Research Motivation and Objectives

1.3.1 Introduction

Historically, the application of sinusoidal additive synthesis has been hindered by a
significant computational imposition, particularly in “orchestral synthesis” applications
where multiple independently controlled voices® are required. For example, synthesising
a single 27.5 Hz (A0) complex musical tone at a 48 kHz sample rate requires around
872 partials’ if the full Nyquist® bandwidth is used. If we proceed to assume that such
tones are synthesised within a 100-voice polyphonic ensemble, which is typical for a
demanding orchestral synthesis environment, then approximately 87,000 partials will be
needed under peak conditions. Clearly, this figure represents an absolute upper bound
for this level of polyphony. However, an average figure of 100 partials per voice as
suggested by [Smith and Cook, 1992] requires 10,000 partials and their respective
control parameters to be computed in real-time. The logarithmic frequency response of
the human ear and the observation by Sandell [1994] that the spectral amplitude
envelope of musical timbres progressively diminishes at frequencies above 5 kHz
suggests that, in general, low frequency partials should be assigned higher priority over
high frequency partials for inclusion in the synthesised partial group. Accordingly, the
additive synthesis computation burden is reducible through “perceptual coding” of the
composite partial spectral envelope by pruning high frequency partials against a timbral
perception “coding” model. The development of coding models which reflect human

perceptual characteristics is currently an active area of research and complements the

¢ A voice describes a group of partials sharing a common fundamental and collectively forming a distinct
synthesised sound with unique timbral identity.

" A partial is a generalised form of harmonic, describing a sinusoidal basis component that does not
necessarily have an exact harmonic relationship to the fundamental.

8 The Nyquist bandwidth (or Nyquist region) refers to the available bandwidth within a sampled system
equivalent to one half of the sampling frequency. Frequency components greater than one half of the
sampling frequency are aliased or “folded over” into the Nyquist region [Orfanidis, 1996].

29

pursuit of effective sinusoidal additive synthesis processors [Marentakis and Jensen,
2002; Jensen, 1999].

Synthesising 10,000 linearly combined partials at a 48 kHz sample rate requires a single
partial sample computation every 2 ns, suggesting a single thread pipelined processor
clocked at 480 MHz. The availability of high density programmable logic arrays
[Xilinx, 2004] and multi-port memory [Smith, 2000] optimised for very high speed
digital signal processing now makes such pipelined processors a practical proposition at
a cost comparable to a high-end workstation computer system. Moreover, the cost-to-

speed ratio of this technology is continuing to fall at this point in history.

1.3.2 Motivation

Motivation for this work stems from the observation that additive synthesis as defined
by the linear combination of sinusoidal basis components provides complete
accessibility to the elemental parts of timbral composition, precisely in line with
accepted models of timbral perception [Jensen, 1999]. Other reported forms of the
additive synthesis model utilise non-sinusoidal basis components [Horner et al, 1993;
Kleczowski, 1989] and so we base this work on a definition of additive synthesis as the
linear combination of sinusoidal or non-sinusoidal basis components with time-varying
frequency, amplitude and phase parameters. Accordingly, this research is built on two
hypotheses that encapsulate the research problem and are investigated and developed in
subsequent chapters:
1. Phase accumulating frequency synthesis with concurrent interpolated table
lookup phase-amplitude mapping provides an extensible computational

environment for implementing all facets of the additive synthesis paradigm.

30

2. The underlying properties of modular phase accumulation may be exploited to
generate phase sequences with harmonic and inharmonic frequencies and hence

corresponding sinusoidal partials through phase-amplitude mapping.

1.3.3 Objectives

The principal objectives of this research are to investigate sinusoidal and non-sinusoidal
waveform synthesis algorithms within an additive synthesis context and in line with the
above hypotheses; their relative performance against defined metrics and processor’
architectures that enable effective execution of the underlying arithmetic processes in
real-time. The research is organised into essentially six focal topics, summarised below,
each with distinct objectives and which collectively define the framework of this thesis
as summarised in section (1.4).

1. Review prevalent synthesis techniques reported in the literature, justifying
additive synthesis as the focus of this research and introduce the reported forms
of the additive synthesis paradigm.

2. Review recursive and phase-accumulating sinusoidal oscillator algorithms
reported in the literature, justifying phase-accumulation as the preferred
technique for subsequent investigation and development.

3. Review reported phase-amplitude mapping techniques, introduce the concept of
a wavetable and sampling a tabulated signal.

4. Investigate generalised phase-accumulating frequency synthesis and its

application to sinusoidal and non-sinusoidal waveform synthesis.

? In the context of this research, processor typically describes a pipelined concatenation of processor
elements where each element is optimised to execute a particular atomic operation from an arithmetic
partitioning of the underlying algorithm.

31

5. Investigate phase-amplitude mapping based on interpolated table lookup.
Develop computer models which support a comparative assessment of phase-
amplitude mapping techniques with different tabulated signals.

6. Investigate arithmetic processing architectures which improve execution speed
of the additive synthesis model and develop the concept of processing in the
phase domain.

Research methodology is driven from a critical review of reported material and focuses
on areas where the efficiency, flexibility or understanding of additive 'synthesis
computation can be improved. An analytical approach substantiated by computer
modelling is used to argue the effectiveness and validity of the presented material rather
than the construction and assessment of demonstrable hardware or software. It is
intended that the feasibility and efficacy of hardware processors based on the techniques

presented should be self evident from the respective thesis discussion.

1.3.4 Assumptions

The development of synthesis algorithms presented in this thesis is predicated on four
assumptions that we accept a priori based on the wider literature and which underpin
high throughput algorithmic processing architectures operating in real-time.

1. Devolution of algorithmic synthesis operations to a “performance-optimised”
coprocessor as an adjunct to a general purpose host computer, increases
throughput, flexibility of control and ease of migration to new host platforms as
they become available [Roads, 1996; Samson, 1980; Alonso et al, 1977].

2. At this point in history, an optimised “hardwired” processor provides greater
computational throughput compared to a “software-driven” processor by trading

flexibility for speed [Pirsch, 1996].

32

3. Arithmetic partitioning implicit within the synthesis and linear combination of
manifold basis components which defines the additive synthesis paradigm, is
naturally compatible with a pipelined processing architecture where processing
stages are individually optimised to execute specific elemental operations
[Pirsch, 1996].

4. Table lookup operations are generally faster than algorithmically computing the
tabulated data in real-time. Utility improves with increasing arithmetic
complexity of the underlying algorithm, offset only by lookup table memory

length and hence cost [Pirsch, 1996; Chamberlin, 1985].

1.4 Thesis Structure

Chapter 1 introduces this thesis and presents an historical overview of additive synthesis
and some of the hardware platforms that have been applied. Thesis motivation,
objectives and structure are also outlined.

Chapter 2 reviews and categorises popular synthesis techniques and their underlying
processing models reported in the literature. Techniques are classified according to a
cited taxonomy and assessed against defined criteria peculiar to computer music utility.
Our objective is to set additive synthesis in context relative to other techniques, justify
the additive synthesis focus of this thesis and to introduce pertinent mathematical
foundations for its implementation.

Chapter 3 reviews discrete-time recursive and phase-accumulating sinusoidal oscillator
algorithms reported in the literature and critically reviews them against pertinent
computer music metrics. Section (3.2.6) presents original published work resulting from
this research which is concerned with the determination of initial condition values
which provide phase-continuous frequency transition in the second-order direct-form

recursive oscillator. Phase accumulation and phase-amplitude mapping are introduced

33

and several implementation techniques introduced and discussed, including wavetable
lookup and phase interpolation which underpin subsequent chapters.

Chapter 4 investigates frequency synthesis by phase-accumulation and wavetable
lookup as the basis of computationally efficient phase-amplitude mapping. The chapter
investigates frequency control resolution specific to computer music requirements and
introduces the concepts of phase truncation and fractional addressing of a tabulated
signal by interpolation.

Chapter 5 develops the fractional addressing concept and investigates interpolated"®
phase-amplitude mapping as a refinement of the wavetable lookup technique. Phase-
amplitude mapping by trigonometric identity is introduced in section (5.3) and shown to
provide optimal performance bound only by sample quantisation noise. This material
represents original work resulting from this research which is now published. The
chapter concludes by presenting simulated qualitative performance data for several
interpolated phase-amplitude mapping techniques over a range of wavetable spectrum
characteristics pertinent to musical application.

Chapter 6 investigates memory access associated with the interpolated phase-amplitude
mapping model and presents an original memory architecture with concurrent
interpolation processing which enables efficient data-parallel execution of this model
for various interpolation orders. We briefly review the concept of block pipelining using
dual-port memory which decouples parameter update and real-time algorithmic sample
computation and underpins pipelined processor architectures presented later.
Introducing the concept of phase domain processing which algorithmically modifies
phase information to effect frequency control, we proceed to consider arithmetic models

and corresponding hardware architectures that compute phase sequences and hence

34

sinusoids with harmonically related frequencies whose mathematical basis was first
mooted at the end of Chapter 4. Finally, we extend this technique to include inharmonic
sinusoids (i.e. true partials) and discuss the architecture of a pipelined sinusoidal
additive synthesis coprocessor.

Chapter 7 summarises this thesis in light of the research objectives set out in Chapter 1.
Limitations of the presented work and areas for further research and investigation are
discussed.

Appendix A presents an introductory overview of Lagrange and Newton polynomial
interpolation which supports discussion within Chapter 5. The concept of the
interpolation sample set is introduced and optimal placing of this set with respect to the
fractional address interval is discussed.

Appendix B presents documented Mathcad model listings which are applied in Chapter
5 to assess qualitative performance of interpolated phase-amplitude mapping algorithms
and in Chapter 6 to demonstrate HAS and PAS process models presented therein.
Appendix C presents the order-3 consecutive access vector memory architecture
including an arithmetic model for effecting the modulo division-by-3 needed within the

block addressing computations.

1.5 Original Work

The following areas represent original results from this research:
e Definition of initial condition values for the second-order direct-form recursive
oscillator which afford exact phase-continuous frequency transition with
constant amplitude. The algorithm is shown to incur significant computation

imposition and aside from generalising the utility of this recursive oscillator

19 We define interpolation as the computation of sample values at non-tabulated points according to an
implicit fractional table address.

35

which is of academic interest, serves to strengthen the case for phase-
accumulating techniques.

A sinusoidal phase-amplitude mapping technique is presented which provides
interpolation error and therefore signal-to-noise ratio bound by sample

quantisation noise alone. In essence, an M -bit phase word is optimally mapped

to the amplitude domain using a “virtual” 2" location sinusoidal lookup table

Mz
requiring only 22 memory locations. The technique permits sinusoid phase

.) 2z)
control with a resolution of 2—M radians.

A wavetable memory architecture which enhances computational efficiency of
the interpolated table lookup processing model. The concept of a new wavetable
memory architecture, the consecutive access vector memory (CAVM), is
presented and which is extensible to improve interpolated indexing of any
tabulated data space under certain conditions.

Processing architectures for generating non-consecutive harmonic and
inharmonic partial phase sequences which enables implementation of the

harmonic and partial additive synthesis processing models.

36

Chapter 2 Computer Music Synthesis Techniques

2.1 Introduction

In this chapter we review the foremost discrete-time synthesis techniques reported in the
literature, focussing on additive synthesis (AS) techniques and their respective signal
processing models. Our aim is to identify and scope the focal areas that underpin later
chapters in this thesis and which support investigation of processor architectures
computing particular forms of the AS paradigm in real-time. We define a synthesis
technique as an algorithm that processes parametric control information to produce
“musically useful” sound samples, executing in software or hardware. We structure our
review using the taxonomy of synthesis techniques proposed by Smith [1991] which
comprises — processed recording, spectral modelling, physical modelling and abstract

algorithm. We consider the ten assessment criteria proposed by Jaffe [1995]:

1. Intuitiveness of control parameters

2. Perceptibility of a control parameter change
3. Physicality of control parameters

4. Control parameter behaviour

5. Robustness of the synthesised sound’s identity
6. Classes of sound represented

7. Synthesis algorithm efficiency

8. Synthesis algorithm latency

9. Control stream sparseness

10. Existence of corresponding analysis tools

37

An intuitive control parameter articulates a musically expressive attribute such as timbre
in a perceptually meaningful way. The perceptibility of a control parameter change
assesses the audible effect corresponding to that change and classifies the association
from strong to weak. The physicality of a parameter describes how well that parameter
controls a synthesised instrument in an analogous manner to its natural counterpart.

The behaviour of a control parameter considers the proportionality between a parameter
change and the corresponding perceived auditory change. A small parameter change
which produces a large auditory change is undesirable and reflects a parameter which is
not well behaved, possibly difficult to control and non-intuitive. Maintaining the
identity of a sound following parametric change reflects the robustness of the
corresponding synthesis technique (e.g. does a violin still sound like a violin following a
parameter change — albeit a different violin?).

Sound classification considers the range of sounds possible with a particular synthesis
technique and more importantly — what classes of sound are not possible? Algorithm
efficiency considers the memory, computational power and control data bandwidth
required in the execution of a synthesis technique and dictates the number of voices that
can be synthesised with a given processing capacity and sample rate. Algorithm latency
is a critical consideration in real-time synthesis and describes the delay between a
parametric change and the corresponding audible effect. The sparseness of the control
parameter stream assesses the control processing overhead against the arithmetic
complexity of the synthesis algorithm (i.e. where is the work being done?). The
availability of sound analysis techniques which generate baseline synthesis parameters
matched to a particular synthesis technique is crucial. Indeed, Jaffe [1995] observes:

“It is not enough to know in theory that any sound can be produced. You need tools to

derive the proper parameter values from a specification of a desired result.”

38

The objective is to commence the synthesis process from an “identity baseline” which
reproduces a natural instrument sound using the particular synthesis technique and then
modify synthesis parameters to generate new sounds which are derived from the

original baseline sound.

2.2 Processed Recording

2.2.1 Sampling Synthesis

Processed recording describes synthesis techniques based on time-domain
transformation of pre-recorded or pre-computed sounds. Sampling synthesis is the most
prevalent technique reported, and involves “pitch shifting” a pre-recorded sound relative
to the original pitch using sample rate conversion followed by time-varying filtration to
modify timbral evolution and articulation. Many instruments exhibit perceptually
important transient behaviour at the onset of a note (i.e. the attack phase) which must be
captured if the resynthesised sound is to be recognisable. Winckel [1967] reports that
musical instruments are identified principally by their attack characteristics. Playback
sustain (i.e. the continuation of a sound following the attack phase) is accomplished by
“looping” selected segments of the recording via appropriate memory addressing. All
of these operations add perceptible distortions to the resynthesised sound and detract
from the objective of imitating and modifying pre-recorded instruments. These
distortions can be mitigated by multi-sampling an instrument sound across sub-intervals
of its pitch range and forming a library of separate recordings (so called samples) which
are indexed on playback as a function of the resynthesised pitch parameter [Massie,
1998].

Smith [1991] reports an inherent and fundamental problem with sampling synthesis as

its lack of “prosodic rules” for musical phrasing upon playback. Resynthesised notes

39

played individually are realistic reproductions of the original, but notes played in
sequence lack the note-to-note transitions which characterise many real instruments.
Control parameterisations may be applied to pitch shifting, sustain looping and post-
synthesis filtration operations, providing a somewhat limited and non-intuitive “control
space” to support the creation of new timbres. Pitch shifting methods based on time-
domain transformation produce “temporal distortion” of the original sound (i.e.
compression or stretching of salient temporal features) causing most sounds to lose their
timbral identity after only a few semitones pitch shift relative to the original [Jaffe,
1995; Smith, 1991].

Timbral control and articulation is effected by fundamentally two means:

1. Using multiple acquisitions (a.k.a. “samples”) of the underlying sound
captured over pertinent parametric sub-intervals (e.g. pitch or key depression
velocity).

2. Application of time or parametrically varying filtering to the resynthesised
sound.

Implementation efficiency is a strong function of the pitch shifting interpolation
algorithm which typically requires multiple accesses to the sample memory [Massie,

1998].

2.2.2 Wavetable Lookup Synthesis

Wavetable lookup synthesis (WLS) is a classic technique where a single period of an
arbitrary waveform is tabulated in memory and cyclically addressed to resynthesise a
periodic sound [Roads, 1996]. An extension of the multi-sampling technique applied in
sampling synthesis assembles a contiguous wavetable sequence where each wavetable
contains a single-cycle “snapshot” waveform across an instrument’s “timbre space”.

The wavetable set is read consecutively to resynthesise the sound, providing significant

40

data reduction compared to the original sample. Smoother timbral articulation is
obtained by time-domain interpolation between adjacent wavetable timbres — so-called
spectral interpolation synthesis (SIS) [Serra et al, 1990].

WLS is not confined to a uni-dimensional “waveform-time” representation. Multi-
dimensional forms are reported comprising wavetables which snapshot an instrument’s
timbre over a corresponding multi-dimensional parameter space. Assuming mutually
independent parameters (e.g. time, pitch and key depression velocity), each dimension
snapshots timbre on a particular parameter interval with all other parameter values
fixed. Assuming timbre change over a particular parameter interval (i.e. dimension) is
well behaved, a coarse timbral quantisation on the 4corresponding dimension is
permissible with linear interpolation used to compute intermediate timbres from those
tabulated in a similar manner to the SIS model. The degree of permissible quantisation
is governed by perceptual constraints. Multi-dimensional WLS is generally known as
vector synthesis in the literature [Smith, 1991]. Timbre is now represented as a vector
quantity computed by linear interpolation of an n-dimensional timbre-space according
to n parameters and requiring 2" interpolation points [Wessel, 1979; Haken, 1991].
However, vector synthesis incurs exponentially increasing memory size and
interpolation processing overhead as » grows.

A development of WLS — multiple wavetable synthesis (MWS), is illustrated in Figure
(2.2.1) and based on time-varying linear combination (i.e. weighted summation) of
fixed, periodic basis functions stored as wavetables [Horner et al, 1993]. The individual
wavetables are indexed with the same time-varying phase function (whose slope

represents frequency) and so all basis functions have identical phase and frequency.

41

Phase
Indexing

Wavetable Wavetable Wavetable

yin)
Figure (2.2.1): The multiple wavetable synthesis (MWS) algorithm. N distinct

wavetables are linearly combined with time-varying weights Ak(n), he [1,N].

Setting the Ak(n) weighting terms to overlapped triangular window functions

interpolates the wavetable set contiguously and reduces MWS to the SIS model. If the
wavetable harmonic sets comprise distinct harmonic groupings, Homer et al [1993]
observe that MWS approaches group additive synthesis (GAS) where the complete set
of partials making up a sampled sound are organised into several wavetables each
having a common partial amplitude and frequency-time profile [Kleczkowski, 1989].
However, a key distinction is that GAS applies a unique time-varying amplitude and
frequency weighting to each wavetable in the group, whereas MWS applies only time-
varying amplitude weighting. The GAS processing model is illustrated in Figure (2.2.2)
where we observe that each basis component has time-varying amplitude and frequency

parameterisation.

42

Ffn) Ffn) FN(n)

Phase Phase Phase
Indexing Indexing Indexing
* X
Wavetable Wavetable Wavetable
1 2 N

yin)
Figure (2.2.2): Generalisation o fmultiple wavetable synthesis (MWS) to group additive

synthesis (GAS), where each wavetable has a unique time-varying amplitude and

frequency weighting denoted by Ak(n) and Fk(n), respectively.

The determination of basis wavetables which support the MWS model is reported in
Stapleton and Bass [1988] and Homer ef al [1993]. MWS and its derivatives have been
utilised successfully in several commercial music synthesisers, typically with
wavetables containing natural sound samples. Several variants are reported in the

literature, differentiated principally by the combination process model [Roads, 1996].

2.3 Spectrum Modelling

2.3.1 The Fourier Transform

Spectrum modelling describes the subclass of synthesis techniques which specify
musical sounds in the frequency domain. Fourier’s theorem states that any periodic

function can be represented as a sum of harmonically related sinusoids each with a

43

particular amplitude and phase. A typical frequency domain representation therefore
comprises a spectrum of discrete “lines” corresponding to sinusoidal basis functions
whose baseline values are usually determined from the analysis of a natural instrument
sound.

The discrete Fourier transform (DFT) underpins the spectrum modelling paradigm and
provides bidirectional transformation between the discrete time and frequency domains
as illustrated in Figure (2.3.1). For sequences of length N and sample period 7', we

have:

Y(k)= Nz_i y(nT)e "

n=0
1 N-1]
y(nT)=—>"Y(k)e" " (2.3.1)
N k=0
ke[O,N-1] ne[0,N-1]
where y(nT) and Y(k) represent the respective time and frequency sequences. Q

2r 27

denotes the first harmonic frequency given by Q = ~
Jrequency g y N_DT " NT

for N>>1 and

determines the frequency spacing of Y(k). These transforms provide the basis for

analysis, modification and subsequent resynthesis of musical signals (indeed any
periodic signal) where the intermediate representation exists in the frequency domain as

a weighted sum of sinusoidal basis functions.

44

N -1\

yir>1) =\-Y JY(k)elkM Y(k) ="y ("T)e™™"
Analysis / n=0
Time-domain _ Frequency-domain
L Fourier Transform
(Periodic waveform) (Spectrum)
y(nT) < Synthesis \Y{k)
nT
If 11V

Figure (2.3.1): The discrete Fourier transform (DFT) pair.

The analysis or forward DFT (i.e. time to frequency domain transformation) generates a

complex sequence, Y{k), which represents the magnitude spectrum, M (k) = |T(A:)|, and

phase spectrum, ®(£) =7ZY(k) - tan" M M corresponding to the complex DT

Im(TO))
sequence, y(n), where k represents the discrete frequency index. The discrete

spectrum is an estimate of the true spectrum bound by the transform frequency

resolution given by " The “bin frequency” corresponding to the kth location of the

27k
discrete spectrum is given by [Ifeachor and Jervis, 1993].

The synthesis or inverse DFT (i.e. frequency to time domain transformation) generates a
complex DT sequence, y(n), corresponding to the complex discrete spectrum, Y(k).

The forward DFT is usually computed using the fast Fourier transform (FFT) algorithm
which exploits computational redundancy inherent in the DFT to significantly reduce
computation time [Rabiner and Gold, 1975]. It is reported in Ifeachor and Jervis [1993]

that computational savings afforded by the FFT as compared to the DFT increase as

45

N? - (%] log, N . Itis evident that DT audio signals are represented by real sequences

(i.e. have a zero imaginary part) which leads to superfluous computation in the complex
FFT. Specific algorithms are reported which transform real DT sequences without
redundant computation thereby improving the computation speed of audio spectrum

analysis [Chamberlin, 1985].

2.3.2 Sinusoidal Additive Synthesis

We define sinusoidal additive synthesis as the time-varying linear combination of
sinusoidal basis components. Two distinct forms are reported in the literature: harmonic
additive synthesis (HAS) and partial additive synthesis (PAS), with PAS the more
general of the two forms. HAS synthesises precisely periodic signals according to a
harmonic spectrum model whose basis frequencies follow a harmonic distribution in
line with the inverse DFT. PAS synthesises signals according to a partial spectrum
model whose basis components or partials have time-varying frequency. We therefore
define a partial as a generalised frequency component with time-varying frequency and
a harmonic as the special case constrained to a frequency distribution which follows an
exact harmonic series. Both HAS and PAS algorithms process time-varying parameter
envelopes defined as the time-contour (or trajectory) described by a parameter relative
to some initiation event (e.g. a key depression).

Before presenting discrete-time definitions of the PAS and HAS algorithms, we first

consider the continuous-time phase variation, ¢(¢), corresponding to an instantaneous

frequency, f(¢), given by:

#(1) =2n] £ u)du +O() 2.3.2)

46

where @(f) represents a time-varying phase offset. We now proceed to express the
continuous-time PAS model which synthesises a signal, y(r), from N, sinusoid

partials. Each partial has amplitude, frequency and start phase envelopes respectively

denoted by 4,(¢), f,(¢) and @, (¢), hence we obtain:

OEPIPNOLECNO)
(2.3.3)

8,(0) =27 [fi (wdu + @, (1)
0

where ¢, () represents the Kh partial continuous-time phase function. The
corresponding HAS model is obtained by setting f, (¢) = kf,(¢) in Egs. (2.3.3), where
fo @) denotes the fundamental frequency envelope function. For constant fundamental
frequency we have f, (f)=kf,.

In a discrete-time system, the instantaneous frequency is represented by a sequence,

F(n) and for a sample period, T, the corresponding phase sequence is given by the

discrete-time equivalent of Eq. (2.3.2), thus:
¢(n)=2aT Y F(m)+®(n) (2.3.4)
m=1

where m is analogous to the dummy variable # in Eq. (2.3.2). If the instantaneous

frequency is constant (i.e. f(¢)=f' for all ¢+ and F(n)=F' for all n) we have
¢(t) =27t +D(t) and ¢(n)=27FnT +D(n) for the CT and DT cases, respectively.
The inverse DFT may be expressed in a real form which computes the sequence y(n)

from a linear combination of N, partials and therefore defines the PAS model, thus:

47

y(n) = 3 4, (m)cos(g, (n)
(2.3.5)

b (m) =277 F, (m)+ @, ()

where the k™ partial phase sequence is denoted by @, (n) with 4,(n), F,(n) and ®,(n)
respectively denoting the ™ partial amplitude, frequency and phase envelopes that
collectively embody the spectrum model. The frequency envelope, F,(n), is peculiar to

PAS where some partial frequencies are time-variant reflecting the behaviour of natural
instruments [De Poli, 1983].

In an analogous manner to the continuous-time case, the corresponding HAS model is
obtained by setting F,(n)=kF,(n) in Egs. (2.3.5), where F,(n) denotes the
Sfundamental discrete-time frequency envelope function. The discrete-time HAS model

which linearly combines N, harmonics to synthesise the sequence y(n) is therefore

given by:

y(m) = Y 4, () cos(4, ()
(2.3.6)

¢, (n) = 22Tk Fy(m) + @, (n)
m=1
For constant fundamental frequency denoted by F,, we have F,(n)=kF, and so
> F(m)=> kF,=nkF,. Hence @, (n)=2mkFnT +®,(n) in Eq. (23.6) for this
m=1 m=1

condition. The PAS model expressed in Egs. (2.3.5) represents a general sinusoidal
additive synthesis model with the HAS model given by Egs. (2.3.6) representing a
special case when partial frequencies are constrained to follow an exactly harmonic

distribution.

48

By definition, WLS is concerned with precisely periodic signals and is therefore
described by an harmonic spectrum model. Hence, wavetable values are pre-computed
“off line” by evaluating Eqs. (2.3.6) with constant A,(n)=4, and ®,(n)=,
parameters as illustrated in Figure (2.3.2). The sequence time index, », becomes

analogous to the wavetable sample address and is restricted to span the length of the

wavetable. Accordingly, each wavetable lookup operation represents the linear

combination of N, harmonics at a particular phase point thereby providing an efficient

implementation of the HAS algorithm. Redefining the constant amplitude and phase

vectors (4, and @,) with an additional index that selects a particular wavetable within
a set supports the sequential WLS model outlined in section (2.2.2). We then evaluate
Egs. (2.3.6) with the array variables 4,, and ®,, where m denotes the wavetable
index variable with me[0, N, —1] for N, wavetables in the set. We develop WLS

further in Chapter 4.

[A4, cos (0 +®,)][Azcos(2w+d)2)J o o e @Nhoos(Nha)+CDNhy

_2ma
L Write operation
to fill tabl . .
acl0, L-1] o fill wavetable Off-line Processing

Real-time Processing

Phase
Fy Indexing

Wayétable —— y(n)

.

Figure (2.3.2): Simplified harmonic additive synthesis (HAS) processing model using
pre-computed wavetable lookup and showing the partition between real-time and “off-
line” processing. (Wavetable length and sample address are denoted by L and a,
respectively.)

49

Conversely, the PAS processing model according to Egs. (2.3.5) and illusfrated in
Figure (2.3.3) is computationally expensive since each partial must be synthesised and
processed individually. The computational advantage afforded by the use of lookup
tables implicit in Eqgs. (2.3.6) cannot be exploited to simplify the manifold oscillator
bank implicit in Egs. (2.3.5). (We see that PAS as depicted in Figure (2.3.3) can be
considered as the limiting case of the GAS model where each wavetable contains a

single sinusoid.)

F(n) Fy(n) Fy ()
4(n)| @,(n) 4,(n)| ©,(n) 4y (n)| @y ()
| | i | | |

) L 5)) L \I
1’ Sinusoidal Sinusoidal e e Sinusoidal
Oscillator Oscillator Oscillator
E N,-fold Sinusoidal Oscillator Bank

y(n)

Figure (2.3.3): Partial additive synthesis (PAS) of periodic and non-periodic sounds by

time-varying linear combination of N, partials. The DC component is assumed zero

and @, (n) is typically replaced by a fixed phase offset, ©, .

A significant problem with PAS stems from the computational bandwidth required to
process parametric control data — the so-called “control parameter problem” [Roads,
1996]. The problem can be stated succinctly, thus:

“how do we generate and process the enormous amount of data needed to accurately

represent a large number of partial envelopes?”

50

A prevalent solution reported widely in the literature uses the concept of source coding,
which represents partial envelope trajectories obtained from the spectrum analysis of
natural instruments by approximations which subjectively satisfy the so-called identity""
property upon resynthesis [Grey, 1975; Moore, 1990]. The approximated envelopes
provide a baseline spectrum for the resynthesis process. Accurate representation of
transient spectral features in the attack region of a sound and prevention of
objectionable modulation sidebands in the synthesised spectrum requires that envelope
parameters be updated at the same sample rate as the synthesis process. Each partial

requires computation of the corresponding A4,(n) and F,(n) envelopes, with N,
partials therefore requiring 2N, envelope computations each sample period. To

illustrate the scale of the problem we assume a hypothetical AS processor computing a

100 voice ensemble with each voice composed of 100 partials. Hence we have

N,=10" which requires an envelope computation rate of 960x10° samples/sec for a

48 kHz sample rate and represents a significant computational imposition.

The psychoacoustic properties of human auditory perception such as frequency masking
can be exploited via an auditory model to reduce the total partial count and hence
envelope computation cost [Marentakis and Jensen, 2002; Jensen, 1999; Moore, 1990].
The critical band is an important concept underpinning auditory perception modelling
and corresponds approximately to the width of the region along the basilar membrane
that is excited by a single frequency sinusoid. This critical bandwidth is approximately
15% of frequency, except at lower frequencies where it increases [Moore, 1990].

Masking effects arise when two or more tones are heard simultaneously, the effect

' Resynthesis using suitable partial envelope approximations that produces a sound subjectively
indistinguishable from the original analysed sound defines the identity property.

51

reducing with increasing frequency separation between the tones. In general, lower
frequencies tend to mask higher frequencies more effectively than vice versa and two
single-frequency tones with overlapping critical bands mask each other quite effectively
since they cannot be perceived individually. Hence, under suitable conditions a single
tone may be substituted in place of two (or more) tones with no perceptible change.
Considering the perception of a complex tone, it is reported that low frequency partials
tend to mask high frequency partials and higher frequency partials which fall within a
critical band are not perceived independently [Moore, 1990]. Exploiting the perceptual
abilities of the listener in the identification of superfluous partials is generally known as
receiver coding in the literature [Moore, 1990]. This technique selectively “prunes”
partials that are masked by more prominent ones within a critical band by using a
scheduling algorithm that controls the allocation and de-allocation of partials as the
parameter envelope values evolve over time. However, computational savings due to a
reduced number of partial oscillators must exceed the scheduling computation overhead
for this technique to be cost effective.

AS is not restricted to the linear combination of basis sinusoids which reflect the Fourier
transform. Time-varying linear combination of multiple complex waveforms is reported
extensively in the literature and has been outlined in section (2.2.2) as a WLS
embodiment within the processed recording subclass. However, this technique is
relevant here since the wavetable contents are computed from a spectrum model (i.e.

frequency domain specification).

2.3.3 Baseline Spectrum Representation

Risset [1985] reported the first “spectrum analysis driven” AS of trumpet tones in 1964
using the Music V programming language. This pioneering work appears to have

included the first application of a piecewise-linear (PWL) envelope approximation to

52

compress partial envelope trajectories and thereby reduce the control parameter
computational overhead [Smith, 1991]. The phase vocoder originally developed at Bell
Laboratories in connection with speech synthesis research has provided analysis support
to the HAS model for many years [Moorer, 1978; Smith, 1991]. The PARSHL
programme has extended the phase vocoder to support the analysis of non-harmonic and
pitch-changing sounds, thereby providing partial frequency envelope data and adding
greater realism to the synthesis of natural sound classes [Smith and Serra, 1987]. Grey
and Moorer [1977] have established the utility of analysis-driven AS in the creation of
natural instrument sounds including oboe and clarinet that are subjectively
indistinguishable from the original based on listening tests. In particular, this work
reports envelope data compression factors of 50:1 using PWL representation, with a
100:1 reduction reported by Serra and Smith [1990] in similar research.

The generality of PAS stems from the inherent accessibility to the elemental
components of a sound’s timbral composition (i.e. the partials). The penalty for this
generality is the need to define a large number of envelope trajectories which control the
evolution of partial amplitudes and frequencies that are individually perceptually weak.
Beginning the synthesis process from scratch is counferintuitive and time consuming
without a “baseline” sound spectrum to build from. The efficacy of AS therefore
depends on the availability of baseline spectrum data obtained from a spectrum analysis
of natural sounds. This analysis produces a weighted set of basis components
appropriate to the synthesis model and represents the starting point for creating new
sounds and timbral structures.

Various audio spectrum analysis techniques are reported in the literature, including
pitch-synchronous analysis [Risset and Mathews, 1969], the phase vocoder [Serra,

1997] and constant-Q analysis [Roads, 1996]. All are based on Fourier analysis

53

principles and generate large amounts of spectral envelope data with musical signals.
Effective implementation of the analysis-resynthesis model requires that spectral
envelope data is compressed into a form that permits intuitive parameter editing prior to
resynthesis, yet preserves perceptually salient features. The objective is not to save on
storage requirements but to ensure intuitive representation and manipulation of the
compressed spectrum envelopes and to reduce computational overhead associated with
envelope resynthesis. Figure (2.3.4) illustrates a conceptual analysis-resynthesis
spectrum modelling environment which accommodates sinusoidal and non-sinusoidal
basis functions where the extraction of non-sinusoidal basis functions is peculiar to the
MWS subclass. For the PAS model, basis function extraction is not needed since

sinusoidal basis functions are assumed.

Performance parameters
(e.g. pitch, note on/off)

Sample /Spectrum Modelling Environment l)
Library | Envelope . ;
| Extraction Additive
Spectrum e
Analysis Synthesis
Direct L Basis Function Processor
sampled Extraction o ‘
sound
- ,,
Modified
control |
parameters

Figure (2.3.4): Top-level information flow in spectrum modelling AS. Analysis of
natural sounds generates baseline parameters which are modified to create new sounds

using AS.

54

Spectrum data compression alleviates the control parameter problem and is extensively
reported in both the signal processing and computer music literature. The reader is
referred to the extensive bibliography reported in Roads [1996]. However, four
compression techniques are prevalent: piecewise-linear (PWL) envelope approximation,
principal components analysis (PCA), spectral interpolation synthesis (SIS) and
spectral modelling synthesis (SMS). It is evident that each of these techniques is
associated with a particular AS model requiring both sinusoidal and non-sinusoidal
basis functions.

PWL envelope approximation represents an important spectrum modelling paradigm
that simplifies visual representation and reduces envelope resynthesis time [Grey and
Moorer, 1977]. Envelopes are represented by PWL approximations of raw analysis data,
that is, breakpoints connected by line segments. The technique is not confined to partial
or harmonic additive synthesis and ﬁﬂds utility where any complex time-varying
parameter requires simplified representation.

Principal components analysis (PCA) reduces a complex waveform into a set of so-
called principal components, déﬁned as the eigenvectors corresponding to the largest
eigenvalues of the covariance matrix [Horner et al, 1993]. PCA generates a set of basis
waveforms (the principal components) and a corresponding set of weighting
coefficients. Linear combination of the basis waveforms with their respective
weightings produces a close approximation of the original waveform within some error
bound. The principal utility of PCA lies in the generation of MWS basis and weighting
data [Horner et al, 1993; Sandell and Martens, 1992].

Spectral interpolation synthesis (SIS) is based on time domain linear interpolation
between wavetable pairs whose spectra are usually constrained to have corresponding

harmonics in phase. Wavetable samples are computed from a HAS model based on the

55

analysis of natural sounds with phase information discarded [Serra and Smith, 1990].
Frequency domain wavetable specification using Eqs. (2.3.6) is optimal since harmonic
phase can be normalised across a wavetable set causing interpolation between
corresponding spectra to be free from harmonic amplitude nulls and intuitive in terms of
perceived timbral change with interpolation parameter [Smith, 1991; Chamberlin,
1985]. Chamberlin [1985] observes that linear interpolation between two wavetables
whose respective harmonics are “phase-normalised” (i.e. corresponding harmonics in
each wavetable are in phase) produces a corresponding linear change in harmonic
amplitude as the interpolation proceeds.

Spectral modelling synthesis (SMS) decomposes analysed data into deterministic and
stochastic components. The deterministic component is a compressed version of the
analysis that preserves the most prominent partials which are then resynthesised using a
PAS model. The stochastic component is a noise-like signal and represents the
difference between the deterministic component and the original signal computed in the

frequency domain [Serra and Smith, 1990]. The synthesised sound, y(n), is represented
by the sum of a weighted partial series and a noise signal, e(n), which represents the

stochastic component, thus:
NP n
y(n)=>" 4,(n) cosl:ZﬂTZ F, (m)}+e(n) 2.3.7)
k=1 m=1

A, (n) and F,(n) are obtained from an analysis and compression process reported in

Serra and Smith [1990]. The stochastic component is synthesised by time-varying
filtration of a white noise signal using a response which reflects the spectral
characteristics of the frequency domain stochastic representation reported in Serra and
Smith [1990]. SMS advantages are primarily twofold: data compression associated with

the deterministic component envelope representation and synthesis of the stochastic

56

residual by filtered white noise, thereby saving compared to “brute force” computation
using the PAS model. SMS reduces the computational cost of PAS by replacing

numerous partials and their parameter envelopes with a single filtered noise component.

2.3.4 Subtractive Synthesis

Subtractive synthesis is a spectrum modelling technique based on the application of
linear filtering to transform the spectrum of an input signal (or combination of signals)
to produce a signal with perceptually desirable timbral properties. Dynamic and
parametric timbral articulation are effected by appropriate time-varying
parameterisation of the filter frequency response and excitation signal characteristics.
Classical analogue synthesis systems are based on the subtractive synthesis model
implemented in the analogue domain [Moog, 1965; Chamberlin, 1985].

The subtractive synthesis processing model is illustrated in Figure (2.3.5) and comprises
an excitation source feeding a linear filter with both elements having time-varying

control parameterisation.

Excitation Time-varyin /\\/\M
] arymg | Audio
Source Filter
Excitation signal Filter response
parameters parameters

Figure (2.3.5): The subtractive synthesis processing model.

This model aligns well with the generic model of traditional acoustic musical
instruments and is closely related to the technique of physical modelling discussed later.
A violin string coupled through a bridge to a sound box represents a good example

[Moore, 1990]. The bowed string generates an excitation signal with time-varying

57

spectral properties according to the bowing and fingering technique of the player. The
bridge couples this sound to a resonant sound box whose frequency response is
essentially time-invariant (at least to a first order) but will typically vary among
instrument types according to geometry, constituent materials and construction
technique. Brass and woodwind instruments (e.g. the trumpet and clarinet) exemplify
time-variant acoustic resonators excited by vibrations from the players lips or a reed.
The excitation signal model is typically a harmonic-rich waveform or broadband white
noise signal and must contain energy at all frequencies required in the synthesised
sound. Subtractive synthesis is unable to add energy at a particular frequency [De Poli,
1983]. In some implementations (e.g. sampling synthesis) the excitation signal is
provided by a pitch-shifted recorded instrument sound [Roads, 1996].

In general, filter response parameters (e.g. bandwidth) are intuitive and strong. For
example, the bandwidth of a low-pass filter exemplifies a strong parameter whose
variation controls the perceived “timbral brightness” of the processed signal. The
generality of a subtractive synthesis model is constrained by the control flexibility of the
digital filter frequency response. We therefore briefly review digital filters and their
utility within the subtractive synthesis processing model.

There are broadly two classes of digital filter: finite impulse response (FIR) and infinite
impulse response (IIR) [Orfanidis, 1996]. FIR filters are unconditionally stable and can
provide a linear phase response which preserves the time-alignment of all frequency
components in the filtered signal. IR filters are computationally more efficient than FIR
filters for a given response characteristic, but do not provide a linear phase response and
suffer sensitivity to computation round-off errors inherent with quantised arithmetic
leading to instability or limit-cycle behaviour [Rabiner and Gold, 1975]. Effecting a

well behaved time-varying frequency response is a significant problem in discrete-time

58

subtractive synthesis. Direct linear interpolation of the filter coefficients produces a
corresponding frequency response-time profile which does not correspond with that
expected [Moore, 1990]. A time-varying FIR filter may be implemented by
interpolating the filter response in the frequency domain and then transforming to sets of
impulse response coefficients using the inverse DFT but it is a computationally
expensive technique. Moore [1990] suggests the utility of the two-pole IIR resonant
filter which requires only four coefficients and hence four multiplications in the
recursive computations. An IIR resonator with normalised peak gain is defined by the

transfer function and corresponding difference equation:

(1-rNA-rz2)

H(z)=
@) 1-2rcos(@)z™ +r’z

(2.3.8)

(1) = Gx(n) = rx(n = 2)) + by(n=1) + byy(n~2)
where the centre frequency, f,, is determined by the pole angle, 8, and the bandwidth,

B, by the pole radius, r. Figure (2.3.6) illustrates the corresponding signal-flow

architecture.
o) —{(X (T)

pe

1-r

@ y(n)

S

2}~cos(6) | ¢
@ |
—8—-®

Figure (2.3.6): An IIR resonant filter with normalised peak gain.

59

The difference equation in Egs. (2.3.8) requires four coefficients: r =e ™', G=1~r,
b, =2rcos(2z £,T) and b, = —r*, where T is the sample period. In general, we cannot

interpolate the coefficients and expect the corresponding frequency response to be well
behaved as the interpolation proceeds. Furthermore, pole position must be maintained
inside the unit-circle to ensure filter stability. Linear combination of multiple two-pole
resonators as illustrated in Figure (2.3.7) synthesises a “quasi-arbitrary” filter response

according to the filter parameters and their time-varying relative amplitude weightings.

Filter parameters £, B
¢ G,(n)

Second-order
IIR Resonator

Second-order
IIR Resonator

x(n) —

Second-order
IIR Resonator

Figure (2.3.7): Weighted linear combination of multiple second-order resonant filter

sections. Section weighting is set by the time-varying gain parameter, G, (n).

Despite the flexibility afforded by this filter architecture within a subtractive synthesis
model, it lacks the generality promised by the PAS model. Subtractive synthesis
exploits the intuitive correspondence between a frequency domain parameterisation and
auditory perception. As a synthesis technique we conclude it is limited compared to the

generalisation promised by PAS. However, subtractive synthesis lays the foundations of

60

physical modelling and thereby precise synthesis of certain instrument classes which

conform to the “excited resonator” model.

2.4 Physical Modelling

Physical modelling constructs a mathematical model that describes the salient sound
generation mechanism in an instrument which conforms to the “excited resonator”
model. The model is typically composed of several distinct blocks which are mutually
interactive and in some cases non-linear. Mapping the continuous-time model into the
discrete-time domain with quantised values generates the physical model algorithm
which is then executed in real time to generate sound samples. The timbral character of
the simulated instrument is determined entirely by the model structure and not by
parametric control. Control parameterisation is closely correlated with the physical
parameters of the real instrument and therefore supports intuitive control of the model.
Physicél modelling is confined to acoustic instrument structures which are characterised
by vibration excitation of a resonant structure (e.g. a guitar string and sound box)
[Roads, 1996; Smith, 1992]. The resonant model is typically broken down into several
blocks which correspond to physically separate elements of the acoustic instrument.
Interconnection between blocks provides access points which serve as points of
connection to other parts of the model, excitation inputs and extraction points for the
sound samples.

The simplest physical model is the Karplus-Strong plucked string model where the
output of a digital delay line, initialised with a pseudo-random noise sequence,

x(=k)---x(-1), is fed back to the input via a low-pass filter, #(n), as illustrated in

Figure (2.4.1) [Karplus and Strong, 1983].

61

x(=k)-+x(=1)

x(n) - zZ y(n)

h(n)

Figure (2.4.1): The Karplus-Strong plucked string model.

Following initialisation, the low-pass filter progressively attenuates high frequency
components in the noise sequence which decays to a sinusoid as the recursion proceeds.
The steady-state frequency is determined by the length of the delay line. This algorithm
is reported as giving excellent simulations of plucked string sounds [Smith, 1987;
Smith, 1991] with relatively small computational overhead.

A development of physical modelling known as waveguide synthesis is based on the
analytical solution of the wave equation that describes the propagation of perturbations
in a medium [Smith, 1987]. The digital waveguide which underpins this synthesis
technique is represented as a pair of delay lines which model the bidirectional
propagation of a wave in a lossless medium. Waveguide synthesis uses two-dimensional
waveguide meshes connected by lossless scattering junctions which model propagation
medium stiffness and signal dispersion at a discontinuous junction. Other physical
structures are accurately represented by filters as in physical modelling, hence there is a
close correspondence between waveguide synthesis parameterisations and our physical
perception of acoustic systems. Figure (2.4.2) illustrates a simplified waveguide model
of a woodwind instrument [Smith, 2004]. The nonlinear scattering junction simulates
the reed excitation signal accounting for reed stiffness and embouchure. The bell at the

end of the clarinet is modelled as a filter. Low frequencies are reflected back into the

62

bore according to R(z) with high frequencies passed out of the bore according to H(z)

providing the output of the model, y(#n).

z" H(z) ()
Mouth pressure —éw Nonlinear
Scattering R(2)

Embouchure Junction

l N

Bell |

Reed / Bore

Figure (2.4.2): Simplified waveguide model of a woodwind instrument (e.g. the

clarinet).

Waveguide synthesis is reported as successfully modelling complex acoustic systems
such as the bore of a clarinet or groups of coupled strings in a guitar, where the guitar
bridge represents a resistive coupling mechanism [Borin et al, 1997].

The advantages of physical modelling synthesis are the highly physical
parameterisations which correspond exactly with those used by the natural instrument
(e.g. the bow pressure and bow velocity in a violin physical model [Smith, 1992]) and
the robustness of the synthesised sound’s identity. For example, Jaffe [1995] observes
that the extended Karplus-Strong plucked string algorithm always synthesises plucked
string sounds, irrespective of parameter settings in the model [Karplus and Strong,
1983; Jaffe and Smith, 1983]. Physically relevant parameters such as pick position,
string flexibility and string thickness can be varied to provide a rich lexicon of sounds
which never lose their string-like identity. In contrast, PAS parameters (e.g. partial
amplitude) are not directly relevant by themselves when synthesising a plucked string,
for example. Physical models with non-linear feedback can exhibit extreme sensitivity

to initial condition parameters leading to undesirable chaotic behaviour [Jaffe, 1995].

63

Physical modelling lacks the generality promised by PAS but provides accurate
synthesis and intuitive control of the woodwind and string instrument subclass. The
principal disadvantage of physical modelling is that it is fundamentally constrained by
the excited resonator model which is appropriate to only a subset of musical instrument

classes and corresponding timbres.

2.5 Abstract Algorithm

Abstract algorithm synthesis exploits the properties of certain mathematical functions
for synthesising musically useful sounds. Frequency modulation (FM) synthesis
[Chowning, 1973], Moorer’s discrete summation formulae [1976] and waveshaping

synthesis [Risset, 1969] are popular examples of this synthesis technique subclass.

2.5.1 Frequency Modulation (FM) Synthesis

The simplest FM synthesis configuration uses a carrier oscillator frequency modulated

by a modulator oscillator with oscillation frequencies, f, and f, , respectively. The
modulation depth is controlled by the modulation index, I(n), which controls the
amplitude of the modulator. The corresponding FM signal is given by:

y(n) = A(n)sin[24f,nT + I(n)sin(2af, nT)| (2.5.1)
where A(n) represents the amplitude envelope. The spectrum of y(n) comprises
sidebands surrounding f, whose amplitudes vary according to k -order Bessel functions
of the first kind, J, (I (n)). Eq. (2.5.1) can be expressed in a form which incorporates the

Bessel functions directly [De Poli, 1983]:

y(n) = A(n) i J(I(m))sin[27z(f, + &kf, nT] (2.5.2)

k=—
where each &k term represents an individual partial. The modulation index controls

timbre and for I(n) =0 the spectrum comprises the carrier alone. As I(n) increases, the

64

spectral envelope describes two peaks symmetrically about f, which progressively
migrate causing partials near f, to reduce in amplitude and those further away to

increase. Therefore, dynamic spectra are realised by varying I(n). The carrier to

modulator frequency ratio governs harmonicity, with integer ratios producing harmonic
spectra and non-integer ratios producing inharmonic spectra which are useful for
synthesising bell-like sounds.

FM synthesis is extendable beyond the two oscillator model [De Poli, 1983]. Six
oscillator architectures produce a rich taxonomy of dynamic timbres as exemplified by
the Yamaha DX7 synthesiser which has enjoyed huge commercial success [Roads,
1996]. The advantage of FM synthesis lies in the vast range of timbres available with a
small set of sinusoidal oscillators, associated modulation arithmetic and their
corresponding control parameters [Chowning, 1973]. De Poli [1983] and Roads [1996]
provide extensive tutorials on advanced FM synthesis techniques. Disadvantages of FM
synthesis lie in non-intuitive control parameterisations (i.e. abstract mathematical
variables) that do not correlate well with the audio perception model and a strong “FM
timbral identity”. However, despite a lack of generality, FM synthesis finds utility due

to the timbral range possible for relatively little processing overhead.

2.5.2 Synthesis by Discrete Summation Formulae

Moorer [1976] showed that Eq. (2.5.1) is one instance of a general class of equaﬁons
called discrete summation formulae which provide a computationally efficient method
for synthesising band-limited excitation waveforms for the subtractive synthesis model

[Moorer, 1976; Moore, 1990]. The expression:

65

y(n) = ﬁ: sin k¢
=1

(2.5.3)
sin(——N¢(n) J
_ 2 Sin[(N+1)¢(n):|
sin(?(zi)) 2

describes a DT waveform, y(n), composed of the sum of N equal amplitude
harmonics of a frequency, f, where ¢(n) = 2afmT . The lower closed-form expression

requires three multiplications, one division and three table lookup operations as
compared to N multiplications, N —1 additions and N table lookup operations for the

AS form. Moore [1990] observes the singularity arising as ¢(n) - mz for any integer,

m , is mitigated by using the identity:

sin(M) +N Nodd
=<+ N N even and m even 2.5.4)

p—o>mr .
sm[@] —N N even and m odd

However, tabulating the quotient term in Eq. (2.5.3) for a given N in a lookup table

indexed by ¢(n) obviates the division operation. Many closed-form summation

formulae are given in the literature and some have been applied in generating brass-like
tones [Risset and Mathews, 1969]. However, generating excitation waveforms within

the subtractive synthesis model is the principal application of this synthesis technique.

2.5.3 Waveshaping Synthesis

Waveshaping synthesis exploits the mathematical concept of function composition (i.e.

“function of a function”). A function, f(x), is composable with another function,
g(»), when one function can be used as the argument for the other. Nonlinear

waveshaping is concerned with the identification of composing functions that accept

66

waveform functions as arguments and produce musically useful results. A particular
class of composing functions reported in the literature are order-k Chebyshev

polynomials of the first kind, denoted 7, that find utility due to their harmonic

synthesis property [Moore, 1990]:
T, [cos(#)] = cos(k¢) (2.5.5)

A composing function defined as a weighted sum of Chebyshev polynomials maps a
cosine wave to a waveform comprising a harmonic series with exactly the same weights
as the Chebyshev polynomials. Arfib [1979] showed that a variation in input (argument)
frequency yielded inharmonic partials in the corresponding output spectrum. However,
this technique is necessarily sensitive to the amplitude of the input function. As the
input amplitude varies from 0 to 1, the corresponding output spectrum moves from a
pure sinusoid (with amplitude that approaches zero) to a spectrum defined by the
polynomial weights [Moore, 1990]. Waveshaping synthesis is therefore limited by the
strong dependency between output spectrum and the input argument amplitude,

although some researchers report techniques for amplitude normalisation [Roads, 1996].

2.6 Generalised Additive Synthesis

The time-varying linear combination of multiple basis components to construct sounds
with temporal evolution and parametric articulation of timbre defines the generalised
AS paradigm. Basis components are usually sinusoidal although complex waveforms
are reported. Harmonic AS is an exact embodiment of the inverse DFT and is therefore
constrained to synthesise sounds with sinusoidal basis components whose frequencies
are time-invariant and follow an exact harmonic distribution. To emulate the behaviour
of natural sounds whose partial frequencies are slowly time-varying, we define the PAS

subclass based on linear combination of basis sinusoids with time-varying frequencies,

67

which may loosely follow an harmonic series. We observe that PAS includes the HAS
subclass. Figure (2.6.1) illustrates a taxonomy of reported AS forms where two broad
AS classes are apparent — wavetable lookup synthesis (WLS), as introduced in section
(2.2.2) and direct computation synthesis (DCS) which describes algorithm execution by
brute force computation (e.g. a truncated Taylor’s series or the inverse FFT). Both
classifications contain the PAS and HAS subclasses, with MWS, GAS and SIS peculiar
to WLS. However, implementation of PAS using WLS requires an individual wavetable

oscillator for each partial.

Additive
Synthesis
(AS)
PAS SIS GAS MWS PAS SMS FFT!
| |
HAS HAS

Figure (2.6.1): A taxonomy of additive synthesis subclasses.

The focus of this thesis is AS within the WLS subclass, briefly reviewing pertinent DCS
techniques in section 2.6.6 and Chapter 3. We now discuss the PAS paradigm which

represents the AS subclass which promises the most generality and flexibility.

2.6.1 Partial Additive Synthesis — Advantages and Disadvantages

The PAS algorithm and methods for its effective implementation are prime motivators

for the research reported in this thesis. PAS provides accessibility to the elemental

68

components of timbral composition and expression through independent control
parameters which are consistent with the human auditory perception model. In essence,
PAS constructs directly the spectrum received along the basilar membrane of the ear
[Smith, 1991]. Independent, time-varying control of the frequency, amplitude and phase
of each partial is inherent, subject to limitations imposed by computation peculiarities of
the implementation method. Furthermore, the number of partials used in the synthesis is
bound principally by hardware processing speed.
The manipulation of partial envelope trajectories to construct new sounds is referenced
to a known point in “timbre space” by editing a partial envelope set obtained from the
analysis of a natural instrument sound. This process is perceptibly intuitive since human
auditory perception favours a frequency domain transformation. The weak association
between individual partial parameter changes and the corresponding timbral perception
remains a problem, however. Baseline envelopes are obtained from a spectrum analysis
of natural sounds using the short-time Fourier transform (STFT) which provides
localisation of frequency and time information. Partial magnitude and phase envelopes
emerging from the STFT analysis are converted into corresponding piecewise-linear
(PWL) approximated amplitude and frequency envelopes which constitute the baseline
parameters.
The principal advantages of PAS include the provision of:

e generality and accessibility of control parameters (i.e. access to the lowest levels

of a sound’s composition);
e intuitive correspondence with the human auditory perception model;
e temporal evolution of timbre;

e parametric articulation of timbre;

69

e synthesis baselined against natural sounds via established spectrum analysis
tools;

e sequential algorithm architecture conducive to hardware pipelining and therefore
“VLSI friendly”.

Conversely, the principal disadvantages of PAS include:

¢ high computation cost associated with synthesising numerous partials;

e high control parameter bandwidth and implicit computation cost;

e weak control parameters;

e dependency on “baseline parameter sets” to initiate the synthesis of new sounds.

We conclude that the advantages of PAS outweigh the disadvantages, excepting weak
control parameterisation which remains a fundamental characteristic of the technique.
The significant computation overhead motivates investigation of throughput-enhancing
techniques (e.g. pipelining) which exploit the sequential structure of the PAS process
model to mitigate this problem. This approach is encouraged by the reducing cost-

performance ratio of relevant VLSI and memory technology.

2.6.2 The PAS Algorithm — Decomposition and Assessment

Eq. (2.3.5) reveals the fundamentally sequential structure of the PAS algorithm

involving two distinct operations: computation of partial phase, ¢, (n), and the linear

NI’
combination of N, partials according to y(n) = ZAk (n)cos(g, (n)). The partial phase
k=1

is defined by:

&, (n) = 27sz F,(m)+®,(n) 2.6.1)

70

and may be expressed in an equivalent, but algorithmically more amenable difference
equation form, thus:

S (M) =g (n=-D)+22TF,(n)+ D, (n)-D,(n-1) (2.6.2)
It is evident from Egs. (2.6.1) and (2.6.2) that computation of partial phase is a
fundamental and irreducible PAS operation.

If we assume the envelope terms are already available, computation of y(n) can be
partitioned into five distinct operations:

1. Read the &™ partial envelope terms, 4,(n), F,(n) and @, (#).

2. Compute the ™ partial phase term, @, ().

3. Compute the K™ partial amplitude term, cos(¢k (n)).

4. Multiply the K™ partial amplitude term by 4, (r).

5. Accumulate the result for k€[, N,].
We ignore for our present discussion that some of these operations can be further
decomposed into elemental operations (e.g. computation of cos(¢k (n))).
Real-time execution of this algorithm requires a single processor which can compute
N, partials per sample period (i.e. processing throughput) with an acceptable latency
defined as the time between a parametric change (e.g. a change in 4,(n)) and the
corresponding change in y(n). We postulate that the computational cost of
implementing Eqs. (2.6.1) and (2.6.2) is reducible by exploiting their underlying
sequential structure within a pipelined processor architecture which spreads the

computational burden across a sequential processor manifold at the expense of

increased latency.

71

We define computational cost in this context as the total number of arithmetic
operations required to compute N, partials per sample period, per processor. The
“brute force” computational cost, C, (i.e. using a non-pipelined single processor
architecture) is given by C =N ,c, operations per sample period, where each partial
requires execution of ¢, elemental operations. Distributing this algorithm across a p -
stage pipeline enables elemental operations to be executed across consecutive samples,
exchanging throughput for latency. Our rudimentary pipeline comprises p distinct

processors each optimised to a specific task, where for the i™ stage we execute

14
C = ZN ,C; operations per sample pgriod, with ¢, denoting the number of elemental

i=1
operations required to compute one partial. (This representation implies a non-
homogeneous pipeline where each stage executes a distinct algorithm sub-process with
a corresponding variation in the number of elemental operations per pipeline stage.)

The average number of operations per pipeline stage is given by:

1 P
Cau =2 2,0, (2.6.3)
i=1

It is clear that as C,,, reduces, we require fewer operations to execute per pipeline
stage, hence lower cost processing can be utilised for a given N,, or conversely, a
larger N, can be realised for a given processing speed. C,, reaches a minimum when
¢; =1 for all i e[l, p], whereupon C,, =N,, C=pN, and p=c, indicating that all

elemental operations are pipelined and the pipeline executes one elemental operation

per partial per stage with a latency of p sample periods assuming the pipeline is

clocked every sample period. Hence we have p pipeline stages each executing N,

elemental operations per sample period (i.e. clocked at N, f) in contrast to N ¢,

72

elemental operations per sample period for the single processor (brute force)
implementation.

The pipelined architecture is ultimately constrained by the slowest elemental
computation time which we denote by 7, = max{t,,}, where {t,,} denotes the whole set
of elemental operation execution times, hence:

Nt <T (2.6.4)

pitm

where ¢, denotes the number of operations associated with the slowest process (¢,,) and

is unity in an optimal pipeline, whereupon N ¢, <T or N, < 1

m

The AS algorithm is inherently a feedforward process (i.e. no global feedback terms)

and so we envisage a long computational pipeline, whose latency time, #,, and hence
length is bound only by user perceptual constraints, according to:

t,=pT <t (2.6.5)
where 7, denotes an upper bound imposed by the maximum time that can be tolerated

between a control parameter change (e.g. a key depression) and the corresponding
auditory perception, typically on the order of 1 ms [Roads, 1996; Alles, 1980]. Since

T ~ 20 ps, it is evident that p <50 and places an upper bound on the pipeline length.
The objective of an AS processor design is therefore to maximise N , and minimise

C,,. consistent with the latency time upper bound given by Eq. (2.6.5). We consider AS

processing architectures in Chapter 6.

2.6.3 The Significance of Partial Phase

Jensen [1999] reports that early research into the effects of relative partial phase on the
human auditory system took two opposing views depending on the auditory model used

— the frequency domain model, which asserts that phase differences are imperceptible

73

and the temporal model, which asserts that relative phase is perceptible. Perception
experiments based on listening tests and summarised in Jensen [1999] conclude that the
timbre of musical tones below middle C and the quality of the synthesised human voice
depends on partial phase relationships. These conclusions are supported by Quatieri and
McAuley [1998] in their work on analysis and synthesis using sinusoidal basis
functions.

Risset et al [1982] observe that initial partial phase is a “perceptually significant”
parameter although its effect is weak in a reverberant environment where relative phase
relationships become “smeared”. Roads [1996] reports that the initial relative phase is
particularly important in the perception of attacks and transients, helping to synthesise
short-lived components in their correct order. Anderson and Jensen [2001] report
psycho-acoustic experiments which indicate the importance of phase information in
sound localisation. Results show that phase information is critical to the perception of
spatial qualities in the synthesis of binaural sounds.

We conclude that for the synthesis of non-binaural sounds, the dymamic phase

parameter, @,(n), in Eqgs. (2.3.5) and (2.6.1) can be replaced by a fixed (time-invariant)
phase offset, @, , to specify the initial phase of each partial. Dynamic phase control via
®, (n) produces a frequency-shifted partial according to the time rate of change of
@, (n). With a static phase offset, dynamic partial frequency envelopes are effected

through the F, (n) parameter.

2.6.4 Piecewise-Linear Envelope Representation

Partial and harmonic additive synthesis requires envelope data obtained from the
analysis of natural sounds to baseline the synthesis of new sounds. Partial envelopes

obtained directly from the spectrum analysis of natural sounds are generally

74

characterised by a “noise-like” amplitude variation about a well-behaved, underlying
contour. Grey [1975] reasons that the fine detail of partial amplitude and frequency
envelope variation is of less subjective importance than the average behaviour over the
duration of the sound - hence the noise-like variation is perceptually redundant. This
hypothesis suggests the utility of an approximate envelope trajectory representation
where the superfluous variations are absent leaving only the underlying trend.
Piecewise-linear envelope representation uses a line-segment approximation of the
underlying trend as exemplified in Figure (2.6.2) for a typical partial amplitude
envelope. PWL representation simplifies envelope manipulation and reduces the data

bandwidth required to resynthesise envelope trajectories in PWL form.

@

0 50 100 150 200 250 300 350 400
Time (ms)

(b)
1 n

A

0 50 100 150 200 250 300 350 400

Time (ms)

Figure (2.6.2): (a) - Hypothetical PWL approximation o fa partial amplitude envelope,

(b) - Original envelope exhibiting noise-like variation about an underlying contour.

Grey and Moorer [1977] showed by the use of listening tests that resynthesis using

PWL envelope approximation is musically indistinguishable from the original tone and

75

confirms earlier hypotheses that the noise-like fine detail is largely redundant. The data
compression utility of PWL representation is demonstrated when we consider envelopes
corresponding to a real musical tone, where only the segment slope and breakpoint
threshold information need be stored. Figures (2.6.3) and (2.6.4) illustrate PWL

approximations of partial amplitude and frequency envelopes for a trumpet tone [Grey,

1975].

OOO Fundamental
OO0O 2nd partial
0QQ 3rd partial
QOO 4th partial
0.8 OOO 5th partial
OO0O 6th partial
OOO 7th partial

OOO 8th partial
0.6
0.4
0.2
0
0 50 100 150 200 250 300 350 400

Time (ms)

Figure (2.6.3): PWL amplitude envelope approximation of the first 8 partials of a

trumpet tone [Grey, 1975].

76

330T
|0 O Q Fundamental"

PRCFO

310
0 50 100 150 200 250 300 350 400
Time (ms)
700T
[O O 0 2nd partial
N
X
600’
0 50 100 150 200 250 300 350
Time (ms)

Figure (2.6.4): PWL approximations of the fundamental and 2nd partial frequency

envelopes ofa trumpet tone [Grey, 1975].

PWL envelopes are stored as a list of breakpoint values corresponding to points of
maximum inflection (i.e. stationary points) in the underlying contour. Listed values
typically represent envelope segment slope and envelope breakpoint threshold.
Piecewise integration of the listed data effects envelope resynthesis, typically as an

integral part ofthe PAS computation [Snell, 1977].

2.6.5 Metaparameters - Context and the PAS Processing Model

We define a metaparameter as a single parameter that modifies a group of partial
parameters according to a predefined mapping function [Jaffe, 1995]. Transformation
typically involves linear scaling of amplitude and frequency envelopes or a combination

of both. Metaparameters map between numerous, individually weak PAS parameters

71

and a small set of strong parameters with the objective of providing intuitive and
expressive articulation of timbre.

If we assume that the partial phase envelope is replaced by a fixed constant, ®,, we

modify Egs. (2.3.5) to include amplitude and frequency metaparameter scaling terms,

a,(n) and b,(n), thus:

y(n) = zp:ak (n) A, (n) cos(ZrcTZn: [6, (m) F, (m)] + @k] (2.6.6)
k=0 m=1 :

The a,(n) terms effect “response shaping” of the synthesised spectrum whereas the
b,(n) terms provide a “harmonicity scaling” of the constituent partials. Since auditory

perception of musical pitch is related to the ratio of frequencies, we note that
multiplicative scaling of the frequency envelope term is appropriate since partial
frequency ratios relative to the fundamental are preserved.

A filter with parametrically-varying frequency response is effected by defining a, () as

a function of F, (n) and additional parameters (or metaparameters) which determine the

response shape. For example, we define a PWL low-pass response (adapted from Jaffe

[1995]) which may be likened to a frequency domain filter specification, thus:

0.1} = {F m Em<, 267

S T Er () F(n)z f,
where f, denotes the breakpoint frequency and #,# €[0,1] determine the response

slope before and after f,, respectively. The variables r, r, and f, represent

metaparameters which control frequency response shape as exemplified in Figure

(2.6.5) and affords a simple “timbral brightness™ control.

78

-10

"0

8

-30

5o~

“40

—

" 50
"60

—

» —rl=0,n2=1
70 - 11 =025, 12=2

80 rl =05,122=3

-90
100

Partial frequency (Hz)

Figure (2.6.5): PWL partial amplitude response for various rx and r2 values.

(Response is normalised to afundamentalfrequency of1 Hz with fh set at 10 Hz.)

Figure (2.6.6) illustrates the PAS processing model incorporating the ak(ri) and bk(ri)
metaparameter scaling terms. For Np partials, this model requires 2Np envelope
generators, Np sinusoidal oscillators, 4Np multiplications, Np additions and 2Np

metaparameter mapping operations each sample period.

79

f EGtrigger

Envelope Generator (EG) and Oscillator Tuning Control

L L | L]

D, SEN Sinusoidal Sinusoidal . . . Sinusoidal % . &—qm)
terms Oscillator Oscillator Oscillator >_ g %
=
g2

A(ﬂ)() Az(n)< > Ay (n)<) g5 k—r(

@ (i% ~ (i%"%i«

y(n)

Figure (2.6.6): The partial additive synthesis (PAS) processing model incorporating

metaparameterisation of partial amplitude and frequency. The q(n) and r(n) terms

denote arbitrary, time-varying metaparameters and the EG blocks represent PWL

envelope generators.

80

2.6.6 Additive Synthesis using the Inverse FFT

The inverse fast Fourier transform (IFFT) is a computationally efficient algorithm for
computing the inverse discrete Fourier transform. The IFFT transforms a complex
discrete-frequency vector, X(w), comprising N locations (or bins) into a
corresponding discrete-time signal vector, x(n), of N samples. The IFFT is a block
processing algorithm with each block or frame containing N samples which are
transformed en bloc. Real-time synthesis requires continuous application of the IFFT to
consecutive frames containing complex frequency data obtained from the short-time
Fourier transform (STFT) of the desired sound, with N chosen to give acceptable time

resolution [Chamberlin, 1985; Roads, 1996]. Parametric control is only permissible at

2f,

the frame processing rate, , where parameter step changes between frames cause

undesirable noise in the synthesised signal which can be mitigated by interpolation of

amplitude and frequency parameters between frames [Chamberlin, 1985].
The IFFT synthesises the first % harmonics of the frame processing frequency.

Arbitrary partial frequencies are synthesised by rounding the required frequency to the
nearest bin frequency and adding a phase offset to the complex frequency term to
approximate the residual frequency. Howevér, this technique introduces phase
discontinuities at the frame boundaries with non-overlapping frames. Overlap-add
synthesis with raised cosine windows reduces the magnitude of these discontinuities and

interpolates the partial amplitude as 4,(n) evolves among frames. However, this

technique requires twice the number of IFFT computations and produces objectionable
amplitude modulation due to smearing of the phase discontinuities across consecutive

frames [Chamberlin, 1985].

81

Rodet and Depalle [1992] present the “FFT ' algorithm which mitigates AM effects
associated with phase discontinuity smearing, although implementation of partial
frequency envelopes is computationally complex. One solution proposed by Goodwin
and Rodet [1994] employs frequency “chirps” within frames combined with an overlap-
add “splicing” algorithm. Maintaining phase continuity between frames requires
computation of a quadratic polynomial to compensate for the parabolic phase contour of
the chirp. Goodwin and Kogon [1995] propose further refinements which reduce
significant inter-frame splicing errors when the frequency increment is not constant
between frames. The computational complexity of the FFT' algorithm requires
carefully coded software implementation to ensure data and instruction fetches are
confined to cache memory to maximise execution speed. Freed et al [1993] report the
synthesis of approximately 320 partials at a sample rate of 44.1 kHz using an optimised
C code FFT' algorithm running on a MIPS R4000 workstation. Similarly, a
hypothetical VLSI implementation of a linearly combined sinusoidal oscillator bank
using a 50 MHz clock with 4 cycles per oscillator yields approximately 290 partials. In
contrast, a software driven DSP running at 50 MHz with 20 clock cycles per oscillator
sample yields approximately 56 partials. Finally, Hodes and Freed [1999] report 608
partials synthesised using a direct-form recursive oscillator algorithm executing on the
SPERT vector coprocessor [Asanovic et al, 1995].

The FFT" algorithm requires a STFT pre-processing operation which transforms the
partial envelopes into a short-time spectrum (STS) for subsequent time domain
transformation using an IFFT with overlap-add splicing. The associated processing
overhead is independent of the number of partials. However, computing the STS incurs
a computational overhead proportional to the number of partials and leads to an upper

bound on the efficacy of the FFT™ algorithm [Phillips, 1996].

82

2.7 Conclusions

This review suggests a natural partitioning of the research objective according to the AS
subclass. Several distinct AS subclasses have been identified, differentiated primarily by
basis component characteristics and linear combination methodology. We therefore
partition the research objective into distinct topics which collectively align with the AS
paradigm and individually define the focal areas of this thesis. We postulate that table
lookup operations are faster than direct, brute force computation of the tabulated data
and so we consider the WLS subclass of Figure (2.6.1). Moreover, we hypothesise that
intrinsic arithmetic partitioning evident in the linear combination of manifold basis
components, as common to all AS classes, motivates the utilisation of a systolic
pipelined processing architecture to effect algorithm computation. Each pipeline stage is
optimised to execute a particular elemental function exploiting table lookup to replace

direct computation.

83

Chapter 3 Digital Sinusoidal Oscillators

3.1 Overview

This chapter presents an original perspective on the application of discrete-time (DT)
sinusoid synthesis algorithms, reported in the literature, to multiple-oscillator additive
synthesis. We have seen in section (2.3.2) that PAS requires numerous linearly
combined sinusoidal oscillators, with each having independent control of amplitude,
frequency and phase. Each oscillator must provide a constant amplitude, phase-
continuous frequency transition at any phase point. We define a phase-continuous
frequency transition as one where the underlying phase-time characteristic shows only a
change in slope at the transition point with no step change in phase. It follows that the
corresponding amplitude signal will not contain a step change at the frequency
transition point, similar to analogue (continuous-time) voltage controlled oscillator
(VCO) behaviour. The step amplitude changes which generally accompany phase-
discontinuous transitions are perceived as objectionable ‘clicks’ in the audio signal. We
consider phase continuity further in Chapter 4.

The principal objective of this review is to identify an optimal sinusoidal oscillator
algorithm using assessment criteria relevant to computer music additive synthesis. Table
(3.1.1) summarises six properties (P1 to P6) against which we compare and assess
prototype oscillators in an objective manner. The time-varying amplitude, frequency

and phase envelopes of the k™ partial we define with the parameters A,(n), F,(n) and
®,(n), respectively. There are two complementary classes of digital sinusoidal

oscillator algorithm — recursive and phase-accumulating [Tierney et al, 1971].

Recursive oscillators are essentially DT simulations of physical (e.g. mass-spring)

84

oscillatory systems having a simple harmonic motion with zero damping as their

solution.

Property Description

P1 Arithmetic overhead (e.g. number of multiply and add operations)
P2 Suitability to time-division multiplexing

P3 Amplitude stability and spectral purity over time

P4 Interaction between F(n), A(n) and ®(n)

P5 F(n) response characteristic and dynamic range

P6 Phase-continuous frequency transition

Table (3.1.1): Six key properties of digital sinusoidal oscillator algorithms requiring

consideration for optimal application in partial additive synthesis.

In general, the cost of implementation is bound by the number of multiplication
operations required per sample, ranging from two to four with recursive algorithms.
Interaction between oscillation frequency, amplitude and phase is undesirable since it
increases control complexity. This is of particular concern with the direct-form
algorithm where, despite computational simplicity, each frequency transition requires
re-initialisation with new initial conditions to maintain amplitude and phase-continuity.
This research has produced definitions of initial conditions that provide phase-
continuous frequency transition (see section (3.2.6)) and this work has been published
[Symons, 2004].

Phase-accumulating oscillators allow independent sample rate control of A4,(n), F.(n)

and @, (n), in line with the classical definition of additive synthesis presented in

85

section (2.3). These oscillators compute the sinusoid phase explicitly from a sample rate
integration of F,(n) and then map to the amplitude domain using a phase-mapping
function. This function can be effected with a lookup table [Tierney et al, 1971] whose
length and word size control mapping accuracy between the phase and amplitude

domains. (In subsequent discussion we drop the & subscripts for brevity.)

3.2 Recursive Oscillators

3.2.1 Direct-form
The simplest recursive oscillator is based on the direct-form second-order resonator
developed from the z-transform pair [Orfanidis, 1996]:

rsin(@)z™

1-2rcos(@)z™ +r’z”

h(n)=r"sin(n@u(n) < H(z)= (3.2.1)

2

l, n20 . . —
where u(n) = {0 " <0° The poles of H(z) comprise the conjugate pair re*/’
n

b

, Where

r represents the radial distance of the pole from the origin in the complex z-plane. For
r€(0,1), the pole pair describe an exponentially decaying DT sinusoid, #(n), with
frequency controlled by € and amplitude envelope »" =e""". Setting » =1 places the
poles precisely on the unit circle and produces a sinusoidal impulse response with

constant unit amplitude for all ».

Y(2)
X(2)

Since H(z) = , the right hand side of Eq. (3.2.1) can be written as

(1-2rcos(@)z™ +r?z2)Y(2) = (rsin(@)z ") X (z). Taking the inverse z-transform of
this expression yields the second-order difference equation:

y(n) = 2rcos(@)y(n—1)—r:y(n—2) +rsin(@)x(n—1) (3.2.2)

86

where y(n) represents the DT oscillator output sequence and x(n—1) is a forcing
function which initiates oscillation at » =1, with initial conditions (IC) x(-1)=0 and
y(-1) = y(-2) = 0. The frequency control parameter, €, is constrained to & € (-7, 7)

and with »=1 produces a unit amplitude oscillation after the oscillator is initiated.
: : : l, n=0
Applying the forcing function x(n) = Ao(n), where 6(n)= 0 0’ produces an
, n#

output sinusoid of amplitude 4 given by y(n)=Asin(nf) for x(-1)=0 and
y(-1) = y(-2) = 0. We observe that the impulse input function only serves to initiate

the recursive process; thereafter the oscillation is self-sustaining since the system has no
damping as the poles lie exactly on the unit circle (# =1) in the complex z-plane. The

process may be simplified by using the ICs, y(-1) and y(-2), to provide the initiation

stimulus eliminating the input term, x(») . Eq. (3.2.2) now becomes:
y(n) =2cos(@)y(n—-1)— y(n-2) (3.2.3)

with ICs y(-1) and y(-2) at n=0. Physical realisation of Eq. (3.2.3) is illustrated in

() »()
z1 | —y(-1)

2cos(0) e y2)

Figure (3.2.1): The direct-form recursive oscillator.

Figure (3.2.1).

87

(=2)

Setting y(-1)=0 gives y(n)=_—,y(asin((n+l)9) , which describes a DT sinusoid
sin _

with amplitude % and no phase shift term [Abu-El-Haija et al, 1986]. With
sin

y(-2)=—-Asin(@), y(n) describes a sinusoid with amplitude A, and frequency a

function of 8. We observe there is no simple definition of y(-2) that provides

independent control of amplitude and phase for a particular frequency.

We now consider the ICs , y(-1) and y(-2), required to generate the generalised DT
sinusoid y(n) = Asin(n@ + ¢) for n > 0. We first consider the z-transform of Eq. (3.2.3)
taking account of the initial conditions. We have Z {y(n)} =Y(z2),
Z{y(n-D}=z"Y(@) + y(-1) and Z{y(n-2)}=z72Y(2)+ z7 y(-1) + y(-2), where
Z{a} denotes the z-transform of a. Thus we obtain:

Y(z)= 2y(~1)cos(8) — ¥(-2) — y(-1)z 24
1-2cos(@)z™ +z72 2.

The inverse z-transform of equation Eq. (3.2.4) has the general form:

y(n)= Acos(@)sin(n@) + Asin(¢)cos(nd), n=0
(3.2.5)
= Asin(nf + ¢), n=0

and defines a generalised DT sinusoid with amplitude A4, frequency a function of &,
and phase ¢. If we set 8 =T, with » the angular oscillation frequency, we can
establish a relationship between y(-1) and y(-2) and the amplitude, frequency and

phase parameters of the general DT sinusoid of Eq. (3.2.5). The results follow from

comparing Eq. (3.2.4) with the inverse z-transform of Eq. (3.2.5) and equating the

coefficients of z° and z' in the numerators of the two expressions. After some

algebraic and trigonometric manipulation we obtain:

88

y(-1) =As\n(<j>-9)
(3.2.6)

v{-2)=A4sin(*- 20)
If the frequency parameter in Eq. (3.2.3) is changed from 6 to O’ (i.e. o to o') at
some sample index m, the ICs for the ‘new’ recursion, .y'(-1) andy'(-2), will be the last
two samples of the recursion with frequency o, that is y'(-1) =y(m-\) and
y\-2) =y{m - 2). The effect, illustrated in Figure (3.2.2), is to produce an
approximately phase-continuous frequency transition from o to o' simultaneous with
a step change in amplitude from A4 to A4 '. The underlying phase function of y(n) is

also shown in Figure (3.2.2) and illustrates the phase-discontinuity at the transition

point.

1

0.5
kf

6 o
‘e
&

-0.5

-1

0 50 100 150 200 250

Sample index (n)

Figure (3.2.2): y{n) for the direct-form oscillator withfrequency transition at n - 150,

showing the normalisedphase with phase-discontinuity clearly evident.

89

The new amplitude is dependent on co’ and the oscillation phase (a function of

y(m -1)) where the frequency transition occurs. The new amplitude A4’ is found by

eliminating # from Egs. (3.2.6), yielding:

_ Jy(m - Deos(*yT)-y(m-2)"
sin(f»T)

A’ +(y(m-1)) (3.2.7)

We can use (4') 1 as determined from Eq. (3.2.7) to normalise y(n) to unit amplitude

following a frequency transition. However, this introduces a step amplitude

discontinuity into y{n) as shown in Figure (3.2.3) and incurs additional computation of

the (4') 1normalising term.

O OO Normalised y(n)
--O- Phase ofy(n) "
1:

Sample index (n)

Figure (3.2.3): Normalising y(n) to unit amplitude (A =Af=1) introduces an

amplitude-discontinuity at the transition point (n =150/

Inspecting Figures (3.2.2) and (3.2.3) we observe a phase discontinuity at the frequency

transition point. The end sample y(m -1), of the recursion with frequency w clearly

has a different phase to the initial sample y(m), of the recursion with frequency co".

90

Generating constant amplitude sinusoids with phase-continuous frequency transitions
requires computation of new ICs at every frequency transition point. These ICs require
knowledge of the oscillation phase just before the transition point which we consider
further in section (3.2.6).

We observe that a change in the frequency coefficient produces a corresponding change
in oscillation frequency simultaneous with a change in amplitude. It is also evident that
the amplitude change is well behaved in an analytic sense since there is no step
discontinuity at the transition point. Amplitude normalisation introduces a step
amplitude discontinuity at the transition point which is perceived as an audible ‘click’
and is therefore undesirable. It is not evident that the phase discontinuity observed in
the underlying phase function of Figure (3.2.2) is perceptible in isolation, but the
necessary amplitude normalisation will be. We observe that, in general, larger phase
discontinuities produce correspondingly larger step amplitude discontinuities upon

normalisation and will therefore be more audible.

3.2.2 Coupled-form

The coupled-form oscillator [Proakis & Manolakis, 1996] is illustrated in Figure (3.2.4)
and is characterised by the matrix multiplication of a two dimensional vector described

by the matrix difference equation, thus:
[yl(n):|=|:a _b:|l:y1(n_1):| (3.2.8)
»,(n) b a | y,(n-1)
where a=rcos(@) and b =rsin(d).
The matrix operates on the vector [y1 (n-1) y,(n- 1)]T to effect a combined 6

rotation and r scaling on each sample event, with ICs y,(-1) and y,(-1) obviating the

initialisation stimulus x(#n) .

91

- rsin(0)

Figure (3.2.4): The coupled-form recursive oscillator.

Setting r =1, ~(-1) =Acos(d) and y2(-1) =-Asin(d) produces unit amplitude
quadrature (complex) sinusoids yfri) =cos(nO) and y2(ri) =sm(n0) for n>0. The

corresponding z-domain transfer functions are given by:

1_ '~
HAZ) = az~x
1- 2az~x+ (a2+ b2z~2
(3.2.9)
b ~
Hfz) = “x
1. 2az~x+ (a2+ b2)z~2
We can factorise the denominators of Egs. (3.2.9) into pz~x) (\-p*z~x), where

p=(a+jb) and p* =(a-jb) represent the conjugate poles of H(z) with p =re+°
and p* =re~6. Linearly combining these transfer functions and noting that the

numerators combine to give (1- p*z~x) we obtain the pole-zero cancellation [Orfanidis,
1996]:

H(z) = Hfz) +jH 2(z) = - prz’ ! (3.2.10)
(\-pz-¥(\-p z-¥ \-pz

92

The z-plane representation therefore comprises a single pole at re’?, and so the
coupled-form oscillator is a first order system. However,‘ maintaining
r=sin?(@)+cos*>(@) =1 for all values of quantised € is not possible and causes
exponential growth or decay of the oscillation sequence when r 1. Figures (3.2.5a)
and (3.2.5b) illustrate the pole distribution over frequency in the complex z-plane, with
r=1 and a coarse quantisation interval chosen to exaggerate distribution effects for
clarity. Accordingly, these figures have been obtained by plotting the complex roots of
1-2az"'+2z7 =0 and 1-2az" +(a* +b%)z> =0 for the direct-form and coupled-

form oscillators, respectively.

93

@

X*X-
X
0.8 X
X

0.6-

0.4-

0.2-

XXX Direct-form poles
Unit-circle
4— -t Y
0 0.2 0.4 0.6 0.8

Real component

(b)
-<-X-X.X, X
X X -X
X-x
0.8~ xX"x. X
x
K X
0.6 \
X'X
k)
0.4' X
k
x\ X
0.2 \x
XXX Coupled-form poles X
Unit-circle X
¥
0 0.2 0.4 0.6 0.8 1

Real component

Figure (3.2.5): Pole distribution around the first quadrant of the unit-circle for the
direct-form (a) and coupled-form (b) recursive oscillators with quantised arithmetic.

(Oscillator coefficients are quantised to 16 levels on the interval [0,1] to exaggerate

pole distribution effects.)

94

Figure (3.2.5b) illustrates two important results for the coupled-form oscillator — the
pole locations do not always lie exactly on the unit circle (» #1), but are distributed
uniformly around it (i.e. the angular separation between adjacent poles is constant). We
define frequency resolution as the frequency change corresponding to a unit change in
the quantised frequency control coefficient. Uniform pole distribution as exhibited by
the coupled-form oscillator provides improved (i.e. decreasing) frequency resolution at
low frequencies in contrast to the direct-form oscillator whose non-uniform pole
distribution is illustrated in Figure (3.2.5a) [Oppenheim & Schafer, 1975]. The direct-
form pole distribution exhibits increasing angular separation between adjacent poles as
frequency tends to zero. Since frequency resolution can be equated to the minimum
possible angular separation between adjacent poles, we observe it is not constant and
increases with reducing oscillation frequency. Figure (3.2.6) illustrates the angular
position of low frequency pole-pairs for the direct-form oscillator and the relationship

with absolute frequency and frequency resolution, f,.

95

#2- 0, " #, = fr* constant

~ 8
Il
o VO

Figure (3.2.6): Pole distribution around the unit-circle in the complex z-plane
illustrating the non-uniform distribution oflow frequency conjugate pole pairs for the

direct-form oscillator.

Amplitude errors due to pole deviation from the unit circle can be reduced by
reinitialising the oscillator at periodic intervals when the amplitude error has exceeded a

predefined threshold [Curticapean et al, 2000]. The question ofhow to determine the re-
initialisation period can be addressed by considering the amplitude envelope, rn. The

quantised pole radius, rq, with quantised frequency, 6q, is given by

r =sin2(#(/))+ cos2(#(/) . We next define the pole unit-radius deviation error, d , where

d=|(rq-1)]|. For very small d, which applies for most practical quantisation intervals,

we observe that the amplitude growth and decay envelopes ((1+d)n and (1-d)n,

respectively) are mutually reciprocal, that is (\ +d)H=(1-d)~". Therefore the metric of

max(d) computed over the operating frequency interval can be used to determine a

96

worst case amplitude envelope, (1+d)n, for a particular quantisation interval. The

amplitude envelope can be used to determine the re-initialisation period for a particular
amplitude error. Figure (3.2.7) plots the number of elapsed samples (i.e. time) following

initialisation for a given oscillation amplitude change against word size, b, assuming a

fixed-point number representation which gives a quantisation interval of 2~y). The

amplitude change is computed using the value of max(") over the Nyquist interval of

24 kHz and therefore represents the worst case amplitude error for a given arithmetic

quantisation.

1-10
1-i08

‘ K-X-*
1 -i07 * X K |
1 i06

" X

m oS5 V% X_ O 0-
lio4 Xk

8- ¢

1 io3 X o’
100 ¢

10

1 - *0 m Samples elapsed for 0.1 dB amplitude change
*cXX Samples elapsed for 1 dB amplitude change

0.1
10 15 20 25 30 35

Arithmetic quantisation (bits)

Figure (3.2.7): Elapsed samplesfor a given oscillation amplitude change against word
size varying from 8 to 32 bits assuming afixed-point number representation computed

over the Nyquist interval of24 kHz.

The coupled-form oscillator permits sample rate frequency control without exhibiting
phase discontinuities typical of the direct-form. Frequency transition is inherently
phase-continuous and does not require computation of new IC values. The oscillator

requires four multiplies and two additions per sample, with further computational

97

overhead associated with re-initialisation to correct amplitude deviation over n.
Dynamic linear frequency control requires sample rate computation of cos(#(/?)) and
sin(0(ft)), with 6{n) = 27iF(n)T. Amplitude control requires an additional multiply

operation, or two if a complex (quadrature) output is required.

3.2.3 Modified Coupled-form

An improved coupled-form algorithm overcoming the inherent quantisation sensitivity
and computation cost has been suggested by Gordon and Smith [1985]. The so-called
modified coupled-form oscillator is illustrated in Figure (3.2.8) and is characterised by

the vector multiplication:

Tioy "N £ yMe=y

(3.2.10)
v2n)_ £ (}-£2_ y2(n-\)_

where £ =2sin
.2,

Figure (3.2.8): The modified coupled-form recursive oscillator.

The algorithm requires only two multiplies per sample, is first order and most
significantly does not suffer from the quantisation sensitivities associated with
maintaining r-1 as seen with the coupled-form oscillator. The matrix determinant

represents the vector scaling (r) and is unity for all values of s and therefore

98

independent of quantisation effects. The frequency may be dynamically updated at the
sample rate requiring computation of & for each new frequency, and produces phase-
continuous frequency transitions.

Gordon and Smith [1995] present an alternative form of Egs. (3.2.10) which considers

the phase relationship between y,(n) and y,(n). We have:

»n(n) G
=G 3.2.11
L’z (n)} I:yz (‘D:l ()

1 |[sin(n@+¢) —sin(nd) and o< (x-6)
sin(p)| sin(n@) —sin(n@-¢@) ¢= 2

. If we set y,(-1)=1

where vG =
and y,(-1)=cos(p) we obtain y,(n)=cos(nf) and y,(n)=sin(mf@-¢). As 6
approaches zero, the phase between y,(n) and y,(n) approaches % (quadrature).

However, as the magnitude of @ increases and approaches + 7, the phase between

y,(n) and y,(n) approaches zero (in phase). The modified coupled-form oscillator

does not provide frequency independent quadrature between y,(n) and y,(n).

3.2.4 Waveguide-form

The second order digital waveguide oscillator, derived from digital waveguide theory,

has been proposed by Smith and Cook [1992] and is illustrated in Figure (3.2.9).

99

Gin)

Figure (3.2.9): The waveguide-form recursive oscillator.

This form requires one multiply and three additions per sample when amplitude and
frequency are constant. Frequency transitions are intrinsically phase-continuous and do
not require computation of new IC values. However, an additional multiply operation is
needed at each frequency transition to normalise the amplitude. In contrast to the
coupled-form, the waveguide-form oscillator does not suffer exponential amplitude drift
due to quantisation round-off errors since rounding occurs only at the tuning

multiplication involving C{n) and all other computations are exact. Quantisation in the
tuning coefficient, C(n), can only cause quantisation in the frequency of oscillation

[Smith and Cook, 1992]. We have:

C(n) =cos(0(h))

_ a-cm
#7V(1 + cm) (3.2.12)

o - M)

gin-1)

where 6(n) =2nF{n)T and r{ri) is the exponential growth or decay per sample, with

r{n) - 1 for constant amplitude. When both amplitude and frequency are constant, we

100

have G(n)=1 and only the tuning multiply is required. Upon a frequency transition,
G(n) deviates from unity for one sample to normalise the amplitude. The normalisation

coefficient, G(n), incurs considerable computation overhead. For »(n)=1 and a

(1-C(m)) (1+C(m-1))
(1+C(m)) 1-C(m-1))

frequency transition at sample m , we have G(m)= \/

The authors report that the waveguide-form is suitable for VLSI implementation and
can be readily applied to recursive FM synthesis. The waveguide-form offers little
improvement on the direct-form due to the computation overhead associated with

computing G(n) at each frequency transition, particularly with sample rate control of

F(n).

3.2.5 Frequency Control and Quantisation Effects

All recursive algorithms exhibit adverse behaviour with quantised samples and
frequency control coefficient(s). If we assume that the coefficient(s) and signal samples
are represented by b fractional bits in a fixed-point number representation, two
quantisation effects are evident — frequency control sensitivity and computation round-
off errors. Coefficient quantisation displaces the poles from their intended (desired)
positions on the unit circle. If the poles do not lie on the unit circle then »#1 and a
sinusoid with exponentially decaying or growing amplitude is produced. If the poles are
located incorrectly on the unit circle due to quantisation effects, a constant amplitude
sinusoid is generated but with a frequency different from that intended. All single
multiplier oscillators have poles located precisely on the unit circle but at different
locations from the ideal (non—quanti‘sed) case [Abu-El-Haija et al, 1986]. The direct-
form oscillator has poles which lie precisely on the unit circle but are not uniformly

distributed around it (as depicted in Figure (3.2.5a)). For a given quantisation interval,

101

we observe increased pole separation at low frequencies and a corresponding reduction

in frequency control resolution. For the direct-form coefficient, 2cos(d), 6 can only
take on a finite number of values to ensure 2cos(6)2° takes on integer values. Furuno et

al [1975] report that the frequency coefficient must be implemented in terms of 6§ with
<6 and 2cos(é) =27 |_2cos(9)2” +1_|. The actual oscillation frequency is then less

than the desired frequency.

Each coefficient multiplication produces a 2b bit product which must be truncated or
rounded to b bits on each recursion. Rounding is preferred to truncation since it makes
some use of the discarded information, but essentially the least significant 4 bits of
information are lost on each multiplication. (The nature of 2’s complement coding
causes the direct-form -1 multiplication to fit precisely within b-bits and so is
absolutely precise.) Addition or subtraction of quantised samples produces results which
fit within the operand Word size provided arithmetic overflow or underflow is
prevented.

All recursive oscillators reported in the literature have control coefficients which are a
sine or cosine function of the oscillation frequency (&). None provide a linear transfer
function, which is a desirable property for musical additive synthesis. A linear
relationship between oscillation frequency and F(n) therefore requires computation of
the particular trigonometric coefficient equation in all cases.

Quantisation causes the oscillation frequency to differ from the limiting case (full
arithmetic precision), with error magnitude depending on the quantisation interval and
the coefficient equation. In musical applications we are concerned with relative

accuracy, that is, how precisely we can represent the ratio of two frequencies. This

arises from the fixed ratio of ¥/2 between adjacent semitone frequencies in the equally

102

tempered musical scale and a unit of measure in this regard is the cent, defined as 1} of

a semitone or a frequency ratio of 2 [Chamberlin, 1985]. In particular, we require
maximum frequency control resolution at the lowest frequencies when the semitone
frequency difference is small. For example, a one semitone shift at 27.5 Hz (A0) is
approximately 1.64 Hz. Conversely, a one semitone shift at 440 Hz (A4) is
approximately 26.16 Hz. Coefficients which are a cosine function of & (i.e. the direct
and waveguide-forms) exhibit reduced frequency resolution at low frequencies with

fixed-point arithmetic. As @ tends to zero the slope of the coefficient 2cos(f) also
tends to zero and therefore progressively more bits are required to represent 2cos(€) to

a given accuracy.

Hodes ef al [1999] present a quasi floating-point direct-form algorithm which provides
greatly improved frequency resolution at low frequencies but requires two additional
operations per sample — an add with fixed shift and a variable barrel shift which
increases computational overhead considerably.

Coefficients which are a sine function of 8 (i.e. the modified coupled-form) exhibit
increased frequency resolution at low frequencies for a given quantisation interval
compared to the direct and waveguide-forms. Figure (3.2.10a) illustrates the frequency
control characteristics for the direct-form and modified coupled-form oscillators with

quantisation interval sufficiently large to expose these effects (b=5 and f, =48 kHz).

For the direct and waveguide-forms, the ratio between two frequencies separated by one

least significant bit with a 5-bit arithmetic quantisation is given by:

cos™ —chosb(?)zb"]
2 +
£ = 3.2.13
: L [2cos(8)2 |+1 ()
cos | = b4 -

103

Eq. (3.2.13) defines a relative tuning error metric which we plot in Figure (3.2.10b) over
frequency for three quantisation values. This ratio can be considered as a relative tuning

error for a particular quantisation interval. Moore [1990] suggests that the smallest

frequency ratio distinguishable by humans is around 5 cents (i.e. 2 I or approximately
1.0029) assuming an equally tempered scale. It is evident from Figure (3.2.10b) that
tuning error for low frequencies is above 5 cents with less than 24 bit arithmetic,

becoming progressively worse for 20 and 16 bit arithmetic.

(@)

J Direct-form
20 g"Modified coupled-form
I‘ Direct-form trend
Modified coupled-form trend

Frequency control word

(b)
.006 27.5H
SHz — 24 bit quantisation

£ .005 — 20 bit quantisation

1.004 m 16 bit quantisation

003
.002

.001

4
10 100 110 110

Frequency (Hz)

Figure (3.2.10): (a) - Quantisedfrequency control characteristics for the direct-form
and modified coupled-form oscillators, (b) - Relative tuning error for the direct and

waveguide-form oscillators with b= 24, 20 and 16 bits.

104

The coupled-form exhibits a uniform pole distribution over the whole Nyquist interval
and therefore a constant frequency resolution irrespective of absolute frequency.

Coefficient computation using a scaled F(n) argument represents a significant
computational overhead — the scaling multiplication of F(n) by 24T and the

subsequent sine or cosine operation. The trigonometric mapping must be performed

with sufficient precision to ensure adequate F'(n) resolution. This overhead is common

to all recursive oscillators discussed in the literature.

Computation round-off error leads to an accumulative error in y(n) whose nature

depends on the particular algorithm. Round-off errors arise because the output of the
coefficient multiplier must be quantised to » bits at every iteration causing the
oscillator output to deviate from the ideal over time. We can consider round-off error as
the variance of the output noise caused by post-multiplication quantisation, similar to

that presented in the recursive digital filter literature. The direct-form oscillator round-

=2b
off error variance over N, samples is approximated by o’(N,)= %;%—, when
sin

N, >> 2§ [Abu-El-Haija et al, 1986]. The noise variance (i.e. noise power) increases

steadily with N, and is inversely proportional to sin’ (é). The direct-form oscillator

therefore requires periodic re-initialisation to prevent the build up of excessive round-
off noise and hence signal-to-noise ratio (SNR) falling below an acceptable level. The
coupled-form oscillator exhibits only amplitude error due to quantisation effects,
however, re-initialisation is still necessary in practice. The modified coupled-form
provides invariant oscillation amplitude with coefficient quantisation, with SNR bound

only by sample quantisation noise.

105

3.2.6 Initial Conditions and Phase Continuity

The coupled-form, modified coupled-form and waveguide-form recursive oscillators
produce phase-continuous, constant amplitude sinusoids following a transition in the
frequency control parameter. The direct-form oscillator is attractive due to its low
computational overhead [Hodes et al, 1999], but requires computation of new ICs at
every frequency transition to maintain phase-continuity. We therefore investigate the
computational overhead associated with the direct-form IC values required for constant
amplitude, phase-continuous frequency transition.

To effect a constant-amplitude, phase-continuous frequency transition from @ to @' at
sample index, m, using ICs from Eq. (3.2.6), we require the phase of the sinusoid at
sample index m—1, just before the frequency change at m. We define the phase of a
particular sample with respect to the most recent zero phase point (cycle start) in the

sinusoidal sequence and within the interval [0, 27). We may modulo-27z accumulate

the oscillator phase increment, oT , synchronous with the recursive oscillator process to

compute the oscillation phase at a particular sample index. The phase is given by

¢(n) = (ncoT +¢0> ,,» Where ¢, represents the initial phase. The modulo-27 operation

is achieved by using an M-bit accumulator performing unsigned integer arithmetic with

initial condition \??LZM J and ¢, €[0,27). az)—TZM J is accumulated modulo-2¥ over
T | 27

nol + ¢, oM
27

n producing the output <[> after »n samples. Multiplying the
. 2"

2 . . .
accumulator output by 2—1\75 effects modulo-27 scaling. This approach requires two
multiplication operations and an M -bit accumulator, with M chosen to give the

desired phase resolution of —Z radians. This technique provides optimal prediction of
2

106

the oscillation phase at sample n to a resolution governed by M, but will not precisely
track the phase of a recursively generated sinusoid due to round-off errors with fixed-
point arithmetic. Figure (3.2.11) illustrates simulated phase error behaviour with sample
index for the direct-form oscillator computed with fixed-point arithmetic. (The phase of
the recursively generated sinusoid has been computed using a full precision floating

point arcsine function.)

{ I
36:05 16‘563 -~ - Phase error
B Reference sinusoid|]|
0.04
53
0.02 TERL
-0
&
5 X B
1‘3 0 & X
<D v
X
.,
- 0.02
-0.04 L L 1
0 8192 1.64-104 2.46-104 3.28 <104

Sample index (n)

Figure (3.2.11): Simulatedphase error between phase accumulator and the direct-form

oscillator with f =48 kHz, f =50 Hz and 24 bit fixed-point arithmetic. An offset

reference sinusoid is also shown and indicates that maximum error occurs at the

turning points of y{n) as exemplified by the two markers at n =3605 and n= 16563.

If we represent the DT phase argument, (n6 + ,in Eq. (3.2.5) as <b(rz), and assume a
unit amplitude sinusoid (™4 = 1), then y(n) =sin(d>(«)) and so 0(/7) =sin'l(y(n)).
However, the trigonometric functions are not one-one on their whole domains. To

obtain inverse functions, each trigonometric function is restricted to a subset of the

107

domain where it is one-one. The sine function is one-one on the interval [—5, 5] with

range [—1,1]. The inverse sine function thus maps [-1, 1]—)[—%,%] in a one-one
manner. To unambiguously determine the phase of a DT sinusoid sample there are four
quadrants to consider with phase intervals [0, %), [%, n), |, 37”) and [37”, 27)

respectively. Considering the sign of y(n) and the slope at y(n) allows the interval
containing y(n) to be determined. For a frequency change at y(m), the slope, 4, at
y(m—1) is approximately proportional to y(m—-1)—y(m—-2). Eq. (3.2.14) gives the
end-point phase, ¢(m —1), taking account of the particular phase-interval (quadrant) in

which ¢(m —1) lies, where A denotes the Boolean AND operator:

sin™ (y(m-1)), ym-1)>0AA>0
p(m—-1) =3z -sin" (y(m-1)), A<0 (3.2.14)
2z +sin” (y(m-1)), ym-1)<0AA>0

where A=y(m-1)-y(m-2). Eq. (3.2.14) defines ¢(m—1) across all four phase
quadrants of the sinusoid cycle. (Substituting »+1 for m in Eq. (3.2.14) gives a general
expression for ¢(n) as a function of y(n) and y(n-1).)

We now present a method for obtaining a constant amplitude, phase-continuous,
transition from frequency @ to ®'. Eq. (3.2.14) gives the DT sinusoid phase at the last
sample of the “first’ recursion, m —1. The phase value, ¢, used in Eq. (3.2.6) is given
by:

p=¢(m-1)+6' (3.2.15)

where the @' term represents the phase increment from the last sample at the original
frequency, @, to the phase start point of the new recursion at frequency @', with

0' = 27w’ . When substituting ¢ from Eq. (3.2.15) into Eq. (3.2.6) to compute y'(-1)

108

and y'(-2) for the recursion at frequency @', we consider two cases depending on the

!

phase interval containing ¢(m —1). We have y'(-1)= Aj y(m—1), where A and 4’ are

the amplitudes of the original and new recursions respectively, which we include for
generality. We also observe the special case y'(-1)=y(m—1) for unit amplitude
sinusoids or 4= 4".

The IC »'(-2) takes one of two values depending on the slope of y(n) just before the

frequency change. Hence:

’

y'(—1)="jy(m—1)

(3.2.16)
A’cos(cos'1 (y(n;— 1)) + H'J, A>0

y'(-2)= .
A’cos(cos"(y(n;_)) - 6"), A<0

y(m=1)-y(m-2)
y .

where A =

Figures (3.2.12a) through (3.2.12d) illustrate constant amplitude, phase continuous
frequency transitions using ICs obtained from Egs. (3.2.16), and are arranged to occur

in each quadrant of the y(n) sequence. The technique is seen to give good results with a

discontinuity-free transition between the two frequencies.

109

|

2 2
> >
3 3

E E
B &

g g
2 2

a c.

g 5
9] 9]

I]
0 128 256 0 128 256
Sample index (n) Sample index (n)
(c)
1

2 2

> >

(5] o

E E

g g

Q (]

= B

g g

A »

0 128 256 0 128 256
Sample index (n) Sample index (n)

Figures (3.2.12a) through (3.2.12d): Constant amplitude, phase continuous frequency
transition in each phase quadrant using ICs obtained from Egs. (3.2.15). Frequency
transition occurs at n=128 with the initial phase of the first recursion chosen to

position the transition point in each quadrant.

The ICs given by Egs. (3.2.15) give good results for oversampled signals, that is for

frequencies @ <<?”. When this condition is met, the ICs will provide a constant

amplitude, phase-continuous frequency change in any of the four quadrants of the y(n)

sequence. We note that the formulation of Egs. (3.2.16) is more comprehensive than

that proposed by Lane et al [1997]. Using the notation of this thesis, the latter takes the

form y'(-1)=y(m—-1) and y'(-2) = cos(cos‘1 [y(m-1)]- 6").

110

The single expression for y'(-2) reflects that these ICs are valid only for unit amplitude

[E

sinusoids and frequency transitions occurring in the interval % 377[] where the slope of

y(n) is negative. Frequency transitions occurring when the slope of y(n) is positive
produce phase discontinuities between y(»n) and y'(n) using this method.
Eqs. (3.2.16) use the slope of the line between y(m—~1) and y(m—2) to approximate

the instantaneous derivative (slope) at y(m—1) and thereby give the particular phase
. . . T 3z
interval containing y(m-1). (e. A>0=¢(m-1)e]0, —2—) v [7, 2z) and

A<0=>g9(m-1)e [%, 1275) .) On closer inspection we find that this method produces

an incorrect determination of the phase interval containing y(m—1) near local
maximum or minimum points and incorrectly places y(m—1) in the next lower phase
quadrant under certain conditions. The phase interval over which this error can occur is

governed by the phase increment, w7 , and approaches a limiting value dictated by the

Nyquist sampling criterion. As @I approaches the Nyquist limit value of 7, the width
of the error interval approaches a maximum value of er— radians. This phase error causes

a phase discontinuity between y(n) and y'(n) if the frequency transition occurs near
the turning points of y(n). The magnitude of the phase discontinuity increases as @T'
approaches 7. Egs. (3.2.16) yield a progressively more accurate y’(-2)value in the

vicinity of a turning point in y(n) as @T and hence the width of the error interval tends

to zero. In general, the width of the error interval at a particular frequency, @, is >

radians. Figure (3.2.13) shows a contour plot where the vertical axis represents the start

phase of the first recursion and the horizontal axis represents sample index with

111

frequency transition occurring at n- 50. Contour lines represent lines of constant
amplitude in y(n). As the start phase varies, the fixed transition sample index causes
the frequency transition phase to span 2n radians. Transition anomalies are seen in the
second recursion (right hand side of Figure (3.2.13)) for particular start phase values

which correspond to a transition point near the turning points in y(n).

10 20 30 40 50 60 70 80 90 100
Sample index n

Figure (3.2.13): Contourplot illustrating the performance ofEgs. (3.2.16). The vertical
axis represents start phase and the horizontal axis represents sample index. Contour

lines depict lines of constant amplitude in y(n). Transition occurs at n =50, with
f =1ko0=\000 Hz, f =2m0=500 Hz and fs=48 kHz. (Notice the discontinuities

in the right hand region ofthe plotfor certain transition phases.)

Figures (3.2.14) parts (a), (b) and (c) provide a graphic illustration of this error
mechanism for the positive turning point of a generalised unit-amplitude DT sine

sequence, y(n), of frequency &>and sampling period T. The slope, A, of the line

112

which we

between two consecutive samples, y(n) and y(n-1), is M_—l)—
@

normalise to y(n)— y(n—1) for given signal and sampling frequencies. Egs. (3.2.16)
test the sign of A to determine the slope on which y(n) is located. Figure (3.2.14a)
shows the limiting case for the A >0 condition, placing y(n) correctly in the first

quadrant. A reaches a limiting value of A, when y(n) is located exactly at the

maximum point on the sine curve. The magnitude of A, is therefore
l—sin(%—a)T) =1-cos(wT), assuming a unit amplitude sinusoid, and the condition

holds for both turning points by symmetry. The condition |/’t| >4, places y(n) in

quadrant 1 or 4, that is, on the positive slope of the sine curve. A values satisfying

0<A<A4, can still occur over an interval when y(n) is in the second quadrant as

shown in Figure (3.2.14b). In this region the 4 >0 condition would conclude that y(#n)
is in quadrant 1 when it is actually in quadrant 2 — a region of negative sine slope. This
condition is maintained until A =0 which allows the error interval to be determined by
geometric inspection as depicted in Figure (3.2.14c¢). A similar argument applies for the

negative turning point between quadrants 3 and 4 due to the symmetry of the sine

function.

113

Xccy(n)-y{n-\)

y(n-1)pi

co

coT

(a)

y(n)

2ocy{ri)-y(n-\)

(b)

Figures (3.2.14a) and (3.2.14b): Discriminating the phase of y(n) between quadrants
1and 2 by examining the slope ofthe line between y(n) and y(n - 1).

114

Error interval

m

Figure (S.2.14c): The error interval where y(n) can be placed in the incorrect
quadrant. (y(n) is clearly in quadrant 2 but would be determined to be in quadrant 1

over the error interval when using the A> 0 condition as in Egs. (3.2.15).)

By applying test conditions in line with considerations from Figure (3.2.14c¢) to A and

y(n), we proceed to define an expression which gives the phase of a DT sinusoid with

amplitude A at sample y(n) given only y(n) and y(j?-1), thus:

VoA
2n +sin 1 , n)<0a-A<A
1) y(n)
where A:y{n)-y{n-\)

and Am=1- cos(coT). The test condition intervals of Eq.

(3.2.17) are illustrated in Figure (3.2.15).

115

a<x<

71

2
2n
0]
y{ri) >0a X>Xn
y 0]
(w(n)>0a 1 <Xmv (y(n) <0a -A >Xm
(0]

y{n) <oa —X<Xn

Figure (3.2.15): Phase intervals corresponding to the test conditions in Eq. (3.2.17),

illustrating their position across a single sinusoid cycle.

Using Eq. (3.2.17) we therefore define optimal values for the ICs y \-1) and y'(-2) in

terms of y(m- 1), y(m- 2), A, A',and o0, thus:

y'{-\) =/A\\y(m-/)

y(m-n
A'sin sin o, (Ym-1)>0AX>Xmv (y(m-1) <04 -x <Xm
\ v y y
/(-2) = YA
A'sin A J+9'J (y(m-1) >04 X<Xmv (y(m-1) <0a -X > Xm)
(3.2.18)
where 6'=co'T, X= —— and Xm= 1- cos(nfT).

For a constant amplitude frequency change (i.e. Af=A), the initial conditions given by

Eqgs. (3.2.18) produce a precisely phase-continuous transition. Figure (3.2.16) illustrates

116

a contour plot showing constant amplitude, phase continuous frequency transitions over
a 2n range of start phase values using Egs. (3.2.18) to generate the ICs for the new

recursion. There are no phase discontinuities evident in contrast to Figure (3.2.13).

10 20 30 40 50 60 70 80 90 100
Sample index n

Figure (3.2.16): Contourplot illustrating the performance ofEgs. (3.2.18). The vertical
axis represents phase and the horizontal axis represents sample index. Contour lines

depict lines of constant amplitude in y(n). Transition occurs at n=50, with
f =2my=1000 Hz, f =Inco'=500 Hz and fs=48 kHz. (Notice the absence of

horizontal discontinuities in the right hand region o fthe plot.)

Sample quantisation causes Eqs. (3.2.17) and (3.2.18) to produce erroneous results
under particular conditions. The error magnitude can be reduced by increasing sample
word length and thereby reducing the quantisation interval. A unit-amplitude, 2’s

complement fixed-point fractional number representation of b bits has a range interval

of [1-2~(/-1),-1] with quantisation interval q = 2~¥). Assuming a unit-amplitude DT

117

sinusoid with quantisation interval, g, and sample interval, 7, there will be a frequency,

sin”' (q)

T below which the sinusoid, y(n), is sufficiently oversampled as to cause
V4

groups of adjacent samples to lie within the same quantisation interval across the range
[1-27¢D _1]. This leads to y(n)—y(n—1)=0 even though the slope of the

underlying sinusoid function is non-zero and causes erroneous behaviour of Eqs
. sin”'(q) . .
(3.2.17) and (3.2.18). As frequency increases above T the region where adjacent
r

samples lie within the same quantisation interval moves away from the zero crossing of
y(n) (where the slope is a maximum) toward the turning point. Residual errors remain
in the vicinity of a turning point in y(»), reducing only with an increased number of
bits to represent the sample. Behaviour of the maximum phase error measured over one
cycle with b is shown in Figure (3.2.17) for a frequency of 32 Hz and fixed-point

quantisation.

0.1 I | | 1 | | I

0.01 [& . -

Maximum phase error (rads)

16 18 20 22 24 26 28 30 32

Fixed-point arithmetic word size (bits)

Figure (3.2.17): Variation of peak phase error with quantisation bits for Eq. (3.2.17)
with f =32 Hz and f,=48 kHz. (A low frequency test signal is used since error

magnitude increases with reducing frequency.)

118

3.3 Phase Accumulating Sinusoidal Oscillators

The concept of phase-accumulating frequency synthesis traces its origins to the
pioneering work of Mathews [1969] in connection with computer music signal
generation and Tierney ef al [1971] in connection with generalised frequency synthesis.
The phase-accumulating oscillator exploits the property of an overflowing M-bit
accumulator to generate a modulo-2" sequence used as an argument to a function which
maps from the phase to amplitude domain. Phase accumulating frequency synthesis is a
“ground up” technique involving essentially two stages — phase sequence generation
and phase-amplitude mapping. We review phase-accumulation as a precursor to the
more general wavetable lookup synthesis in Chapter 4. In this section we are only
concerned with the principal features of the technique sufficient to support a

comparative assessment against the criteria presented in Table (3.1.1).

3.3.1 Phase Sequence Generation

The accumulation process can be considered as the DT integration of frequency to give

phase. An M-bit accumulator generates a DT phase sequence whose frequency, f, is a

linear function of a phase-increment input parameter, ¢ . For a sampling frequency, f;,

we have:
r=2l (3.3.1)
2
The frequency resolution is 2{; and defined by the sample frequency and accumulator

word size alone. The phase sequence, ¢(n), is given by:

p(m) = (¢(n=1)+p),. (3.3.2)

We consider the development of Egs. (3.3.1) and (3.3.2) in Chapter 4.

119

For a given sample frequency, arbitrarily fine frequency resolution is obtained by
appropriate selection of accumulator word size, M. Following a change in ¢, phase
slope (and therefore frequency) transition occurs with a latency of one sample period
and is precisely phase-continuous, which we consider further in Chapter 4. The phase-
accumulator requires only adder and register elements and readily lends itself to
pipelining and time-division multiplexing. The phase-increment can be generalised as a

frequency control parameter, F(rn), that may be updated at the sample rate. Phase
control is effected by adding a phase parameter, ®(n), modulo 2" to the phase
accumulator output before phase-mapping. Using an M-bit adder effects the modulo 2
operation. The technique is illustrated in Figure (3.3.1) using a length 2" lookup table

(LUT). The output sample is given by y(n) = A(n) sin(j—z F(n)nT + j—ﬁd)(n)) .

F(n) M
71
M .
>3 Lot
¢(n) > I y(n)
®(n)
A(n)

Figure (3.3.1): The phase-accumulating sinusoidal oscillator process model.

Phase-accumulators using unsigned integer arithmetic produce phase sequences with
only positive slope and values bound on the interval [0, 2" —1] that overflow and wrap

around to zero. Alternatively, 2’s complement integer arithmetic, as suggested by

Moore [1977], produce phase sequences with positive or negative slope and values

120

bound on the interval [-2%', 2% —1]. Positive or negative phase-increments generate
corresponding phase sequences with positive or negative slopes. Phase sequences with
negative slope underflow to positive full scale, precisely satisfying the mathematical
requirements of a negative frequency, which is essential in FM synthesis applications
[Chamberlin, 1985; Chowning, 1973]. Neither arithmetic produces radian-based phase

arguments as required by the sine function which is defined on the interval [0, 27).

27

Multiplying ¢(n) by S gives radian-based phase values, bound on the interval

[0,27) or [-z,x) for unsigned or 2’s complement arithmetic respectively. Real-time

execution of this multiply operation is unnecessary with lookup table phase mapping

since it is performed during the pre-computed sine function tabulation.

3.3.2 Sinusoidal Phase-mapping by Table Lookup

The simplest phase-amplitude mapping (so-called phase mapping) uses a lookup table
containing a tabulated sine function [Tierney et al, 1971]. The lookup table contains one
cycle of a unit-amplitude sinusoid, tabulated across L equally spaced phase points and

may be defined as a vector, S, whose value, S[a], at address, a, is given by:

S[a] = sin(-z%a), ael0, L—1] (3.3.3)

Error-free phase mapping is realised when the lookup table contains 2" tabulated
samples, thereby mapping all accumulator phase states to a unique amplitude value,
assuming sufficient resolution in amplitude quantisation. Under these conditions, the
lookup table output samples are precisely equivalent to those of a generalised DT
sinusoid for all phase-increment values.

Values of M required to ensure sufficient frequency resolution in computer music

applications preclude this approach since lookup table lengths become excessive (M is

121

of order 24 bits). Truncating the M-bit phase value to the / most significant bits permits
smaller lookup tables of length L =2, but introduces amplitude errors since the
accumulator phase states are no longer uniquely mapped into the amplitude domain.
The residual M — I bit-field represents the fractional distance between adjacent lookup
table values. Amplitude errors associated with truncated phase mapping manifest in the
frequency domain as components inharmonically related to the fundaméntal. The
magnitude, frequency and number of these components are related to the degree of
truncation and phase-increment [Nicholas and Samueli, 1987].

Moore [1977] considers phase-mapping errors in terms of an overall signal-to-noise
ratio (SNR) which we consider further in Chapter 5 as a precursor to algorithm
simulation and qualitative performance assessment. This SNR is based upon an error
defined as the difference between a reference DT sinusoid computed to full-precision
and the phase-accumulated table lookup approximation, computed over a large number
of samples with various phase-increments.

The SNR of the synthesised signal is a function of lookup table length, 2/, and the
number of bits (excluding sign-bit), b—1, used to represent the tabulated samples.
Moore [1977] suggests an architecture having b—1=17 gives a worst case SNR of
approximately 6(/—2)dB, which cannot be improved further by making 56-1>1
because of phase quantisation caused by discarding the M —1 bit-field. Alternatively,
rounding the /-bit phase value to the nearest sample using the M —I phase fraction bits
improves SNR by approximately 6 dB, and requires b—1=7+1 giving a worst case
SNR of 6(/—-1)dB [Moore, 1977].

Truncation errors can be reduced by interpolating the lookup table access using the
discarded M —1 phase bits as an implicit fractional address through appropriate

scaling. The simplest interpolation technique is linear interpolation of the lookup table,

122

S. We define a linearly interpolated sample, y(a,,), at table address, a, and
fractional address, «,, as:

y(a, at,) = S[a] + e, (S[a +1] - S[a]) (3.3.4)
where a=0,1,2,... L-1 and «, €[0,1). Denoting the integer and fraction bit-fields of
#(n) as ¢,(n) and ¢, (n) respectively, we can express Eq. (3.3.4) in terms of ¢(») as:

(n) = Sig, (m)] + a(n)(S[4, (n) + 1] - S[4, (n)]) (3.3.5)
where a(n) = % €[0,1).

Moore [1977] suggests a linear interpolating architecture having b—1=2(/ -1) gives a
worst case SNR of approximately 12(/-1)dB, halving I with respect to the non-
interpolated case for the same SNR. As [increases, the memory savings become
considerable using this method. It is evident from Eq. (3.3.4) that l