
Open Research Online
The Open University’s repository of research publications
and other research outputs

Hardward and algorithm architectures for real-time
additive synthesis
Thesis
How to cite:

Symons, Peter Robert (2005). Hardward and algorithm architectures for real-time additive synthesis. PhD
thesis The Open University.

For guidance on citations see FAQs.

c© 2005 Peter Robert Symons

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

U M crrCis

Hardware and Algorithm Architectures for
Real-Time Additive Synthesis

A thesis submitted to the Open University

in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy.

By

Peter Robert Symons

BSc (Eng) Hons, BSc (Open) Hons

Department of Information and Communication Technologies

of the Open University

June 2005

bms JO&3 2_°i 2~CDO<T

5A te /tuJfULb Oj c o S

ProQuest Number: 13917246

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13917246

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

Additive synthesis is a fundamental computer music synthesis paradigm tracing its

origins to the work of Fourier and Helmholtz. Rudimentary implementation linearly

combines harmonic sinusoids (or partials) to generate tones whose perceived timbral

characteristics are a strong function of the partial amplitude spectrum. Having evolved

over time, additive synthesis describes a collection of algorithms each characterised by

the time-varying linear combination of basis components to generate temporal evolution

of timbre. Basis components include exactly harmonic partials, inharmonic partials with

time-varying frequency or non-sinusoidal waveforms each with distinct spectral

characteristics. Additive synthesis of polyphonic musical instrument tones requires a

large number of independently controlled partials incurring a large computational

overhead whose investigation and reduction is a key motivator for this work.

The thesis begins with a review of prevalent synthesis techniques setting additive

synthesis in context and introducing the spectrum modelling paradigm which provides

baseline spectral data to the additive synthesis process obtained from the analysis of

natural sounds. We proceed to investigate recursive and phase accumulating digital

sinusoidal oscillator algorithms, defining specific metrics to quantify relative

performance. The concepts of phase accumulation, table lookup phase-amplitude

mapping and interpolated fractional addressing are introduced and developed and

shown to underpin an additive synthesis subclass - wavetable lookup synthesis (WLS).

WLS performance is simulated against specific metrics and parameter conditions

peculiar to computer music requirements. We conclude by presenting processing

architectures which accelerate computational throughput of specific WLS operations

and the sinusoidal additive synthesis model. In particular, we introduce and investigate

the concept of phase domain processing and present several “pipeline friendly”

arithmetic architectures using this technique which implement the additive synthesis of

sinusoidal partials.

Acknowledgements

I would like to thank Dr Mike Meade and Dr Terry McCarthy of the Open University

Department of Information and Communication Technologies for their support,

guidance and constructive input throughout the duration of this project. I would

particularly like to thank Karen, my ever-loving wife and three children Chris, Ben and

Jenny, without whose support, tolerance and love this project would never have

concluded. Thanks are also due to my old friend Mike McNabb for typographical advice

during the formatting of this thesis.

I dedicate this work to Karen and my parents Kath and Bob Symons.

Contents

Abstract ii
Acknowledgements iii
Contents iv
List of Figures vii
List of Tables xv
Glossary of Definitions and Common Terms xvi
Glossary of Acronyms xix
Publications Related to this Research xxii

Chapter 1 Introduction 23
1.1 Background 23
1.2 An Historical Overview of Computer Music and Additive Synthesis 24
1.3 Research Motivation and Objectives 29

1.3.1 Introduction 29
1.3.2 Motivation 30
1.3.3 Objectives 31
1.3.4 Assumptions 32

1.4 Thesis Structure 33
1.5 Original Work 35

Chapter 2 Computer Music Synthesis Techniques 37
2.1 Introduction 37
2.2 Processed Recording 39

2.2.1 Sampling Synthesis 39
2.2.2 Wavetable Lookup Synthesis 40

2.3 Spectrum Modelling 43
2.3.1 The Fourier Transform 43
2.3.2 Sinusoidal Additive Synthesis 46
2.3.3 Baseline Spectrum Representation 52
2.3.4 Subtractive Synthesis 57

2.4 Physical Modelling 61
2.5 Abstract Algorithm 64

2.5.1 Frequency Modulation (FM) Synthesis 64
2.5.2 Synthesis by Discrete Summation Formulae 65
2.5.3 Waveshaping Synthesis 66

2.6 Generalised Additive Synthesis 67
2.6.1 Partial Additive Synthesis - Advantages and Disadvantages 68
2.6.2 The PAS Algorithm - Decomposition and Assessment 70
2.6.3 The Significance of Partial Phase 73
2.6.4 Piecewise-Linear Envelope Representation 74
2.6.5 Metaparameters - Context and the PAS Processing Model 77
2.6.6 Additive Synthesis using the Inverse FFT 81

2.7 Conclusions 83

Chapter 3 Digital Sinusoidal Oscillators 84
3.1 Overview 84
3.2 Recursive Oscillators 86

iv

3.2.1 Direct-form 86
3.2.2 Coupled-form 91
3.2.3 Modified Coupled-form 98
3.2.4 Waveguide-form 99
3.2.5 Frequency Control and Quantisation Effects 101
3.2.6 Initial Conditions and Phase Continuity 106

3.3 Phase Accumulating Sinusoidal Oscillators 119
3.3.1 Phase Sequence Generation 119
3.3.2 Sinusoidal Phase-mapping by Table Lookup 121
3.3.3 Truncated Taylor Series Sinusoidal Phase-mapping 124

3.4 The CORDIC Algorithm 127
3.4.1 The CORDIC Algorithm as a Vector Rotation 127
3.4.2 CORDIC Application in Digital Sinusoidal Oscillators 131
3.4.3 Sequential and Recursive CORDIC Implementation 133

3.5 Conclusions 135

Chapter 4 Wavetable Lookup Synthesis 139
4.1 Background 139

4.1.1 Foundations of Wavetable Lookup Synthesis 140
4.1.2 Wavetable Signal Tabulation 145
4.1.3 Sampling a Tabulated Function 149
4.1.4 Fractional Addressing 153
4.1.5 The Sample-Rate-Conversion View 157

4.2 Frequency Control 161
4.2.1 The Phase-Frequency Relationship in DT Sinusoid Synthesis 161
4.2.2 Frequency Control Precision 165
4.2.3 Phase Accumulation and Phase Continuity 169
4.2.4 Optimal Phase Mapping 176
4.2.5 Phase Control 180

4.3 Sampling Synthesis 182
4.3.1 Overview 182
4.3.2 Asynchronous Pitch Shifting 183
4.3.3 Synchronous Pitch Shifting 183
4.3.4 Interpolation Filtering 185
4.3.5 Pitch Shift Resolution and Phase Fraction Field Width 188

4.4 Conclusions 190

Chapter 5 Interpolated Phase Mapping 191
5.1 Introduction 191

5.1.1 Truncated Phase Mapping 192
5.1.2 Fractional Phase Representation 195

5.2 Fractional Wavetable Addressing and Polynomial Interpolation 198
5.2.1 Preliminaries 198
5.2.2 The Cubic Interpolation Polynomial 199
5.2.3 The Optimal Order N Polynomial Interpolator 200
5.2.4 Interpolation Arithmetic Overhead 203

5.3 Trigonometric Identity Phase Mapping (TIPM) 207
5.3.1 The Trigonometric Addition Identity and Sinusoidal Phase Mapping 207
5.3.2 Optimal Phase Word Partitioning 210
5.3.3 The Reduced-Multiplier Quadrature TIPM Form 211

v

5.3.4 Arithmetic Precision and Sample Word Size 213
5.4 Simulation Development 215

5.4.1 The Signal-to-Noise Ratio (SNR) Metric 216
5.4.2 Phase Increment and Phase Truncation Error 218
5.4.3 The Amplitude Error Spectrum 223
5.4.4 Defining the Wavetable Spectrum 225
5.4.5 Simulation Record Length 228

5.5 Simulation Results 230
5.5.1 Introduction 230
5.5.2 Sinusoidal Phase-Mapping - Non-Truncated Phase Fraction 232
5.5.3 Sinusoidal Phase Mapping - Truncated Phase Fraction 236
5.5.4 Sinusoidal Phase Mapping - Amplitude Error Spectra 238
5.5.5 Multi-Harmonic Phase Mapping 241

5.6 Conclusions 258

Chapter 6 Arithmetic Processing Architectures 262
6.1 Introduction 262
6.2 Memory Access and Interpolated Fractional Addressing 263

6.2.1 Consecutive Access Vector Memory 263
6.2.2 The Order-2 CAVM and Linear Interpolation 265
6.2.3 The Order-4 CAVM and Cubic Interpolation 270
6.2.4 The Generalised CAVM and Interpolation Process Model 274
6.2.5 Linear Wavetable Combination 279

6.3 Phase Domain Processing 283
6.3.1 Introduction 283
6.3.2 Block Pipelining and the Phase Accumulating Oscillator 283
6.3.3 Pitch Control in the Phase Accumulating Oscillator 290
6.3.4 Synthesising Consecutive Harmonic Phase Sequences 292
6.3.5 Synthesising Non-Consecutive Harmonic Phase Sequences 297
6.3.6 Synthesising Partial Phase Sequences 302
6.3.7 A Multiple Voice PAS Processing Architecture 308
6.3.8 Simulation Results 316

6.4 Conclusions 320

Chapter 7 Conclusions 322
7.1 Introduction 322
7.2 Research Objectives 323
7.3 Limitations and Areas for Further Investigation 327

Bibliography 329

References 331

Appendix A Polynomial Interpolation 337

Appendix B Performance Simulation 344

Appendix C The Order-3 Consecutive Access Vector Memory 363

vi

List of Figures

(Figure captions have been precised for brevity.)

(2.2.1) The multiple wavetable synthesis algorithm.

(2.2.2) Generalisation of multiple wavetable synthesis to group additive synthesis.

(2.3.1) The discrete Fourier transform pair.

(2.3.2) Simplified harmonic additive synthesis processing model using pre
computed wavetable lookup.

(2.3.3) Partial additive synthesis of periodic and non-periodic sounds by time-
varying linear combination of N partials.

(2.3.4) Top-level information flow in spectrum modelling AS.

(2.3.5) The subtractive synthesis processing model.

(2.3.6) An HR resonant filter with normalised peak gain.

(2.3.7) Weighted linear combination of multiple second-order resonant filter
sections.

(2.4.1) The Karplus-Strong plucked string model.

(2.4.2) Simplified waveguide model of a woodwind instrument.

(2.6.1) A taxonomy of additive synthesis subclasses.

(2.6.2a) Hypothetical PWL approximation of a partial amplitude envelope.

(2.6.2b) Original envelope exhibiting noise-like variation about an underlying
contour.

(2.6.3) PWL amplitude envelope approximation of the first 8 partials of a trumpet
tone [Grey, 1975].

(2.6.4) PWL approximations of the fundamental and 2nd partial frequency
envelopes of a trumpet tone [Grey, 1975].

(2.6.5) PWL partial amplitude response for various rx and r2 values.

(2.6.6) The partial additive synthesis processing model incorporating
metaparameterisation of partial amplitude and frequency.

(3.2.1) The direct-form recursive oscillator.

(3.2.2) y(n) for the direct-form oscillator with frequency transition at n = 150.

(3.2.3) Normalising y(ri) to unit amplitude introduces an amplitude-discontinuity
at the transition point.

(3.2.4) The coupled-form recursive oscillator.

(3.2.5a) Pole distribution around the first quadrant of the unit-circle for the direct-
form recursive oscillator with quantised arithmetic.

(3.2.5b) Pole distribution around the first quadrant of the unit-circle for the coupled-
form recursive oscillator with quantised arithmetic.

(3.2.6) Pole distribution around the unit circle in the complex z-plane.

(3.2.7) Elapsed samples for a given oscillation amplitude change against word size
assuming a fixed-point number representation.

(3.2.8) The modified coupled-form recursive oscillator.

(3.2.9) The waveguide-form recursive oscillator.

(3.2.10a) Quantised frequency control characteristics for the direct-form and
modified coupled-form oscillators.

(3.2.1 Ob) Relative tuning error for the direct and waveguide-form oscillators.

(3.2.11) Simulated phase error between the phase accumulator and direct-form
oscillators.

(3.2.12) Constant amplitude, phase continuous frequency transition in each phase
quadrant.

(3.2.13) Contour plot illustrating the performance of Eqs. (3.2.15).

(3.2.14a) Discriminating the phase of y(n) between quadrants 1 and 2 by examining
(3.2.14b) the slope of the line between y{ri) and y{n -1).

(3.2.14c) The error interval where y(n) can be placed in the incorrect quadrant.

(3.2.15) Phase intervals corresponding to the test conditions in Eq. (3.2.17).

(3.2.16) Contour plot illustrating the performance of Eqs. (3.2.18).

(3.2.17) Variation of peak phase error with quantisation bits for Eq. (3.2.17).

(3.3.1) The phase-accumulating sinusoidal oscillator process model.

viii

(3.3.2)

(3.3.3)

(3.3.4)

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(4.1.1a)

(4.1.1b)

(4.1.2)

(4.1.3)

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

(4.2.1)

(4.2.2)

Linearly interpolated phase mapping using multiplexed access of a single
lookup table.

Linear interpolation using two lookup tables to eliminate consecutive
access of a single memory.

Error function for various order Taylor series approximations of sin(x).

over 15An example of the CORDIC algorithm computing sin

iterations.

CORDIC phase mapping architecture.

Sequential and recursive implementation of the CORDIC algorithm.

CORDIC processing element architecture.

A single-cycle wavetable tabulating precisely one cycle of a sinusoid over
16 samples.

A multi-cycle wavetable tabulating a complex signal over L samples.

Single and multi-cycle wavetable classification.

Decomposing a multi-cycle wavetable into a sequence of contiguous single
cycle wavetables.

Hypothetical arrangement for tabulating a CT signal and resampling to
effect resynthesis at a new frequency.

Data fields for fractional phase accumulation and wavetable addressing.

Down-sampling a tabulated sinusoid.

Up-sampling a tabulated sinusoid.

An analytical view of the sample rate conversion process.

Frequency domain view of wavetable resampling with (p - \ .

Frequency domain view of wavetable resampling with q> =

An M -bit accumulator addressing a 2M location wavetable to effect phase-
amplitude mapping.

Variation of pitch tuning error with M for = 27.5Hz.

IX

(4.2.3) Variation of frequency resolution with M for three values of f s.

(4.2.4) Phase accumulator output sequence with M = 5 and (p = l .

(4.2.5a) A DT sinusoid with phase discontinuous frequency transition at n = 50.

(4.2.5b) Corresponding phase sequence.

(4.2.6) Graphical representation of phase-discontinuous and continuous sequences.

(4.2.7a) A DT sinusoid with phase continuous frequency transition at n = 50.

(4.2.7b) Corresponding phase sequence.

(4.2.8a) A typical phase accumulator output sequence with M = 6, (p - 2 , <p’ = 5
and m = 50.

(4.2.8b) Corresponding phase mapped sinusoidal sequence with M = 6, cp = 2 ,
(p* = 5 and m - 50.

(4.2.9) Resynthesised spectrum from a 4 harmonic wavetable.

(4.2.10) Phase accumulator with phase offset adder.

(4.3.1a) Zero-order frequency response for U = 4.

(4.3.1b) First-order hold frequency response for U = 4.

(4.3.2) Sample rate conversion of a tabulated signal using a K sample
interpolation filter [Massie, 1998].

(5.1.1a) Reference phase sequence with M = 12 and cp = 217.

(5.1.1b) Four bit truncated phase sequence.

(5.1.1c) Phase error sequence in radians.

(5.1.2a) Reference sinusoid with L = 2M.

(5.1.2b) Phase truncated sinusoid with L = 24.

(5.1.2c) Amplitude error sequence.

(5.1.3a) Phase truncation and reference error spectra corresponding to Figure
(5.1.2c).

(5.1.3b) Phase truncation and reference error spectra corresponding to Figure
(5.1.2a).

x

(5.1.4) Phase word partitioning showing truncation of the fraction field.

(5.2.1) Illustration of the optimal fractional address interval for the cubic
interpolation polynomial.

(5.2.2) Multiplication count as a function of interpolation order for three
interpolating polynomials.

(5.2.3) Addition count as a function of interpolation order for three interpolating
polynomials.

(5.3.1) Arithmetic process model for quadrature trigonometric identity phase
mapping.

(5.3.2) Arithmetic process model for non-quadrature (single sinusoid)
trigonometric identity phase mapping.

(5.3.3) Wavetable memory reduction ratio as a function of integer field width.

(5.3.4) Arithmetic process model of the reduced multiplier TIPM algorithm.

(5.4.1) Variation of SNR with (p e [1, 2U -1] for M = 12 and I = F = 6.

(5.4.2) Variation of A with (p e [1, 2M -1], M = 12 and 1 = 6.

(5.4.3a) Time domain response of the Hamming window for N s = 1024.

(5.4.3b) Frequency response of the Hamming window.

(5.4.4) Single slope spectra ranging over 1000 harmonics covering a bandwidth of
16.35 Hz to 16,350 Hz.

(5.4.5) Piecewise-linear spectrum ranging over 100 harmonics, covering a
bandwidth of 130.81 Hz to 13,081 Hz.

(5.4.6) Piecewise-linear spectrum ranging over 1000 harmonics covering a
bandwidth of 16.35 Hz to 16,350 Hz.

(5.4.7) Behaviour of eb(Ns) over N s for >̂ = 5715 and M = 24.

(5.4.8) Behaviour of sb(Ns) over N s for (p = 45721 and M = 24.

(5.5.1) SNR variation with / for interpolated sinusoidal phase mapping, with full
precision arithmetic.

(5.5.2) SNR variation with I for interpolated sinusoidal phase mapping, with 24
bit arithmetic.

xi

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.8)

(5.5.9)

(5.5.10)

(5.5.11)

(5.5.12)

(5.5.13)

(5.5.14)

(5.5.15)

(5.5.16)

(5.5.17)

(5.5.18)

(5.5.19)

SNR variation with I for interpolated sinusoidal phase mapping, with 16
bit arithmetic.

SNR variation with N e [0,10] using full precision, 24 bit and 16 bit
arithmetic.

SNR variation with N e [0,10] using full precision, 24 bit and 16 bit
arithmetic.

SNR as a function of R for TIPM using full precision, 24 bit and 16 bit
arithmetic.

SNR as a function of R for LIPM using full precision arithmetic.

Amplitude error spectra for six interpolated phase mapping techniques.

SFDR variation with I e [6,18] for six interpolated phase mapping
techniques.

SNR variation with / for two N h values and the phase mapping wavetable
tabulating a -3 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -3 dB/octave spectrum.

SFDR variation with I e [8,18] and the phase mapping wavetable
tabulating a -3 dB/octave spectrum.

SNR variation with I for two N h values and the phase mapping wavetable
tabulating a -6 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -6 dB/octave spectrum.

SFDR variation with / e [8,18] and the phase mapping wavetable
tabulating a -6 dB/octave spectrum.

SNR variation with / for two N h values and the phase mapping wavetable
tabulating a -12 dB/octave spectrum.

Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -12 dB/octave spectrum.

SFDR variation with I e [8,18] and the phase mapping wavetable
tabulating a -12 dB/octave spectrum.

SNR variation with I for two N h values and the phase mapping wavetable
tabulating a -12 dB/octave low-pass spectrum.

xii

(5.5.20) Amplitude error spectra for five interpolation algorithms using a wavetable
tabulating a -12 dB/octave low-pass spectrum.

(5.5.21) SFDR variation with / e [8,18] and the phase mapping wavetable
tabulating a -12 dB/octave low-pass spectrum.

(5.5.22) SNR variation with / and wavetable spectrum roll-off slope using TPM
(5.5.23) and LIPM.

(5.5.24) SNR variation with I and wavetable spectrum roll-off slope using QIPM
(5.5.25) and CIPM.

(6.2.1) Memory allocation for the order-2 CAVM with L = 8.

(6.2.2) Order-2 CAVM and linear interpolation processing model.

(6.2.3) Order-2 CAVM and linear interpolation processing with reduced
multiplexer count.

(6.2.4) Memory allocation for the order-4 CAVM with L = 8.

(6.2.5) Order-4 CAVM and cubic interpolation processing model.

(6.2.6) An order-4 CAVM process model using augmented coefficient lookup
tables to obviate reordering multiplexers.

(6.2.7) Variation of SNR with phase fraction truncation and three levels of
arithmetic precision.

(6.2.8) Linear interpolation between two consecutive wavetables.

(6.3.1) Rudimentary block pipeline process model.

(6.3.2) Multiplexed phase accumulator process model.

(6.3.3) Block pipeline signal flow for the synthesis of multiple partials.

(6.3.4) Phase accumulator incorporating lookup table to effect pitch control.

(6.3.5) Generating a time-multiplexed phase sequence having a contiguous
harmonic frequency distribution.

(6.3.6) Timing diagram illustrating initialisation of the harmonic phase multiplier
accumulator at the beginning of a sample cycle.

(6.3.7) Implementation of the HAS arithmetic process model.

(6.3.8) The linearly interpolated phase mapping process model using a first-order
difference table to eliminate consecutive table lookup operations.

xiii

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)

(6.3.13a)

(6.3.13b)

(6.3.14)

(6.3.15)

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.20)

Implementation of the HAS arithmetic process using phase domain
processing.

Pipelined integer phase multiplier.

Implementation of the PAS arithmetic process model using phase domain
processing.

Multiple voice implementation of the PAS arithmetic process using phase
domain processing.

Pipelined processing model of the multiple voice PAS algorithm.

Pipelined processing model of the sinusoidal phase-amplitude mapping
block used in Figure (6.3.13a).

Dual port memory addressing.

Simplified timing diagram of the pipelined processing model shown in
Figure (6.3.13).

Modification to the processing model of Figure (6.3.13) to effect partial
frequency offset according to the pj (n) parameter.

Example waveform synthesised using the PAS processing model.

SNR variation over 200 pseudo-random partial fractional multiplier
distributions with three spectrum roll-off slopes and full-precision
arithmetic.

Spectrograms for the partial fractional multiplier model.

Spectrograms for the partial frequency offset model.

xiv

List of Tables

(Table captions have been precised for brevity.)

(3.1.1) Six key properties of digital sinusoidal oscillator algorithms requiring
consideration for optimal application in partial additive synthesis.

(3.5.1) Summary of recursive oscillator performance against metrics defined in
Table (3.1.1).

(4.2.1) Illustrating the precise average period of the sawtooth phase sequence

(5.5.1) Simulation parameters and multi-harmonic wavetable characteristics
supporting the performance assessment of interpolated phase mapping.

(5.6.1) Summary arithmetic overhead and SNR performance for our six
interpolation algorithms applied to sinusoidal phase-amplitude mapping.

(5.6.2) Summary characteristics of four interpolation algorithms applied to multi
harmonic phase-amplitude mapping.

(6.2.1) Order 2 CAVM address sequences, memory block data values and sample
type indices for L = 8.

(6.2.2) Order 4 CAVM address sequences, memory block data values and sample
type indices for L = 8.

(6.2.3) Interpolation coefficient lookup table organisation for the order 4 CAVM.

xv

Glossary of Definitions and Common Terms

xe[a,b] a < x < b

xe[a ,b) a < x < b

xe(a,b] a < x < b

x e(a,b) a < x < b

[_xj The integer part of x (i.e. the largest integer < x).

|~x"| The smallest integer > x .

(x) x modulo y and defined by (x) = x - y

gcd(x, y) Greatest common divisor of x and y .

a Boolean AND operator,

v Boolean OR operator.

Aj(n) j th time-varying amplitude sequence at time-index n .

a{n) Phase fraction sequence at time-index n .

B Base frequency within an equally tempered tuning model.

Pj (n) f 1 partial pitch or frequency control parameter.

pj {a) / h interpolation coefficient function with argument a .

C ; [a] 7th interpolation coefficient lookup table vector with address a .

F Fraction field width in bits after truncation by R bits.

p Total available fraction field width in bits equivalent to M - I

¥[a] First-order difference vector at address a .

/ Sample rate in Hz.

xvi

I Integer field width in bits.

kj j th harmonic integer multiplier.

L Wavetable length in samples.

M Phase accumulator word size in bits.

N Interpolation order.

N Number of samples computed in a particular analysis vector.

N p
Number of partials within an additive synthesis model.

N Number of harmonics within an additive synthesis model.

N c Number of computation time-slots within an arithmetic model.

tVip a a consecutive access vector memory sample-type index.

The set of all real numbers.

R Number of bits truncated from an F -bit fraction field.

rx First roll-off slope parameter for piecewise-linear envelopes.

r2 Second roll-off slope parameter for piecewise-linear envelopes.

T Sample period in seconds.

(j){ri) Phase sequence at time-index n .

fa (n) Integer field of a phase sequence at time-index n .

<f>Ir(n) Rounded integer field of a phase sequence at time-index n .

(f)F (n) Fraction field of a phase sequence at time-index n .

j th time-varying phase sequence at time-index n .

^ ^ ath consecutive access vector memory block address (denoted by (j)a for
brevity).

O j(n) j th time-varying phase offset sequence at time-index n .

xvii

O . / h start phase parameter.
j

P Pitch control parameter.

/ Integer field width of pitch control parameter in bits.

Fp Fraction field width of pitch control parameter in bits.

7 Minimum equally tempered tuning frequency ratio.

(p{ri) Phase increment sequence at time-index n .

Y[x] Value of the vector Y at location x .

y(ri) n value of the discrete-time sequence y .

yr(n) Reference sequence at time-index n .

y(—x) Initial condition at discrete-time time index - x .

Z The set of all integers.

{a, b ,c ,d ...} The set of elements a,b,c,d. . . .

xviii

Glossary of Acronyms

ADC Analogue to digital converter

AS Additive synthesis

CAVM Consecutive access vector memory

CIPM Cubic interpolation phase mapping

CORDIC Coordinate rotation digital computer

CPU Central processing unit

CT Continuous time

DAC Digital to analogue converter

DFT Discrete Fourier transform

DMA Direct memory access

DPM Dual-port memory

DSP Digital signal processing

DT Discrete time

ENBW Equivalent noise bandwidth

FFT Fast Fourier transform

FFT'1 Inverse fast Fourier transform

FIR Finite impulse response

FM Frequency modulation

FPGA Field programmable gate array

GAS Group additive synthesis

HAS Harmonic additive synthesis

IC Initial condition

IDFT Inverse discrete Fourier transform

xix

IFFT Inverse fast Fourier transform

HR Infinite impulse response

JND Just noticeable difference

LIPM Linear interpolation phase mapping

LSB Least significant bit

LTAS Long term average spectrum

LUT Lookup table

MSB Most significant bit

MWS Multiple wavetable synthesis

PAS Partial additive synthesis

PCA Principal components analysis

PDF Probability density function

PWL Piece-wise linear

QIPM Quadrature interpolation phase mapping

RAM Random access memory

RMS Root mean square

RMS Root mean square

ROM Read only memory

RPM Rounded phase mapping

SFDR Spurious free dynamic range

SIS Spectral interpolation synthesis

SMS Spectral modelling synthesis

SNR Signal to noise ratio

SQNR Signal to quantisation noise ratio

s i f t Short-time Fourier transform

STS Short time spectrum

TIPM Trigonometric identity phase mapping

TPM Truncated phase mapping

TSA Time slot address

VCO Voltage controlled oscillator

VLSI Very large scale integration

WLS Wavetable lookup synthesis

xxi

Publications Related to this Research

“DDFS phase mapping te c h n iq u e IEE Electronics Letters, 10th October 2002, Vol. 38,

No. 21, pp. 1291-1292.

“Phase-Continuous Frequency Change in the Direct-Form, Second Order Recursive

O sc illa to rComputer Music Journal, Volume 28, Issue 4, Winter 2004, pp. 40-48.

Chapter 1 Introduction

1.1 Background

The research reported in this thesis investigates algorithms and arithmetic processing

models which facilitate real-time synthesis of computer music audio signals. The results

of this work are also pertinent to signal processing problems which require precision

frequency synthesis of signals with time-varying spectra. The Fourier synthesis model

which underpins this work, represents a complex signal by a linear combination of

sinusoidal basis components with harmonic or inharmonic frequency distribution.

Conceptually, this model is extensible to include time-varying linear combination of

non-sinusoidal1 basis components and so we use additive synthesis to describe the

underlying synthesis model in line with the computer music literature.

The essence of additive synthesis is that complex musical sounds, or timbres2, may be

generated by linearly combining manifold basis components each having distinct, time-

varying amplitude and frequency. The perceptual contribution of an individual basis

component is relatively small, but collectively they combine to define the timbral

evolution of a sound. The synthesis process begins with the extraction of basis

weightings (and in some cases basis functions) from the analysis of a natural sound

using the short-time Fourier transform (STFT4). The STFT maps an analysed signal into

a two-dimensional time-frequency space enabling extraction of basis amplitude and

frequency time-profiles or envelopes which are subsequently modified to realise new

sounds through additive resynthesis.

1 We use non-sinusoidal as a generalisation of any complex signal composed o f linearly combined
sinusoids with harmonic or inharmonic frequency distribution.
2 Timbre describes the tonal quality or “colour” o f a synthesised sound.
3 Timbral evolution describes how the timbre o f a synthesised sound changes over time.
4 The STFT decomposes the signal to be analysed into overlapping segments bounded in time by a
window function.

23

1.2 An Historical Overview of Computer Music and Additive Synthesis

Max Mathews in his seminal Science article, envisioned “the digital computer as a

musical instrument” where sound is synthesised from a numerical description -

conceptually “sound from numbers”. Since the bandwidth and dynamic range of human

auditory perception are bounded, Mathews reasoned that “any perceivable sound can be

so produced” [Mathews, 1963]. In The Technology o f Computer Music [Mathews,

1969], Mathews proposed what he considered as two fundamental problems with sound

synthesis using a digital computer:

• the enormous amount of data needed to specify the “pressure function” which

represents the ultimate abstraction of a particular sound and implies a very fast

computer program to resynthesise this function in real-time;

• the requirement for a powerful programming language which provides an

intuitive environment in which complex sound sequences can be coded

according to defined syntactic rules.

The first problem is being steadily abated by the geometric progression in

“performance5-to-cost” ratio of digital computer building blocks, notably:

programmable logic arrays, digital signal processors, microprocessors and

semiconductor memory. Furthermore, this progression shows no sign of abating at the

present time. The second problem is presently unresolved, although a fundamental

observation is evident: sound samples must be computed algorithmically from a

“numerical specification” since it is both perceptually non-intuitive and logistically

infeasible to enter them individually from scratch - how would the user know where to

start? If we assume algorithmic sample computation, a further observation becomes

5 “Performance” takes on many interpretations in this context: “instructions per second”, benchmark
execution time, “connectivity”, capacity and access time are typical examples.

24

apparent: a large number of sound samples are generated from a much smaller set of

“specification numbers” which we generalise as the synthesis parameters corresponding

to a particular synthesis algorithm. Smith [1991] observes a fundamental difficulty with

algorithmic digital synthesis as finding the smallest set of synthesis algorithms that span

“the gamut of musically desirable sounds”. A fundamental objective of computer music

research is to find a single synthesis technique that spans the universe of musically

desirable sounds and has an “intuitively predictable” relationship between the control

parameters and the synthesised sound. Indeed, Smith [1991] observes:

“It is helpful when a [synthesis] technique is intuitively predictable. Predictability is

good, for example, when analogies exist with well-known musical instruments, familiar

sounds from daily experience, or established forms o f communication (speech

sounds) .”

We therefore seek a synthesis algorithm having intuitive control parameterisation which

is capable of synthesising a broad range of musically desirable sounds and is

computationally feasible in real-time with suitably fast hardware.

The Music III programming language introduced the unit-generator concept for sound

synthesis which was developed and extended in the later Music IV and Music V

languages [Mathews, 1969]. A unit-generator represents a fundamental building block

which executes elemental functions within more complex sound synthesis algorithms

that are specified using the vocabulary and syntax of the particular language. A unit-

generator accepts both control and audio parameters depending on function and

produces a corresponding output signal. The Music V unit-generators included an

oscillator, filter, adder, multiplier, random number generator and envelope generator

which were similar in function to the voltage controlled oscillators, filters and

amplifiers used in analogue synthesisers of the time [Moog, 1965]. This complement of

25

elemental synthesis functions enabled research into various synthesis forms reported in

Roads [1996] and summarised in Smith [1991]. However, Music V synthesis

environments were constrained by being non real-time and “processor hungry”. It was

not uncommon for researchers to spend hundreds of seconds of mainframe CPU time to

produce just one second of synthesised sound samples which were stored in a peripheral

buffer and fed to a digital to analogue converter to allow them to be heard. This was

anything but real-time and did not encourage creativity. However, Music V and its

descendants, such as the much enhanced MuslO, helped promulgate computer music

research in the 1970s and motivated the development of specialised processing

hardware to speed up the computation process to the point where the results of a

particular algorithmic synthesis technique could be heard in real-time.

A cornerstone synthesis technique explored using the Music V environment was

additive synthesis. Additive synthesis is founded on the mathematical technique of

Fourier analysis and uses the linear combination of sinusoidal basis components whose

baseline weightings are obtained from the analysis of a natural sound to synthesise new

sounds by appropriate modification. The first reported analysis-driven additive synthesis

of sound appears to be Jean-Claude Risset’s analysis and resynthesis of trumpet tones

using Music V in 1964 [Risset, 1985]. Additive synthesis provides generality and

accessibility to the lowest levels of a sound’s timbral composition.

The underlying concept of additive synthesis is centuries old, first applied in pipe

organs through their multiple register-stops. By appropriate register-stop settings, the

sounds of several pipes are combined for each key depressed on the organ keyboard,

greatly enriching the overall sound [Roads, 1996]. The arrival of Fourier analysis

originating from the work of Jean Baptiste Fourier on heat conduction in 1822,

introduced the concept of spectral analysis of sound. Helmholtz [1863], was the first

26

person to describe musical timbre in terms of the spectral components of a sound.

Helmholtz constructed a rudimentary additive synthesiser which comprised ten

electrically excited tuning forks each feeding a matching Helmholtz resonator via a

mechanical shutter to control amplitude. Varying the individual shutter settings

produced different timbres and was probably the first additive synthesiser based on the

concept of a Fourier series. In the early twentieth century, (circa 1901) Thaddeus

Cahill’s massive Teleharmonium summed the weighted outputs of numerous rotating

electrical tone generators to create complex musical sound textures transmitted directly

to subscriber’s households via the telephone system [Roads, 1996]. More recently,

Laurens Hammond developed the tonewheel, a miniature version of Cahill’s

Teleharmonium tone generator and incorporated it in the legendary Hammond organ

which is a pure additive synthesis instrument. The Compton Electrone organ used the

rotation of a disk in close proximity to a fixed plate to produce a periodically varying

capacitance which in turn generates elemental tones that are combined in an additive

synthesis fashion [Comerford, 1993].

The additive synthesis concept has been widely adopted by computer music researchers

because of its rigorous mathematical foundations and generality, albeit with a high

computational cost associated with the synthesis and combination of numerous basis

components. It now forms the foundation of the spectral modelling paradigm, which

provides an intuitive sound synthesis methodology from a frequency domain perspective

in line with the auditory timbral perception model.

Historically, implementation of additive synthesis had been confined to research

environments computing sound sequences in non real-time using mainframe computers.

However, in October 1977 the Centre for Computer Research in Music and Acoustics

(CCRMA) at Stanford University took delivery of the Systems Concepts Digital

27

Synthesiser, or “Samson Box” as it became known, named after its designer Peter

Samson. The Samson Box was a hardware implementation of all unit-generator

elements from the Music V environment, including 256 waveform generators, 128

modifiers and a comprehensive interconnection subsystem [Loy, 1981; Smith, 1991].

The waveform generators supported both amplitude and frequency envelopes and the

modifier functions could be reconfigured as second-order filter sections, random-

number generators or amplitude-modulators. The Samson Box provided one of the first

environments for real-time execution of additive synthesis and other algorithms.

However, Smith [1991] reports that the Samson Box was not a panacea and required

considerable effort in developing support software and debugging tools. Although the

Samson Box did not provide the ideal foundation for a generalised synthesis research

tool, it did point the way to what was possible with a dedicated “coprocessor” controlled

by software executing “man-machine interface” functions. The end of the 1970s saw the

introduction of two landmark systems spawned from research-oriented systems like the

Samson Box: the New England Digital Synclavier and the Fairlight Computer Musical

Instrument (CMI). The Synclavier was a modular, component based system that

supported multi-voice additive synthesis and other algorithmic synthesis techniques.

The Fairlight CMI possessed a similar modular architecture and supported both additive

and sampling synthesis under comprehensive software control. These systems enjoyed

huge commercial success despite price tags on the order of $100,000 for “fully loaded”

systems and demonstrated the need for both a live performance instrument and research-

oriented system where cost was secondary to performance. Real-time signal generation

is handled by dedicated hardware optimised to a particular synthesis algorithm. A host

micro-computer undertakes all control, user interface and performance management

functions with the dedicated synthesis hardware integrated as a coprocessor function.

28

1.3 Research Motivation and Objectives

1.3.1 Introduction

Historically, the application of sinusoidal additive synthesis has been hindered by a

significant computational imposition, particularly in “orchestral synthesis” applications

where multiple independently controlled voices6 are required. For example, synthesising

a single 27.5 Hz (AO) complex musical tone at a 48 kHz sample rate requires around

872 partials7 if the full Nyquist8 bandwidth is used. If we proceed to assume that such

tones are synthesised within a 100-voice polyphonic ensemble, which is typical for a

demanding orchestral synthesis environment, then approximately 87,000 partials will be

needed under peak conditions. Clearly, this figure represents an absolute upper bound

for this level of polyphony. However, an average figure of 100 partials per voice as

suggested by [Smith and Cook, 1992] requires 10,000 partials and their respective

control parameters to be computed in real-time. The logarithmic frequency response of

the human ear and the observation by Sandell [1994] that the spectral amplitude

envelope of musical timbres progressively diminishes at frequencies above 5 kHz

suggests that, in general, low frequency partials should be assigned higher priority over

high frequency partials for inclusion in the synthesised partial group. Accordingly, the

additive synthesis computation burden is reducible through “perceptual coding” of the

composite partial spectral envelope by pruning high frequency partials against a timbral

perception “coding” model. The development of coding models which reflect human

perceptual characteristics is currently an active area of research and complements the

6 A voice describes a group o f partials sharing a common fundamental and collectively forming a distinct
synthesised sound with unique timbral identity.
7 A partial is a generalised form o f harmonic, describing a sinusoidal basis component that does not
necessarily have an exact harmonic relationship to the fundamental.
8 The Nyquist bandwidth (or Nyquist region) refers to the available bandwidth within a sampled system
equivalent to one half o f the sampling frequency. Frequency components greater than one half o f the
sampling frequency are aliased or “folded over” into the Nyquist region [Orfanidis, 1996].

29

pursuit of effective sinusoidal additive synthesis processors [Marentakis and Jensen,

2002; Jensen, 1999].

Synthesising 10,000 linearly combined partials at a 48 kHz sample rate requires a single

partial sample computation every 2 ns, suggesting a single thread pipelined processor

clocked at 480 MHz. The availability of high density programmable logic arrays

[Xilinx, 2004] and multi-port memory [Smith, 2000] optimised for very high speed

digital signal processing now makes such pipelined processors a practical proposition at

a cost comparable to a high-end workstation computer system. Moreover, the cost-to-

speed ratio of this technology is continuing to fall at this point in history.

1.3.2 Motivation

Motivation for this work stems from the observation that additive synthesis as defined

by the linear combination of sinusoidal basis components provides complete

accessibility to the elemental parts of timbral composition, precisely in line with

accepted models of timbral perception [Jensen, 1999]. Other reported forms of the

additive synthesis model utilise non-sinusoidal basis components [Homer et al, 1993;

Kleczowski, 1989] and so we base this work on a definition of additive synthesis as the

linear combination of sinusoidal or non-sinusoidal basis components with time-varying

frequency, amplitude and phase parameters. Accordingly, this research is built on two

hypotheses that encapsulate the research problem and are investigated and developed in

subsequent chapters:

1. Phase accumulating frequency synthesis with concurrent interpolated table

lookup phase-amplitude mapping provides an extensible computational

environment for implementing all facets of the additive synthesis paradigm.

30

2. The underlying properties of modular phase accumulation may be exploited to

generate phase sequences with harmonic and inharmonic frequencies and hence

corresponding sinusoidal partials through phase-amplitude mapping.

1.3.3 Objectives

The principal objectives of this research are to investigate sinusoidal and non-sinusoidal

waveform synthesis algorithms within an additive synthesis context and in line with the

above hypotheses; their relative performance against defined metrics and processor9

architectures that enable effective execution of the underlying arithmetic processes in

real-time. The research is organised into essentially six focal topics, summarised below,

each with distinct objectives and which collectively define the framework of this thesis

as summarised in section (1.4).

1. Review prevalent synthesis techniques reported in the literature, justifying

additive synthesis as the focus of this research and introduce the reported forms

of the additive synthesis paradigm.

2. Review recursive and phase-accumulating sinusoidal oscillator algorithms

reported in the literature, justifying phase-accumulation as the preferred

technique for subsequent investigation and development.

3. Review reported phase-amplitude mapping techniques, introduce the concept of

a wavetable and sampling a tabulated signal.

4. Investigate generalised phase-accumulating frequency synthesis and its

application to sinusoidal and non-sinusoidal waveform synthesis.

9 In the context o f this research, processor typically describes a pipelined concatenation o f processor
elements where each element is optimised to execute a particular atomic operation from an arithmetic
partitioning o f the underlying algorithm.

31

5. Investigate phase-amplitude mapping based on interpolated table lookup.

Develop computer models which support a comparative assessment of phase-

amplitude mapping techniques with different tabulated signals.

6. Investigate arithmetic processing architectures which improve execution speed

of the additive synthesis model and develop the concept of processing in the

phase domain.

Research methodology is driven from a critical review of reported material and focuses

on areas where the efficiency, flexibility or understanding of additive synthesis

computation can be improved. An analytical approach substantiated by computer

modelling is used to argue the effectiveness and validity of the presented material rather

than the construction and assessment of demonstrable hardware or software. It is

intended that the feasibility and efficacy of hardware processors based on the techniques

presented should be self evident from the respective thesis discussion.

1.3.4 Assumptions

The development of synthesis algorithms presented in this thesis is predicated on four

assumptions that we accept a priori based on the wider literature and which underpin

high throughput algorithmic processing architectures operating in real-time.

1. Devolution of algorithmic synthesis operations to a “performance-optimised”

coprocessor as an adjunct to a general purpose host computer, increases

throughput, flexibility of control and ease of migration to new host platforms as

they become available [Roads, 1996; Samson, 1980; Alonso et al, 1977].

2. At this point in history, an optimised “hardwired” processor provides greater

computational throughput compared to a “software-driven” processor by trading

flexibility for speed [Pirsch, 1996].

32

3. Arithmetic partitioning implicit within the synthesis and linear combination of

manifold basis components which defines the additive synthesis paradigm, is

naturally compatible with a pipelined processing architecture where processing

stages are individually optimised to execute specific elemental operations

[Pirsch, 1996].

4. Table lookup operations are generally faster than algorithmically computing the

tabulated data in real-time. Utility improves with increasing arithmetic

complexity of the underlying algorithm, offset only by lookup table memory

length and hence cost [Pirsch, 1996; Chamberlin, 1985].

1.4 Thesis Structure

Chapter 1 introduces this thesis and presents an historical overview of additive synthesis

and some of the hardware platforms that have been applied. Thesis motivation,

objectives and structure are also outlined.

Chapter 2 reviews and categorises popular synthesis techniques and their underlying

processing models reported in the literature. Techniques are classified according to a

cited taxonomy and assessed against defined criteria peculiar to computer music utility.

Our objective is to set additive synthesis in context relative to other techniques, justify

the additive synthesis focus of this thesis and to introduce pertinent mathematical

foundations for its implementation.

Chapter 3 reviews discrete-time recursive and phase-accumulating sinusoidal oscillator

algorithms reported in the literature and critically reviews them against pertinent

computer music metrics. Section (3.2.6) presents original published work resulting from

this research which is concerned with the determination of initial condition values

which provide phase-continuous frequency transition in the second-order direct-form

recursive oscillator. Phase accumulation and phase-amplitude mapping are introduced

33

and several implementation techniques introduced and discussed, including wavetable

lookup and phase interpolation which underpin subsequent chapters.

Chapter 4 investigates frequency synthesis by phase-accumulation and wavetable

lookup as the basis of computationally efficient phase-amplitude mapping. The chapter

investigates frequency control resolution specific to computer music requirements and

introduces the concepts of phase truncation and fractional addressing of a tabulated

signal by interpolation.

Chapter 5 develops the fractional addressing concept and investigates interpolated10

phase-amplitude mapping as a refinement of the wavetable lookup technique. Phase-

amplitude mapping by trigonometric identity is introduced in section (5.3) and shown to

provide optimal performance bound only by sample quantisation noise. This material

represents original work resulting from this research which is now published. The

chapter concludes by presenting simulated qualitative performance data for several

interpolated phase-amplitude mapping techniques over a range of wavetable spectrum

characteristics pertinent to musical application.

Chapter 6 investigates memory access associated with the interpolated phase-amplitude

mapping model and presents an original memory architecture with concurrent

interpolation processing which enables efficient data-parallel execution of this model

for various interpolation orders. We briefly review the concept of block pipelining using

dual-port memory which decouples parameter update and real-time algorithmic sample

computation and underpins pipelined processor architectures presented later.

Introducing the concept of phase domain processing which algorithmically modifies

phase information to effect frequency control, we proceed to consider arithmetic models

and corresponding hardware architectures that compute phase sequences and hence

34

sinusoids with harmonically related frequencies whose mathematical basis was first

mooted at the end of Chapter 4. Finally, we extend this technique to include inharmonic

sinusoids (i.e. true partials) and discuss the architecture of a pipelined sinusoidal

additive synthesis coprocessor.

Chapter 7 summarises this thesis in light of the research objectives set out in Chapter 1.

Limitations of the presented work and areas for further research and investigation are

discussed.

Appendix A presents an introductory overview of Lagrange and Newton polynomial

interpolation which supports discussion within Chapter 5. The concept of the

interpolation sample set is introduced and optimal placing of this set with respect to the

fractional address interval is discussed.

Appendix B presents documented Mathcad model listings which are applied in Chapter

5 to assess qualitative performance of interpolated phase-amplitude mapping algorithms

and in Chapter 6 to demonstrate HAS and PAS process models presented therein.

Appendix C presents the order-3 consecutive access vector memory architecture

including an arithmetic model for effecting the modulo division-by-3 needed within the

block addressing computations.

1.5 Original Work

The following areas represent original results from this research:

• Definition of initial condition values for the second-order direct-form recursive

oscillator which afford exact phase-continuous frequency transition with

constant amplitude. The algorithm is shown to incur significant computation

imposition and aside from generalising the utility of this recursive oscillator

10 We define interpolation as the computation o f sample values at non-tabulated points according to an
implicit fractional table address.

35

which is of academic interest, serves to strengthen the case for phase-

accumulating techniques.

• A sinusoidal phase-amplitude mapping technique is presented which provides

interpolation error and therefore signal-to-noise ratio bound by sample

quantisation noise alone. In essence, an M -bit phase word is optimally mapped

to the amplitude domain using a “virtual” 1M location sinusoidal lookup table

M „
— 1-2

requiring only 2 2 memory locations. The technique permits sinusoid phase

2 71
control with a resolution of T radians.

2

• A wavetable memory architecture which enhances computational efficiency of

the interpolated table lookup processing model. The concept of a new wavetable

memory architecture, the consecutive access vector memory (CAVM), is

presented and which is extensible to improve interpolated indexing of any

tabulated data space under certain conditions.

• Processing architectures for generating non-consecutive harmonic and

inharmonic partial phase sequences which enables implementation of the

harmonic and partial additive synthesis processing models.

36

Chapter 2 Computer Music Synthesis Techniques

2.1 Introduction

In this chapter we review the foremost discrete-time synthesis techniques reported in the

literature, focussing on additive synthesis (AS) techniques and their respective signal

processing models. Our aim is to identify and scope the focal areas that underpin later

chapters in this thesis and which support investigation of processor architectures

computing particular forms of the AS paradigm in real-time. We define a synthesis

technique as an algorithm that processes parametric control information to produce

“musically useful” sound samples, executing in software or hardware. We structure our

review using the taxonomy of synthesis techniques proposed by Smith [1991] which

comprises - processed recording, spectral modelling, physical modelling and abstract

algorithm. We consider the ten assessment criteria proposed by Jaffe [1995]:

1. Intuitiveness of control parameters

2. Perceptibility of a control parameter change

3. Physicality of control parameters

4. Control parameter behaviour

5. Robustness of the synthesised sound’s identity

6. Classes of sound represented

7. Synthesis algorithm efficiency

8. Synthesis algorithm latency

9. Control stream sparseness

10. Existence of corresponding analysis tools

37

An intuitive control parameter articulates a musically expressive attribute such as timbre

in a perceptually meaningful way. The perceptibility of a control parameter change

assesses the audible effect corresponding to that change and classifies the association

from strong to weak. The physicality of a parameter describes how well that parameter

controls a synthesised instrument in an analogous manner to its natural counterpart.

The behaviour of a control parameter considers the proportionality between a parameter

change and the corresponding perceived auditory change. A small parameter change

which produces a large auditory change is undesirable and reflects a parameter which is

not well behaved, possibly difficult to control and non-intuitive. Maintaining the

identity of a sound following parametric change reflects the robustness of the

corresponding synthesis technique (e.g. does a violin still sound like a violin following a

parameter change - albeit a different violin?).

Sound classification considers the range of sounds possible with a particular synthesis

technique and more importantly - what classes of sound are not possible? Algorithm

efficiency considers the memory, computational power and control data bandwidth

required in the execution of a synthesis technique and dictates the number of voices that

can be synthesised with a given processing capacity and sample rate. Algorithm latency

is a critical consideration in real-time synthesis and describes the delay between a

parametric change and the corresponding audible effect. The sparseness of the control

parameter stream assesses the control processing overhead against the arithmetic

complexity of the synthesis algorithm (i.e. where is the work being done?). The

availability of sound analysis techniques which generate baseline synthesis parameters

matched to a particular synthesis technique is crucial. Indeed, Jaffe [1995] observes:

“It is not enough to know in theory that any sound can he produced. You need tools to

derive the proper parameter values from a specification o f a desired result.”

38

The objective is to commence the synthesis process from an “identity baseline” which

reproduces a natural instrument sound using the particular synthesis technique and then

modify synthesis parameters to generate new sounds which are derived from the

original baseline sound.

2.2 Processed Recording

2.2.1 Sampling Synthesis

Processed recording describes synthesis techniques based on time-domain

transformation of pre-recorded or pre-computed sounds. Sampling synthesis is the most

prevalent technique reported, and involves “pitch shifting” a pre-recorded sound relative

to the original pitch using sample rate conversion followed by time-varying filtration to

modify timbral evolution and articulation. Many instruments exhibit perceptually

important transient behaviour at the onset of a note (i.e. the attack phase) which must be

captured if the resynthesised sound is to be recognisable. Winckel [1967] reports that

musical instruments are identified principally by their attack characteristics. Playback

sustain (i.e. the continuation of a sound following the attack phase) is accomplished by

“looping” selected segments of the recording via appropriate memory addressing. All

of these operations add perceptible distortions to the resynthesised sound and detract

from the objective of imitating and modifying pre-recorded instruments. These

distortions can be mitigated by multi-sampling an instrument sound across sub-intervals

of its pitch range and forming a library of separate recordings (so called samples) which

are indexed on playback as a function of the resynthesised pitch parameter [Massie,

1998].

Smith [1991] reports an inherent and fundamental problem with sampling synthesis as

its lack of “prosodic rules” for musical phrasing upon playback. Resynthesised notes

39

played individually are realistic reproductions of the original, but notes played in

sequence lack the note-to-note transitions which characterise many real instruments.

Control parameterisations may be applied to pitch shifting, sustain looping and post

synthesis filtration operations, providing a somewhat limited and non-intuitive “control

space” to support the creation of new timbres. Pitch shifting methods based on time-

domain transformation produce “temporal distortion” of the original sound (i.e.

compression or stretching of salient temporal features) causing most sounds to lose their

timbral identity after only a few semitones pitch shift relative to the original [Jaffe,

1995; Smith, 1991].

Timbral control and articulation is effected by fundamentally two means:

1. Using multiple acquisitions (a.k.a. “samples”) of the underlying sound

captured over pertinent parametric sub-intervals (e.g. pitch or key depression

velocity).

2. Application of time or parametrically varying filtering to the resynthesised

sound.

Implementation efficiency is a strong function of the pitch shifting interpolation

algorithm which typically requires multiple accesses to the sample memory [Massie,

1998].

2.2.2 W avetable Lookup Synthesis

Wavetable lookup synthesis (WLS) is a classic technique where a single period of an

arbitrary waveform is tabulated in memory and cyclically addressed to resynthesise a

periodic sound [Roads, 1996]. An extension of the multi-sampling technique applied in

sampling synthesis assembles a contiguous wavetable sequence where each wavetable

contains a single-cycle “snapshot” waveform across an instrument’s “timbre space”.

The wavetable set is read consecutively to resynthesise the sound, providing significant

40

data reduction compared to the original sample. Smoother timbral articulation is

obtained by time-domain interpolation between adjacent wavetable timbres - so-called

spectral interpolation synthesis (SIS) [Serra et al, 1990].

WLS is not confined to a uni-dimensional “waveform-time” representation. Multi

dimensional forms are reported comprising wavetables which snapshot an instrument’s

timbre over a corresponding multi-dimensional parameter space. Assuming mutually

independent parameters (e.g. time, pitch and key depression velocity), each dimension

snapshots timbre on a particular parameter interval with all other parameter values

fixed. Assuming timbre change over a particular parameter interval (i.e. dimension) is

well behaved, a coarse timbral quantisation on the corresponding dimension is

permissible with linear interpolation used to compute intermediate timbres from those

tabulated in a similar manner to the SIS model. The degree of permissible quantisation

is governed by perceptual constraints. Multi-dimensional WLS is generally known as

vector synthesis in the literature [Smith, 1991]. Timbre is now represented as a vector

quantity computed by linear interpolation of an ^-dimensional timbre-space according

to n parameters and requiring 2" interpolation points [Wessel, 1979; Haken, 1991].

However, vector synthesis incurs exponentially increasing memory size and

interpolation processing overhead as n grows.

A development of WLS - multiple wavetable synthesis (MWS), is illustrated in Figure

(2.2.1) and based on time-varying linear combination (i.e. weighted summation) of

fixed, periodic basis functions stored as wavetables [Homer et al, 1993]. The individual

wavetables are indexed with the same time-varying phase function (whose slope

represents frequency) and so all basis functions have identical phase and frequency.

41

/

Phase
Indexing

Wavetable WavetableWavetable

yin)

Figure (2.2.1): The multiple wavetable synthesis (MWS) algorithm. N distinct

wavetables are linearly combined with time-varying weights Ak (n) , h e [1, N] .

Setting the Ak(n) weighting terms to overlapped triangular window functions

interpolates the wavetable set contiguously and reduces MWS to the SIS model. If the

wavetable harmonic sets comprise distinct harmonic groupings, Homer et al [1993]

observe that MWS approaches group additive synthesis (GAS) where the complete set

of partials making up a sampled sound are organised into several wavetables each

having a common partial amplitude and frequency-time profile [Kleczkowski, 1989].

However, a key distinction is that GAS applies a unique time-varying amplitude and

frequency weighting to each wavetable in the group, whereas MWS applies only time-

varying amplitude weighting. The GAS processing model is illustrated in Figure (2.2.2)

where we observe that each basis component has time-varying amplitude and frequency

parameterisation.

42

Ffn) F f n) FN(n)

Phase Phase Phase
Indexing Indexing Indexing

• • • • X
Wavetable Wavetable Wavetable

1 2 N

yin)

Figure (2.2.2): Generalisation o f multiple wavetable synthesis (MWS) to group additive

synthesis (GAS), where each wavetable has a unique time-varying amplitude and

frequency weighting denoted by Ak (n) and Fk (n) , respectively.

The determination of basis wavetables which support the MWS model is reported in

Stapleton and Bass [1988] and Homer et al [1993]. MWS and its derivatives have been

utilised successfully in several commercial music synthesisers, typically with

wavetables containing natural sound samples. Several variants are reported in the

literature, differentiated principally by the combination process model [Roads, 1996].

2.3 S pectrum Modelling

2.3.1 The Fourier Transform

Spectrum modelling describes the subclass of synthesis techniques which specify

musical sounds in the frequency domain. Fourier’s theorem states that any periodic

function can be represented as a sum of harmonically related sinusoids each with a

43

particular amplitude and phase. A typical frequency domain representation therefore

comprises a spectrum of discrete “lines” corresponding to sinusoidal basis functions

whose baseline values are usually determined from the analysis of a natural instrument

sound.

The discrete Fourier transform (DFT) underpins the spectrum modelling paradigm and

provides bidirectional transformation between the discrete time and frequency domains

as illustrated in Figure (2.3.1). For sequences of length N and sample period 7 , we

have:

Y(k) = Y t y(nT)e-JianT
n=0

y W = \ - ^ Y (k) e tka“T (2.3.1)
A k=0

* e [0 , t f - l] we [0 ,^ - 1]

where y(nT) and Y(k) represent the respective time and frequency sequences. Q

2 t t Il kdenotes the first harmonic frequency given by Q = -----------« ----- for N » 1 and
(N - l) T NT

determines the frequency spacing of Y(k). These transforms provide the basis for

analysis, modification and subsequent resynthesis of musical signals (indeed any

periodic signal) where the intermediate representation exists in the frequency domain as

a weighted sum of sinusoidal basis functions.

44

y{r>T) = \ - Y JY(k)elkM

Time-domain
(Periodic waveform)

y(nT)

nT

N - \

Analysis /
Y(k) = ^ y (" T) e -jkC inT

n=0

Fourier Transform
Frequency-domain

(Spectrum)

< Synthesis \Y{k)

I f I 1 V

Figure (2.3.1): The discrete Fourier transform (DFT) pair.

The analysis or forward DFT (i.e. time to frequency domain transformation) generates a

complex sequence, Y{k) , which represents the magnitude spectrum, M(k) = |T(A:)|, and

phase spectrum, ®(£) = ZY(k) = tan" M M
Im(TO))

corresponding to the complex DT

sequence, y(n), where k represents the discrete frequency index. The discrete

spectrum is an estimate of the true spectrum bound by the transform frequency

2 n
resolution given by . The “bin frequency” corresponding to the kth location of the

2/zik
discrete spectrum is given by [Ifeachor and Jervis, 1993].

The synthesis or inverse DFT (i.e. frequency to time domain transformation) generates a

complex DT sequence, y(n), corresponding to the complex discrete spectrum, Y(k) .

The forward DFT is usually computed using the fast Fourier transform (FFT) algorithm

which exploits computational redundancy inherent in the DFT to significantly reduce

computation time [Rabiner and Gold, 1975]. It is reported in Ifeachor and Jervis [1993]

that computational savings afforded by the FFT as compared to the DFT increase as

45

log2 N . It is evident that DT audio signals are represented by real sequences

(i.e. have a zero imaginary part) which leads to superfluous computation in the complex

FFT. Specific algorithms are reported which transform real DT sequences without

redundant computation thereby improving the computation speed of audio spectrum

analysis [Chamberlin, 1985].

2.3.2 Sinusoidal Additive Synthesis

We define sinusoidal additive synthesis as the time-varying linear combination of

sinusoidal basis components. Two distinct forms are reported in the literature: harmonic

additive synthesis (HAS) and partial additive synthesis (PAS), with PAS the more

general of the two forms. HAS synthesises precisely periodic signals according to a

harmonic spectrum model whose basis frequencies follow a harmonic distribution in

line with the inverse DFT. PAS synthesises signals according to a partial spectrum

model whose basis components or partials have time-varying frequency. We therefore

define a partial as a generalised frequency component with time-varying frequency and

a harmonic as the special case constrained to a frequency distribution which follows an

exact harmonic series. Both HAS and PAS algorithms process time-varying parameter

envelopes defined as the time-contour (or trajectory) described by a parameter relative

to some initiation event (e.g. a key depression).

Before presenting discrete-time definitions of the PAS and HAS algorithms, we first

consider the continuous-time phase variation, (j>{t), corresponding to an instantaneous

frequency, / (/) , given by:

I
</>({) = 2jr (u)du + <D(0 (2.3.2)

46

where 0(7) represents a time-varying phase offset. We now proceed to express the

continuous-time PAS model which synthesises a signal, y(t) , from N sinusoid

partials. Each partial has amplitude, frequency and start phase envelopes respectively

denoted by Ak (t) , f k (/) and O^ (f), hence we obtain:

yif) = '^JAk(t)cos{(j>k{t))
k =1

(2.3.3)
t

h (0 = 2*r\ f k (u)du + <Dt (/)
0

tfl «where </>k(t) represents the k partial continuous-time phase function. The

corresponding HAS model is obtained by setting f k{t) = kfQ{t) in Eqs. (2.3.3), where

f 0 (t) denotes the fundamental frequency envelope function. For constant fundamental

frequency we have f k (t) = JrfQ.

In a discrete-time system, the instantaneous frequency is represented by a sequence,

F(n) and for a sample period, T , the corresponding phase sequence is given by the

discrete-time equivalent of Eq. (2.3.2), thus:

<j>(ri) = 2 n T ^ F(m) + O(n) (2.3.4)
m=1

where m is analogous to the dummy variable u in Eq. (2.3.2). If the instantaneous

frequency is constant (i.e. / (t) = / ' for all t and F(n) = F ’ for all n) we have

(j){t) = 2nf*t + $ (/) and ^(«) = In F ’nT + O(w) for the CT and DT cases, respectively.

The inverse DFT may be expressed in a real form which computes the sequence y{n)

from a linear combination of N p partials and therefore defines the PAS model, thus:

47

*p
y in) = Y j Ak (») cos(fk (»))

k= \

(2.3.5)

fk (») = 2 ^ S ̂ (w) + (")
m=l

where the &th partial phase sequence is denoted by ^(w) with 4 t(w) » ^k(n) and ^it(w)

xt.
respectively denoting the A: partial amplitude, frequency and phase envelopes that

collectively embody the spectrum model. The frequency envelope, Fk(ri), is peculiar to

PAS where some partial frequencies are time-variant reflecting the behaviour of natural

instruments [De Poli, 1983].

In an analogous manner to the continuous-time case, the corresponding HAS model is

obtained by setting Fk(n) = kF0(n) in Eqs. (2.3.5), where F0(n) denotes the

fundamental discrete-time frequency envelope function. The discrete-time HAS model

which linearly combines N h harmonics to synthesise the sequence y(n) is therefore

given by:

y(n) = £ 4 t («) cos(&(«))
k=\

(2.3.6)

f t («) = 2nTkY4 F0 (m) + <Dt («)
m= 1

For constant fundamental frequency denoted by F0, we have Fk(n) = kF0 and so

n n

^ j Flc(m) = ^ ikF0 = nkF0 . Hence </>k(n) = 27ikF0n T + ®k(n) in Eq. (2.3.6) for this
m=1 m=1

condition. The PAS model expressed in Eqs. (2.3.5) represents a general sinusoidal

additive synthesis model with the HAS model given by Eqs. (2.3.6) representing a

special case when partial frequencies are constrained to follow an exactly harmonic

distribution.

48

By definition, WLS is concerned with precisely periodic signals and is therefore

described by an harmonic spectrum model. Hence, wavetable values are pre-computed

“off line” by evaluating Eqs. (2.3.6) with constant Ak(n) - A k and 0^(«) = 0 A.

parameters as illustrated in Figure (2.3.2). The sequence time index, n , becomes

analogous to the wavetable sample address and is restricted to span the length of the

wavetable. Accordingly, each wavetable lookup operation represents the linear

combination of Nh harmonics at a particular phase point thereby providing an efficient

implementation of the HAS algorithm. Redefining the constant amplitude and phase

vectors (Ak and O*) with an additional index that selects a particular wavetable within

a set supports the sequential WLS model outlined in section (2.2.2). We then evaluate

Eqs. (2.3.6) with the array variables Akm and <&km where m denotes the wavetable

index variable with m e [0, N w - 1] for N w wavetables in the set. We develop WLS

further in Chapter 4.

2mco =
Write operation
to fill wavetable Off-line Processing

Real-time Processing
Phase

Indexing Wavetable

Figure (2.3.2): Simplified harmonic additive synthesis (HAS) processing model using

pre-computed wavetable lookup and showing the partition between real-time and “off

line” processing. (Wavetable length and sample address are denoted by L and a,

respectively.)

49

Conversely, the PAS processing model according to Eqs. (2.3.5) and illustrated in

Figure (2.3.3) is computationally expensive since each partial must be synthesised and

processed individually. The computational advantage afforded by the use of lookup

tables implicit in Eqs. (2.3.6) cannot be exploited to simplify the manifold oscillator

bank implicit in Eqs. (2.3.5). (We see that PAS as depicted in Figure (2.3.3) can be

considered as the limiting case of the GAS model where each wavetable contains a

single sinusoid.)

Ffn) F2(n) FNp(n)

Sinusoidal
Oscillator

Sinusoidal
Oscillator

Sinusoidal
Oscillator

jVp-fold Sinusoidal Oscillator Bank

yin)

Figure (2.3.3): Partial additive synthesis (PAS) o f periodic and non-periodic sounds by

time-varying linear combination o f N p partials. The DC component is assumed zero

and ®k{ri) is typically replaced by a fixed phase offset, .

A significant problem with PAS stems from the computational bandwidth required to

process parametric control data - the so-called “control parameter problem” [Roads,

1996]. The problem can be stated succinctly, thus:

“how do we generate and process the enormous amount o f data needed to accurately

represent a large number o f partial envelopes?”

50

A prevalent solution reported widely in the literature uses the concept of source coding,

which represents partial envelope trajectories obtained from the spectrum analysis of

natural instruments by approximations which subjectively satisfy the so-called identity11

property upon resynthesis [Grey, 1975; Moore, 1990]. The approximated envelopes

provide a baseline spectrum for the resynthesis process. Accurate representation of

transient spectral features in the attack region of a sound and prevention of

objectionable modulation sidebands in the synthesised spectrum requires that envelope

parameters be updated at the same sample rate as the synthesis process. Each partial

requires computation of the corresponding Ak(ri) and Fk(ri) envelopes, with N p

partials therefore requiring 2Np envelope computations each sample period. To

illustrate the scale of the problem we assume a hypothetical AS processor computing a

100 voice ensemble with each voice composed of 100 partials. Hence we have

N p = 104 which requires an envelope computation rate of 960 xlO6 samples/sec for a

48 kHz sample rate and represents a significant computational imposition.

The psychoacoustic properties of human auditory perception such as frequency masking

can be exploited via an auditory model to reduce the total partial count and hence

envelope computation cost [Marentakis and Jensen, 2002; Jensen, 1999; Moore, 1990].

The critical band is an important concept underpinning auditory perception modelling

and corresponds approximately to the width of the region along the basilar membrane

that is excited by a single frequency sinusoid. This critical bandwidth is approximately

15% of frequency, except at lower frequencies where it increases [Moore, 1990].

Masking effects arise when two or more tones are heard simultaneously, the effect

11 Resynthesis using suitable partial envelope approximations that produces a sound subjectively
indistinguishable from the original analysed sound defines the identity property.

51

reducing with increasing frequency separation between the tones. In general, lower

frequencies tend to mask higher frequencies more effectively than vice versa and two

single-frequency tones with overlapping critical bands mask each other quite effectively

since they cannot be perceived individually. Hence, under suitable conditions a single

tone may be substituted in place of two (or more) tones with no perceptible change.

Considering the perception of a complex tone, it is reported that low frequency partials

tend to mask high frequency partials and higher frequency partials which fall within a

critical band are not perceived independently [Moore, 1990]. Exploiting the perceptual

abilities of the listener in the identification of superfluous partials is generally known as

receiver coding in the literature [Moore, 1990]. This technique selectively “prunes”

partials that are masked by more prominent ones within a critical band by using a

scheduling algorithm that controls the allocation and de-allocation of partials as the

parameter envelope values evolve over time. However, computational savings due to a

reduced number of partial oscillators must exceed the scheduling computation overhead

for this technique to be cost effective.

AS is not restricted to the linear combination of basis sinusoids which reflect the Fourier

transform. Time-varying linear combination of multiple complex waveforms is reported

extensively in the literature and has been outlined in section (2.2.2) as a WLS

embodiment within the processed recording subclass. However, this technique is

relevant here since the wavetable contents are computed from a spectrum model (i.e.

frequency domain specification).

2.3.3 Baseline Spectrum Representation

Risset [1985] reported the first “spectrum analysis driven” AS of trumpet tones in 1964

using the Music V programming language. This pioneering work appears to have

included the first application of a piecewise-linear (PWL) envelope approximation to

52

compress partial envelope trajectories and thereby reduce the control parameter

computational overhead [Smith, 1991]. The phase vocoder originally developed at Bell

Laboratories in connection with speech synthesis research has provided analysis support

to the HAS model for many years [Moorer, 1978; Smith, 1991]. The PARSHL

programme has extended the phase vocoder to support the analysis of non-harmonic and

pitch-changing sounds, thereby providing partial frequency envelope data and adding

greater realism to the synthesis of natural sound classes [Smith and Serra, 1987]. Grey

and Moorer [1977] have established the utility of analysis-driven AS in the creation of

natural instrument sounds including oboe and clarinet that are subjectively

indistinguishable from the original based on listening tests. In particular, this work

reports envelope data compression factors of 50:1 using PWL representation, with a

100:1 reduction reported by Serra and Smith [1990] in similar research.

The generality of PAS stems from the inherent accessibility to the elemental

components of a sound’s timbral composition (i.e. the partials). The penalty for this

generality is the need to define a large number of envelope trajectories which control the

evolution of partial amplitudes and frequencies that are individually perceptually weak.

Beginning the synthesis process from scratch is counterintuitive and time consuming

without a “baseline” sound spectrum to build from. The efficacy of AS therefore

depends on the availability of baseline spectrum data obtained from a spectrum analysis

of natural sounds. This analysis produces a weighted set of basis components

appropriate to the synthesis model and represents the starting point for creating new

sounds and timbral structures.

Various audio spectrum analysis techniques are reported in the literature, including

pitch-synchronous analysis [Risset and Mathews, 1969], the phase vocoder [Serra,

1997] and constant-Q analysis [Roads, 1996]. All are based on Fourier analysis

53

principles and generate large amounts of spectral envelope data with musical signals.

Effective implementation of the analysis-resynthesis model requires that spectral

envelope data is compressed into a form that permits intuitive parameter editing prior to

resynthesis, yet preserves perceptually salient features. The objective is not to save on

storage requirements but to ensure intuitive representation and manipulation of the

compressed spectrum envelopes and to reduce computational overhead associated with

envelope resynthesis. Figure (2.3.4) illustrates a conceptual analysis-resynthesis

spectrum modelling environment which accommodates sinusoidal and non-sinusoidal

basis functions where the extraction of non-sinusoidal basis functions is peculiar to the

MWS subclass. For the PAS model, basis function extraction is not needed since

sinusoidal basis functions are assumed.

Performance parameters
(e.g. pitch, note on/off)

Spectrum Modelling Environment
Sample
Library Envelope

Extraction Additive
Synthesis
Processor

Spectrum
Analysis

Basis Function
Extraction

Direct
sampled
sound

 ^Modified |j
control {

parameters V
Audio

User

Figure (2.3.4): Top-level information flow in spectrum modelling AS. Analysis o f

natural sounds generates baseline parameters which are modified to create new sounds

using AS.

54

Spectrum data compression alleviates the control parameter problem and is extensively

reported in both the signal processing and computer music literature. The reader is

referred to the extensive bibliography reported in Roads [1996]. However, four

compression techniques are prevalent: piecewise-linear (PWL) envelope approximation,

principal components analysis (PCA), spectral interpolation synthesis (SIS) and

spectral modelling synthesis (SMS). It is evident that each of these techniques is

associated with a particular AS model requiring both sinusoidal and non-sinusoidal

basis functions.

PWL envelope approximation represents an important spectrum modelling paradigm

that simplifies visual representation and reduces envelope resynthesis time [Grey and

Moorer, 1977]. Envelopes are represented by PWL approximations of raw analysis data,

that is, breakpoints connected by line segments. The technique is not confined to partial

or harmonic additive synthesis and finds utility where any complex time-varying

parameter requires simplified representation.

Principal components analysis (PCA) reduces a complex waveform into a set of so-

called principal components, defined as the eigenvectors corresponding to the largest

eigenvalues of the covariance matrix [Homer et al, 1993]. PCA generates a set of basis

waveforms (the principal components) and a corresponding set of weighting

coefficients. Linear combination of the basis waveforms with their respective

weightings produces a close approximation of the original waveform within some error

bound. The principal utility of PCA lies in the generation of MWS basis and weighting

data [Homer et al, 1993; Sandell and Martens, 1992].

Spectral interpolation synthesis (SIS) is based on time domain linear interpolation

between wavetable pairs whose spectra are usually constrained to have corresponding

harmonics in phase. Wavetable samples are computed from a HAS model based on the

55

analysis of natural sounds with phase information discarded [Serra and Smith, 1990].

Frequency domain wavetable specification using Eqs. (2.3.6) is optimal since harmonic

phase can be normalised across a wavetable set causing interpolation between

corresponding spectra to be free from harmonic amplitude nulls and intuitive in terms of

perceived timbral change with interpolation parameter [Smith, 1991; Chamberlin,

1985]. Chamberlin [1985] observes that linear interpolation between two wavetables

whose respective harmonics are “phase-normalised” (i.e. corresponding harmonics in

each wavetable are in phase) produces a corresponding linear change in harmonic

amplitude as the interpolation proceeds.

Spectral modelling synthesis (SMS) decomposes analysed data into deterministic and

stochastic components. The deterministic component is a compressed version of the

analysis that preserves the most prominent partials which are then resynthesised using a

PAS model. The stochastic component is a noise-like signal and represents the

difference between the deterministic component and the original signal computed in the

frequency domain [Serra and Smith, 1990]. The synthesised sound, y(n), is represented

by the sum of a weighted partial series and a noise signal, e(n) , which represents the

stochastic component, thus:

~ p
y(«) = J] ^ («) cos

£=i
2 ^ F k(m)

m=\

+ e(n) (2.3.7)

Ak(ri) and Fk(ri) are obtained from an analysis and compression process reported in

Serra and Smith [1990]. The stochastic component is synthesised by time-varying

filtration of a white noise signal using a response which reflects the spectral

characteristics of the frequency domain stochastic representation reported in Serra and

Smith [1990]. SMS advantages are primarily twofold: data compression associated with

the deterministic component envelope representation and synthesis of the stochastic

56

residual by filtered white noise, thereby saving compared to “brute force” computation

using the PAS model. SMS reduces the computational cost of PAS by replacing

numerous partials and their parameter envelopes with a single filtered noise component.

2.3.4 Subtractive Synthesis

Subtractive synthesis is a spectrum modelling technique based on the application of

linear filtering to transform the spectrum of an input signal (or combination of signals)

to produce a signal with perceptually desirable timbral properties. Dynamic and

parametric timbral articulation are effected by appropriate time-varying

parameterisation of the filter frequency response and excitation signal characteristics.

Classical analogue synthesis systems are based on the subtractive synthesis model

implemented in the analogue domain [Moog, 1965; Chamberlin, 1985].

The subtractive synthesis processing model is illustrated in Figure (2.3.5) and comprises

an excitation source feeding a linear filter with both elements having time-varying

control parameterisation.

T
Excitation

\N
Time-varying

Source Filter

T
-> Audio

Excitation signal
parameters

Filter response
parameters

Figure (2.3.5): The subtractive synthesis processing model.

This model aligns well with the generic model of traditional acoustic musical

instruments and is closely related to the technique of physical modelling discussed later.

A violin string coupled through a bridge to a sound box represents a good example

[Moore, 1990]. The bowed string generates an excitation signal with time-varying

57

spectral properties according to the bowing and fingering technique of the player. The

bridge couples this sound to a resonant sound box whose frequency response is

essentially time-invariant (at least to a first order) but will typically vary among

instrument types according to geometry, constituent materials and construction

technique. Brass and woodwind instruments (e.g. the trumpet and clarinet) exemplify

time-variant acoustic resonators excited by vibrations from the players lips or a reed.

The excitation signal model is typically a harmonic-rich waveform or broadband white

noise signal and must contain energy at all frequencies required in the synthesised

sound. Subtractive synthesis is unable to add energy at a particular frequency [De Poli,

1983]. In some implementations (e.g. sampling synthesis) the excitation signal is

provided by a pitch-shifted recorded instrument sound [Roads, 1996].

In general, filter response parameters (e.g. bandwidth) are intuitive and strong. For

example, the bandwidth of a low-pass filter exemplifies a strong parameter whose

variation controls the perceived “timbral brightness” of the processed signal. The

generality of a subtractive synthesis model is constrained by the control flexibility of the

digital filter frequency response. We therefore briefly review digital filters and their

utility within the subtractive synthesis processing model.

There are broadly two classes of digital filter: finite impulse response (FIR) and infinite

impulse response (HR) [Orfanidis, 1996]. FIR filters are unconditionally stable and can

provide a linear phase response which preserves the time-alignment of all frequency

components in the filtered signal. HR filters are computationally more efficient than FIR

filters for a given response characteristic, but do not provide a linear phase response and

suffer sensitivity to computation round-off errors inherent with quantised arithmetic

leading to instability or limit-cycle behaviour [Rabiner and Gold, 1975]. Effecting a

well behaved time-varying frequency response is a significant problem in discrete-time

58

subtractive synthesis. Direct linear interpolation of the filter coefficients produces a

corresponding frequency response-time profile which does not correspond with that

expected [Moore, 1990]. A time-varying FIR filter may be implemented by

interpolating the filter response in the frequency domain and then transforming to sets of

impulse response coefficients using the inverse DFT but it is a computationally

expensive technique. Moore [1990] suggests the utility of the two-pole HR resonant

filter which requires only four coefficients and hence four multiplications in the

recursive computations. An HR resonator with normalised peak gain is defined by the

transfer function and corresponding difference equation:

H(z) = ----- (1- r)(1~ 7 \
l-2 rco s (0)z +r z

(2.3.8)

y(n) = G(x(n) - rx(n - 2)) + bxy(n -1) + b2y(n - 2)

where the centre frequency, f c, is determined by the pole angle, 6 , and the bandwidth,

B , by the pole radius, r . Figure (2.3.6) illustrates the corresponding signal-flow

architecture.

x(ri)

1 - r 2rcos(6)

- r

Figure (2.3.6): An HR resonant filter with normalised peak gain.

59

The difference equation in Eqs. (2.3.8) requires four coefficients: r - e~KBT, G = l ~ r ,

bx = 2r cos(2n ffT) and b2 = - r 2, where T is the sample period. In general, we cannot

interpolate the coefficients and expect the corresponding frequency response to be well

behaved as the interpolation proceeds. Furthermore, pole position must be maintained

inside the unit-circle to ensure filter stability. Linear combination of multiple two-pole

resonators as illustrated in Figure (2.3.7) synthesises a “quasi-arbitrary” filter response

according to the filter parameters and their time-varying relative amplitude weightings.

Filter parameters f c9 B

x(n) —

Second-order
HR Resonator

Second-order
HR Resonator

Second-order
HR Resonator

Figure (2.3.7): Weighted linear combination o f multiple second-order resonant filter

sections. Section weighting is set by the time-varying gain parameter, Gk(ri).

Despite the flexibility afforded by this filter architecture within a subtractive synthesis

model, it lacks the generality promised by the PAS model. Subtractive synthesis

exploits the intuitive correspondence between a frequency domain parameterisation and

auditory perception. As a synthesis technique we conclude it is limited compared to the

generalisation promised by PAS. However, subtractive synthesis lays the foundations of

60

physical modelling and thereby precise synthesis of certain instrument classes which

conform to the “excited resonator” model.

2.4 Physical Modelling

Physical modelling constructs a mathematical model that describes the salient sound

generation mechanism in an instrument which conforms to the “excited resonator”

model. The model is typically composed of several distinct blocks which are mutually

interactive and in some cases non-linear. Mapping the continuous-time model into the

discrete-time domain with quantised values generates the physical model algorithm

which is then executed in real time to generate sound samples. The timbral character of

the simulated instrument is determined entirely by the model structure and not by

parametric control. Control parameterisation is closely correlated with the physical

parameters of the real instrument and therefore supports intuitive control of the model.

Physical modelling is confined to acoustic instrument structures which are characterised

by vibration excitation of a resonant structure (e.g. a guitar string and sound box)

[Roads, 1996; Smith, 1992]. The resonant model is typically broken down into several

blocks which correspond to physically separate elements of the acoustic instrument.

Interconnection between blocks provides access points which serve as points of

connection to other parts of the model, excitation inputs and extraction points for the

sound samples.

The simplest physical model is the Karplus-Strong plucked string model where the

output of a digital delay line, initialised with a pseudo-random noise sequence,

(-£)• ••(-!), is fed back to the input via a low-pass filter, h{n), as illustrated in

Figure (2.4.1) [Karplus and Strong, 1983].

61

x(-&) • • • x (-l)

x(n)

h{ri)

Figure (2.4.1): The Karplus-Strong plucked string model.

Following initialisation, the low-pass filter progressively attenuates high frequency

components in the noise sequence which decays to a sinusoid as the recursion proceeds.

The steady-state frequency is determined by the length of the delay line. This algorithm

is reported as giving excellent simulations of plucked string sounds [Smith, 1987;

Smith, 1991] with relatively small computational overhead.

A development of physical modelling known as waveguide synthesis is based on the

analytical solution of the wave equation that describes the propagation of perturbations

in a medium [Smith, 1987]. The digital waveguide which underpins this synthesis

technique is represented as a pair of delay lines which model the bidirectional

propagation of a wave in a lossless medium. Waveguide synthesis uses two-dimensional

waveguide meshes connected by lossless scattering junctions which model propagation

medium stiffness and signal dispersion at a discontinuous junction. Other physical

structures are accurately represented by filters as in physical modelling, hence there is a

close correspondence between waveguide synthesis parameterisations and our physical

perception of acoustic systems. Figure (2.4.2) illustrates a simplified waveguide model

of a woodwind instrument [Smith, 2004]. The nonlinear scattering junction simulates

the reed excitation signal accounting for reed stiffness and embouchure. The hell at the

end of the clarinet is modelled as a filter. Low frequencies are reflected back into the

62

bore according to R(z) with high frequencies passed out of the bore according to H (z)

providing the output of the model, y(n) .

Mouth pressure —

Embouchure

Bell ,
Reed , Bore

-N

- N

Nonlinear
Scattering
Junction

Figure (2.4.2): Simplified waveguide model o f a woodwind instrument (e.g. the

clarinet).

Waveguide synthesis is reported as successfully modelling complex acoustic systems

such as the bore of a clarinet or groups of coupled strings in a guitar, where the guitar

bridge represents a resistive coupling mechanism [Borin et al, 1997].

The advantages of physical modelling synthesis are the highly physical

parameterisations which correspond exactly with those used by the natural instrument

(e.g. the bow pressure and bow velocity in a violin physical model [Smith, 1992]) and

the robustness of the synthesised sound’s identity. For example, Jaffe [1995] observes

that the extended Karplus-Strong plucked string algorithm always synthesises plucked

string sounds, irrespective of parameter settings in the model [Karplus and Strong,

1983; Jaffe and Smith, 1983]. Physically relevant parameters such as pick position,

string flexibility and string thickness can be varied to provide a rich lexicon of sounds

which never lose their string-like identity. In contrast, PAS parameters (e.g. partial

amplitude) are not directly relevant by themselves when synthesising a plucked string,

for example. Physical models with non-linear feedback can exhibit extreme sensitivity

to initial condition parameters leading to undesirable chaotic behaviour [Jaffe, 1995].

63

Physical modelling lacks the generality promised by PAS but provides accurate

synthesis and intuitive control of the woodwind and string instrument subclass. The

principal disadvantage of physical modelling is that it is fundamentally constrained by

the excited resonator model which is appropriate to only a subset of musical instrument

classes and corresponding timbres.

2.5 Abstract Algorithm

Abstract algorithm synthesis exploits the properties of certain mathematical functions

for synthesising musically useful sounds. Frequency modulation (FM) synthesis

[Chowning, 1973], Moorer’s discrete summation formulae [1976] and waveshaping

synthesis [Risset, 1969] are popular examples of this synthesis technique subclass.

2.5.1 Frequency Modulation (FM) Synthesis

The simplest FM synthesis configuration uses a carrier oscillator frequency modulated

by a modulator oscillator with oscillation frequencies, f c and f m, respectively. The

modulation depth is controlled by the modulation index, I{n) , which controls the

amplitude of the modulator. The corresponding FM signal is given by:

y{n) = A(n) s in [2^w r + I(n) sm(l7fmnT)] (2.5.1)

where A(n) represents the amplitude envelope. The spectrum of y(n) comprises

sidebands surrounding f c whose amplitudes vary according to k -order Bessel functions

of the first kind, Jk(l(n)). Eq. (2.5.1) can be expressed in a form which incorporates the

Bessel functions directly [De Poli, 1983]:

y{ti) = A {n)^ J l (l{n))svi5p.}i(fc±ttfm)n t\ (2.5.2)
k=-<x>

where each k term represents an individual partial. The modulation index controls

timbre and for I(ri) = 0 the spectrum comprises the carrier alone. As I(n) increases, the

64

spectral envelope describes two peaks symmetrically about f c which progressively

migrate causing partials near f c to reduce in amplitude and those further away to

increase. Therefore, dynamic spectra are realised by varying I(ri) . The carrier to

modulator frequency ratio governs harmonicity, with integer ratios producing harmonic

spectra and non-integer ratios producing inharmonic spectra which are useful for

synthesising bell-like sounds.

FM synthesis is extendable beyond the two oscillator model [De Poli, 1983]. Six

oscillator architectures produce a rich taxonomy of dynamic timbres as exemplified by

the Yamaha DX7 synthesiser which has enjoyed huge commercial success [Roads,

1996]. The advantage of FM synthesis lies in the vast range of timbres available with a

small set of sinusoidal oscillators, associated modulation arithmetic and their

corresponding control parameters [Chowning, 1973]. De Poli [1983] and Roads [1996]

provide extensive tutorials on advanced FM synthesis techniques. Disadvantages of FM

synthesis lie in non-intuitive control parameterisations (i.e. abstract mathematical

variables) that do not correlate well with the audio perception model and a strong “FM

timbral identity”. However, despite a lack of generality, FM synthesis finds utility due

to the timbral range possible for relatively little processing overhead.

2.5.2 Synthesis by Discrete Summation Formulae

Moorer [1976] showed that Eq. (2.5.1) is one instance of a general class of equations

called discrete summation formulae which provide a computationally efficient method

for synthesising band-limited excitation waveforms for the subtractive synthesis model

[Moorer, 1976; Moore, 1990]. The expression:

65

N

y(n) = ^ s m k ^
k=\

(2.5.3)

describes a DT waveform, yin), composed of the sum of N equal amplitude

harmonics of a frequency, / , where </)(n) = I r fn T . The lower closed-form expression

requires three multiplications, one division and three table lookup operations as

compared to N multiplications, JV -1 additions and N table lookup operations for the

AS form. Moore [1990] observes the singularity arising as (j){ri) -» m n for any integer,

m , is mitigated by using the identity:

However, tabulating the quotient term in Eq. (2.5.3) for a given N in a lookup table

indexed by (j>in) obviates the division operation. Many closed-form summation

formulae are given in the literature and some have been applied in generating brass-like

tones [Risset and Mathews, 1969]. However, generating excitation waveforms within

the subtractive synthesis model is the principal application of this synthesis technique.

2.5.3 W aveshaping Synthesis

Waveshaping synthesis exploits the mathematical concept of function composition (i.e.

“function of a function”). A function, f (x) , is composable with another function,

g (y) , when one function can be used as the argument for the other. Nonlinear

waveshaping is concerned with the identification of composing functions that accept

+ N N odd
+ N N even and m even
- N N even and m odd

(2.5.4)
sin

66

waveform functions as arguments and produce musically useful results. A particular

class of composing functions reported in the literature are order-A: Chebyshev

polynomials of the first kind, denoted Tk, that find utility due to their harmonic

synthesis property [Moore, 1990]:

7^[cos(^)] = cos(A:^) (2.5.5)

A composing function defined as a weighted sum of Chebyshev polynomials maps a

cosine wave to a waveform comprising a harmonic series with exactly the same weights

as the Chebyshev polynomials. Arfib [1979] showed that a variation in input (argument)

frequency yielded inharmonic partials in the corresponding output spectrum. However,

this technique is necessarily sensitive to the amplitude of the input function. As the

input amplitude varies from 0 to 1, the corresponding output spectrum moves from a

pure sinusoid (with amplitude that approaches zero) to a spectrum defined by the

polynomial weights [Moore, 1990]. Waveshaping synthesis is therefore limited by the

strong dependency between output spectrum and the input argument amplitude,

although some researchers report techniques for amplitude normalisation [Roads, 1996].

2.6 Generalised Additive Synthesis

The time-varying linear combination of multiple basis components to construct sounds

with temporal evolution and parametric articulation of timbre defines the generalised

AS paradigm. Basis components are usually sinusoidal although complex waveforms

are reported. Harmonic AS is an exact embodiment of the inverse DFT and is therefore

constrained to synthesise sounds with sinusoidal basis components whose frequencies

are time-invariant and follow an exact harmonic distribution. To emulate the behaviour

of natural sounds whose partial frequencies are slowly time-varying, we define the PAS

subclass based on linear combination of basis sinusoids with time-varying frequencies,

67

which may loosely follow an harmonic series. We observe that PAS includes the HAS

subclass. Figure (2.6.1) illustrates a taxonomy of reported AS forms where two broad

AS classes are apparent - wavetable lookup synthesis (WLS), as introduced in section

(2.2.2) and direct computation synthesis (DCS) which describes algorithm execution by

brute force computation (e.g. a truncated Taylor’s series or the inverse FFT). Both

classifications contain the PAS and HAS subclasses, with MWS, GAS and SIS peculiar

to WLS. However, implementation of PAS using WLS requires an individual wavetable

oscillator for each partial.

GAS

HAS

PAS

HAS

SIS SMSPAS MWS

WLS DCS

Additive
Synthesis

(AS)

Figure (2.6.1): A taxonomy o f additive synthesis subclasses.

The focus of this thesis is AS within the WLS subclass, briefly reviewing pertinent DCS

techniques in section 2.6.6 and Chapter 3. We now discuss the PAS paradigm which

represents the AS subclass which promises the most generality and flexibility.

2.6.1 Partial Additive Synthesis - Advantages and Disadvantages

The PAS algorithm and methods for its effective implementation are prime motivators

for the research reported in this thesis. PAS provides accessibility to the elemental

68

components of timbral composition and expression through independent control

parameters which are consistent with the human auditory perception model. In essence,

PAS constructs directly the spectrum received along the basilar membrane of the ear

[Smith, 1991]. Independent, time-varying control of the frequency, amplitude and phase

of each partial is inherent, subject to limitations imposed by computation peculiarities of

the implementation method. Furthermore, the number of partials used in the synthesis is

bound principally by hardware processing speed.

The manipulation of partial envelope trajectories to construct new sounds is referenced

to a known point in “timbre space” by editing a partial envelope set obtained from the

analysis of a natural instrument sound. This process is perceptibly intuitive since human

auditory perception favours a frequency domain transformation. The weak association

between individual partial parameter changes and the corresponding timbral perception

remains a problem, however. Baseline envelopes are obtained from a spectrum analysis

of natural sounds using the short-time Fourier transform (STFT) which provides

localisation of frequency and time information. Partial magnitude and phase envelopes

emerging from the STFT analysis are converted into corresponding piecewise-linear

(PWL) approximated amplitude and frequency envelopes which constitute the baseline

parameters.

The principal advantages of PAS include the provision of:

• generality and accessibility of control parameters (i.e. access to the lowest levels

of a sound’s composition);

• intuitive correspondence with the human auditory perception model;

• temporal evolution of timbre;

• parametric articulation of timbre;

69

• synthesis baselined against natural sounds via established spectrum analysis

tools;

• sequential algorithm architecture conducive to hardware pipelining and therefore

“VLSI friendly”.

Conversely, the principal disadvantages of PAS include:

• high computation cost associated with synthesising numerous partials;

• high control parameter bandwidth and implicit computation cost;

• weak control parameters;

• dependency on “baseline parameter sets” to initiate the synthesis of new sounds.

We conclude that the advantages of PAS outweigh the disadvantages, excepting weak

control parameterisation which remains a fundamental characteristic of the technique.

The significant computation overhead motivates investigation of throughput-enhancing

techniques (e.g. pipelining) which exploit the sequential structure of the PAS process

model to mitigate this problem. This approach is encouraged by the reducing cost-

performance ratio of relevant VLSI and memory technology.

2.6.2 The PAS Algorithm - Decomposition and A ssessm ent

Eq. (2.3.5) reveals the fundamentally sequential structure of the PAS algorithm

involving two distinct operations: computation of partial phase, (j)k (n) , and the linear

np
combination of N partials according to y(n) = ^ A k (n) cos((/)k (n)) . The partial phase

k=i

is defined by:

U n) = 2 n T f j Fk(m) + Q>k(n) (2.6.1)
m= 1

70

and may be expressed in an equivalent, but algorithmically more amenable difference

equation form, thus:

A (”) = A (” - !) + 2 jtT F k (") + (") -<!>*(« -1) (2-6.2)

It is evident from Eqs. (2.6.1) and (2.6.2) that computation of partial phase is a

fundamental and irreducible PAS operation.

If we assume the envelope terms are already available, computation of y(ri) can be

partitioned into five distinct operations:

1. Read the kth partial envelope terms, Ak(n) , Fk(n) and $*(«).

t l i2. Compute the k partial phase term, (j)k{n) .

3. Compute the kth partial amplitude term, cos(<0k (n)) .

t l i4. Multiply the k partial amplitude term by Ak(n) .

5. Accumulate the result for k e [1, N p].

We ignore for our present discussion that some of these operations can be further

decomposed into elemental operations (e.g. computation of cos(^ («))).

Real-time execution of this algorithm requires a single processor which can compute

NP partials per sample period (i.e. processing throughput) with an acceptable latency

defined as the time between a parametric change (e.g. a change in Ak(n)) and the

corresponding change in y(n). We postulate that the computational cost of

implementing Eqs. (2.6.1) and (2.6.2) is reducible by exploiting their underlying

sequential structure within a pipelined processor architecture which spreads the

computational burden across a sequential processor manifold at the expense of

increased latency.

71

We define computational cost in this context as the total number of arithmetic

operations required to compute N partials per sample period, per processor. The

“brute force” computational cost, C , (i.e. using a non-pipelined single processor

architecture) is given by C = N c operations per sample period, where each partial

requires execution of cp elemental operations. Distributing this algorithm across a p -

stage pipeline enables elemental operations to be executed across consecutive samples,

exchanging throughput for latency. Our rudimentary pipeline comprises p distinct

t l iprocessors each optimised to a specific task, where for the i stage we execute

p

Ct = ^ N pct operations per sample period, with ci denoting the number of elemental
/=i

operations required to compute one partial. (This representation implies a non-

homogeneous pipeline where each stage executes a distinct algorithm sub-process with

a corresponding variation in the number of elemental operations per pipeline stage.)

The average number of operations per pipeline stage is given by:

Cme= - t N pC, (2.6.3)
P 1=1

It is clear that as Cave reduces, we require fewer operations to execute per pipeline

stage, hence lower cost processing can be utilised for a given N p, or conversely, a

larger N p can be realised for a given processing speed. Cave reaches a minimum when

ct -1 for all i e [1,p \ , whereupon Cme = N pi C = pN p and p = cp indicating that all

elemental operations are pipelined and the pipeline executes one elemental operation

per partial per stage with a latency of p sample periods assuming the pipeline is

clocked every sample period. Hence we have p pipeline stages each executing N p

elemental operations per sample period (i.e. clocked at N f s) in contrast to N cp

12

elemental operations per sample period for the single processor (brute force)

implementation.

The pipelined architecture is ultimately constrained by the slowest elemental

computation time which we denote by tm = max{top}, where {top} denotes the whole set

of elemental operation execution times, hence:

N pc\tm < T (2.6.4)

where c\ denotes the number of operations associated with the slowest process (tm) and

Tis unity in an optimal pipeline, whereupon N tm <T or N p < — .

The AS algorithm is inherently a feedforward process (i.e. no global feedback terms)

and so we envisage a long computational pipeline, whose latency time, tt , and hence

length is bound only by user perceptual constraints, according to:

h = p T * . (2.6.5)

where /max denotes an upper bound imposed by the maximum time that can be tolerated

between a control parameter change (e.g. a key depression) and the corresponding

auditory perception, typically on the order of 1 ms [Roads, 1996; Alles, 1980]. Since

T » 20 ps, it is evident that p < 50 and places an upper bound on the pipeline length.

The objective of an AS processor design is therefore to maximise N and minimise

Cave consistent with the latency time upper bound given by Eq. (2.6.5). We consider AS

processing architectures in Chapter 6.

2.6.3 The Significance of Partial Phase

Jensen [1999] reports that early research into the effects of relative partial phase on the

human auditory system took two opposing views depending on the auditory model used

- the frequency domain model, which asserts that phase differences are imperceptible

73

and the temporal model, which asserts that relative phase is perceptible. Perception

experiments based on listening tests and summarised in Jensen [1999] conclude that the

timbre of musical tones below middle C and the quality of the synthesised human voice

depends on partial phase relationships. These conclusions are supported by Quatieri and

McAuley [1998] in their work on analysis and synthesis using sinusoidal basis

functions.

Risset et al [1982] observe that initial partial phase is a “perceptually significant”

parameter although its effect is weak in a reverberant environment where relative phase

relationships become “smeared”. Roads [1996] reports that the initial relative phase is

particularly important in the perception of attacks and transients, helping to synthesise

short-lived components in their correct order. Anderson and Jensen [2001] report

psycho-acoustic experiments which indicate the importance of phase information in

sound localisation. Results show that phase information is critical to the perception of

spatial qualities in the synthesis of binaural sounds.

We conclude that for the synthesis of non-binaural sounds, the dynamic phase

parameter, Ok(n) , in Eqs. (2.3.5) and (2.6.1) can be replaced by a fixed (time-invariant)

phase offset, O*, to specify the initial phase of each partial. Dynamic phase control via

®*(w) produces a frequency-shifted partial according to the time rate of change of

®k(ri). With a static phase offset, dynamic partial frequency envelopes are effected

through the Fk(n) parameter.

2.6.4 Piecewise-Linear Envelope Representation

Partial and harmonic additive synthesis requires envelope data obtained from the

analysis of natural sounds to baseline the synthesis of new sounds. Partial envelopes

obtained directly from the spectrum analysis of natural sounds are generally

74

characterised by a “noise-like” amplitude variation about a well-behaved, underlying

contour. Grey [1975] reasons that the fine detail of partial amplitude and frequency

envelope variation is of less subjective importance than the average behaviour over the

duration of the sound - hence the noise-like variation is perceptually redundant. This

hypothesis suggests the utility of an approximate envelope trajectory representation

where the superfluous variations are absent leaving only the underlying trend.

Piecewise-linear envelope representation uses a line-segment approximation of the

underlying trend as exemplified in Figure (2.6.2) for a typical partial amplitude

envelope. PWL representation simplifies envelope manipulation and reduces the data

bandwidth required to resynthesise envelope trajectories in PWL form.

(a)

15050 100 200 250 300 350 4000
Time (ms)

(b)

1"

a .
E
<

100 150 2000 50 250 300 350 400

Time (ms)

Figure (2.6.2): (a) - Hypothetical PWL approximation o f a partial amplitude envelope,

(b) - Original envelope exhibiting noise-like variation about an underlying contour.

Grey and Moorer [1977] showed by the use of listening tests that resynthesis using

PWL envelope approximation is musically indistinguishable from the original tone and

75

confirms earlier hypotheses that the noise-like fine detail is largely redundant. The data

compression utility of PWL representation is demonstrated when we consider envelopes

corresponding to a real musical tone, where only the segment slope and breakpoint

threshold information need be stored. Figures (2.6.3) and (2.6.4) illustrate PWL

approximations of partial amplitude and frequency envelopes for a trumpet tone [Grey,

1975].

l
O O O Fundamental
O O O 2nd partial
O Q Q 3rd partial
QOO 4th partial
O O O 5th partial
O O O 6th partial
OOO 7th partial
O O O 8th partial

0.8

0.6

0.4

0.2

0
150 4000 50 100 200 250 300 350

Time (ms)

Figure (2.6.3): PWL amplitude envelope approximation o f the first 8 partials o f a

trumpet tone [Grey, 1975].

76

330T
|O O Q Fundamental"

N

Oc<D3O’<UUrnX

310
0 50 100 150 200 400250 300 350

Time (ms)

7 0 0 T
|O O 0 2nd partial

N
X

600'
0 50 100 150 200 250 350300

Time (ms)

Figure (2.6.4): PWL approximations o f the fundamental and 2nd partial frequency

envelopes o f a trumpet tone [Grey, 1975].

PWL envelopes are stored as a list of breakpoint values corresponding to points o f

maximum inflection (i.e. stationary points) in the underlying contour. Listed values

typically represent envelope segment slope and envelope breakpoint threshold.

Piecewise integration of the listed data effects envelope resynthesis, typically as an

integral part o f the PAS computation [Snell, 1977].

2.6.5 Metaparameters - Context and the PAS Processing Model

We define a metaparameter as a single parameter that modifies a group of partial

parameters according to a predefined mapping function [Jaffe, 1995]. Transformation

typically involves linear scaling of amplitude and frequency envelopes or a combination

of both. Metaparameters map between numerous, individually weak PAS parameters

77

and a small set of strong parameters with the objective of providing intuitive and

expressive articulation of timbre.

If we assume that the partial phase envelope is replaced by a fixed constant, O k, we

modify Eqs. (2.3.5) to include amplitude and frequency metaparameter scaling terms,

ak(n) and bk(n) , thus:

The ak(ri) terms effect “response shaping” of the synthesised spectrum whereas the

bk(n) terms provide a “harmonicity scaling” of the constituent partials. Since auditory

perception of musical pitch is related to the ratio of frequencies, we note that

multiplicative scaling of the frequency envelope term is appropriate since partial

frequency ratios relative to the fundamental are preserved.

A filter with parametrically-varying frequency response is effected by defining ak(n) as

a function of Fk(n) and additional parameters (or metaparameters) which determine the

response shape. For example, we define a PWL low-pass response (adapted from Jaffe

[1995]) which may be likened to a frequency domain filter specification, thus:

where f b denotes the breakpoint frequency and r}, r2 e [0,1] determine the response

slope before and after f b, respectively. The variables rx, r2 and f b represent

metaparameters which control frequency response shape as exemplified in Figure

(2.6.5) and affords a simple “timbral brightness” control.

(2 .6.6)

Fk(n) < f b
(2.6.7)

78

-10
co

I -30a
■S “40

"20

I "50
1 "60 - v

— rl = 0, r2 = 1
- rl = 0 .2 5 , r2 = 2

rl = 0.5, r2 = 3

”70

-80

-90
100

Partial frequency (Hz)

Figure (2.6.5): PWL partial amplitude response fo r various rx and r2 values.

(Response is normalised to a fundamental frequency o f 1 Hz with f h set at 10 Hz.)

Figure (2.6.6) illustrates the PAS processing model incorporating the ak(ri) and bk(ri)

metaparameter scaling terms. For Np partials, this model requires 2N p envelope

generators, Np sinusoidal oscillators, 4Np multiplications, Np additions and 2N p

metaparameter mapping operations each sample period.

79

f EG trigger

Envelope Generator (EG) and Oscillator Tuning Control

Sinusoidal
Oscillator

Sinusoidal
Oscillator

Sinusoidal
Oscillatorterms

A (n)

6<F‘ 6<H2 • • • 6

Figure (2.6.6): The partial additive synthesis (PAS) processing model incorporating

metaparameterisation o f partial amplitude and frequency. The q(n) and r(n) terms

denote arbitrary, time-varying metaparameters and the EG blocks represent PWL

envelope generators.

80

2.6.6 Additive Synthesis using the Inverse FFT

The inverse fast Fourier transform (IFFT) is a computationally efficient algorithm for

computing the inverse discrete Fourier transform. The IFFT transforms a complex

discrete-frequency vector, X(co) , comprising N locations (or bins) into a

corresponding discrete-time signal vector, x(n), of N samples. The IFFT is a block

processing algorithm with each block or frame containing N samples which are

transformed en bloc. Real-time synthesis requires continuous application of the IFFT to

consecutive frames containing complex frequency data obtained from the short-time

Fourier transform (STFT) of the desired sound, with N chosen to give acceptable time

resolution [Chamberlin, 1985; Roads, 1996]. Parametric control is only permissible at

2 fthe frame processing rate, where parameter step changes between frames cause
N

undesirable noise in the synthesised signal which can be mitigated by interpolation of

amplitude and frequency parameters between frames [Chamberlin, 1985].

NThe IFFT synthesises the first — harmonics of the frame processing frequency.

Arbitrary partial frequencies are synthesised by rounding the required frequency to the

nearest bin frequency and adding a phase offset to the complex frequency term to

approximate the residual frequency. However, this technique introduces phase

discontinuities at the frame boundaries with non-overlapping frames. Overlap-add

synthesis with raised cosine windows reduces the magnitude of these discontinuities and

interpolates the partial amplitude as Ak(n) evolves among frames. However, this

technique requires twice the number of IFFT computations and produces objectionable

amplitude modulation due to smearing of the phase discontinuities across consecutive

frames [Chamberlin, 1985].

81

Rodet and Depalle [1992] present the “FFT'1” algorithm which mitigates AM effects

associated with phase discontinuity smearing, although implementation of partial

frequency envelopes is computationally complex. One solution proposed by Goodwin

and Rodet [1994] employs frequency “chirps” within frames combined with an overlap-

add “splicing” algorithm. Maintaining phase continuity between frames requires

computation of a quadratic polynomial to compensate for the parabolic phase contour of

the chirp. Goodwin and Kogon [1995] propose further refinements which reduce

significant inter-frame splicing errors when the frequency increment is not constant

between frames. The computational complexity of the FFT"1 algorithm requires

carefully coded software implementation to ensure data and instruction fetches are

confined to cache memory to maximise execution speed. Freed et al [1993] report the

synthesis of approximately 320 partials at a sample rate of 44.1 kHz using an optimised

C code FFT"1 algorithm running on a MIPS R4000 workstation. Similarly, a

hypothetical VLSI implementation of a linearly combined sinusoidal oscillator bank

using a 50 MHz clock with 4 cycles per oscillator yields approximately 290 partials. In

contrast, a software driven DSP running at 50 MHz with 20 clock cycles per oscillator

sample yields approximately 56 partials. Finally, Hodes and Freed [1999] report 608

partials synthesised using a direct-form recursive oscillator algorithm executing on the

SPERT vector coprocessor [Asanovic et al, 1995].

The FFT"1 algorithm requires a STFT pre-processing operation which transforms the

partial envelopes into a short-time spectrum (STS) for subsequent time domain

transformation using an IFFT with overlap-add splicing. The associated processing

overhead is independent of the number of partials. However, computing the STS incurs

a computational overhead proportional to the number of partials and leads to an upper

bound on the efficacy of the FFT'1 algorithm [Phillips, 1996].

82

2.7 Conclusions

This review suggests a natural partitioning of the research objective according to the AS

subclass. Several distinct AS subclasses have been identified, differentiated primarily by

basis component characteristics and linear combination methodology. We therefore

partition the research objective into distinct topics which collectively align with the AS

paradigm and individually define the focal areas of this thesis. We postulate that table

lookup operations are faster than direct, brute force computation of the tabulated data

and so we consider the WLS subclass of Figure (2.6.1). Moreover, we hypothesise that

intrinsic arithmetic partitioning evident in the linear combination of manifold basis

components, as common to all AS classes, motivates the utilisation of a systolic

pipelined processing architecture to effect algorithm computation. Each pipeline stage is

optimised to execute a particular elemental function exploiting table lookup to replace

direct computation.

83

Chapter 3 Digital Sinusoidal Oscillators

3.1 Overview

This chapter presents an original perspective on the application of discrete-time (DT)

sinusoid synthesis algorithms, reported in the literature, to multiple-oscillator additive

synthesis. We have seen in section (2.3.2) that PAS requires numerous linearly

combined sinusoidal oscillators, with each having independent control of amplitude,

frequency and phase. Each oscillator must provide a constant amplitude, phase-

continuous frequency transition at any phase point. We define a phase-continuous

frequency transition as one where the underlying phase-time characteristic shows only a

change in slope at the transition point with no step change in phase. It follows that the

corresponding amplitude signal will not contain a step change at the frequency

transition point, similar to analogue (continuous-time) voltage controlled oscillator

(VCO) behaviour. The step amplitude changes which generally accompany phase-

discontinuous transitions are perceived as objectionable ‘clicks’ in the audio signal. We

consider phase continuity further in Chapter 4.

The principal objective of this review is to identify an optimal sinusoidal oscillator

algorithm using assessment criteria relevant to computer music additive synthesis. Table

(3.1.1) summarises six properties (PI to P6) against which we compare and assess

prototype oscillators in an objective manner. The time-varying amplitude, frequency

tViand phase envelopes of the k partial we define with the parameters Ak (n) , Fk (n) and

0^ (n) , respectively. There are two complementary classes of digital sinusoidal

oscillator algorithm - recursive and phase-accumulating [Tierney et al, 1971].

Recursive oscillators are essentially DT simulations of physical (e.g. mass-spring)

84

oscillatory systems having a simple harmonic motion with zero damping as their

solution.

Property Description

PI Arithmetic overhead (e.g. number of multiply and add operations)

P2 Suitability to time-division multiplexing

P3 Amplitude stability and spectral purity over time

P4 Interaction between F(n), A(n) and ®(«)

P5 F(n) response characteristic and dynamic range

P6 Phase-continuous frequency transition

Table (3.1.1): Six key properties o f digital sinusoidal oscillator algorithms requiring

consideration for optimal application in partial additive synthesis.

In general, the cost of implementation is bound by the number of multiplication

operations required per sample, ranging from two to four with recursive algorithms.

Interaction between oscillation frequency, amplitude and phase is undesirable since it

increases control complexity. This is of particular concern with the direct-form

algorithm where, despite computational simplicity, each frequency transition requires

re-initialisation with new initial conditions to maintain amplitude and phase-continuity.

This research has produced definitions of initial conditions that provide phase-

continuous frequency transition (see section (3.2.6)) and this work has been published

[Symons, 2004].

Phase-accumulating oscillators allow independent sample rate control of Ak (n) , Fk (n)

and Qk(ri) , in line with the classical definition of additive synthesis presented in

85

section (2.3). These oscillators compute the sinusoid phase explicitly from a sample rate

integration of Fk(n) and then map to the amplitude domain using a phase-mapping

function. This function can be effected with a lookup table [Tierney et al, 1971] whose

length and word size control mapping accuracy between the phase and amplitude

domains. (In subsequent discussion we drop the k subscripts for brevity.)

3.2 Recursive Oscillators

3.2.1 Direct-form

The simplest recursive oscillator is based on the direct-form second-order resonator

developed from the z-transform pair [Orfanidis, 1996]:

h(n) = r" sm(n6)u(ri) o H(z)= ‘ 2 _2 (3.2.1)
l-2 rco s(0)z + r z

where u(n) = i . The poles of H(z) comprise the conjugate pair re±j6, where
[0, n < 0

r represents the radial distance of the pole from the origin in the complex z-plane. For

r e (0,1), the pole pair describe an exponentially decaying DT sinusoid, h(n) , with

frequency controlled by 6 and amplitude envelope rn = enlnr. Setting r = 1 places the

poles precisely on the unit circle and produces a sinusoidal impulse response with

constant unit amplitude for all n .

Y(z)Since H(z) = ^ , the right hand side of Eq. (3.2.1) can be written as

(l-2 rco s(0)z -1 + r2z~2)Y(z) = (rsin(0)z~l) X (z) . Taking the inverse z-transform of

this expression yields the second-order difference equation:

y(n) = 2 r cos (d)y(n - 1) - r2y(n - 2) + r sin(^)x(« -1) (3.2.2)

86

where y(n) represents the DT oscillator output sequence and x (n - 1) is a forcing

function which initiates oscillation at n = 1, with initial conditions (IC) x (-l) = 0 and

jy(-l) = y (- 2) = 0 . The frequency control parameter, 0 , is constrained to 6 e (-tt, n)

and with r = 1 produces a unit amplitude oscillation after the oscillator is initiated.

fl, n = 0
Applying the forcing function x(ri) = AS(ri) , where 8(ri) = \ , produces an

[0, n ^ 0

output sinusoid of amplitude A given by y(ri) = Asm(n6) for x (-l) = 0 and

jy(-l) = y (- 2) = 0 . We observe that the impulse input function only serves to initiate

the recursive process; thereafter the oscillation is self-sustaining since the system has no

damping as the poles lie exactly on the unit circle (r = 1) in the complex z-plane. The

process may be simplified by using the ICs, X - l) and y (-2) , to provide the initiation

stimulus eliminating the input term, x(n) . Eq. (3.2.2) now becomes:

y(ri) = 2 cos (O)y(n - 1) - y{n - 2) (3.2.3)

with ICs X - l) and y{~2) at n = 0. Physical realisation of Eq. (3.2.3) is illustrated in

Figure (3.2.1).

1

Figure (3.2.1): The direct-form recursive oscillator.

87

/ r \\

Setting y (-l) = 0 gives y(n) = ----------sin((« +1)0), which describes a DT sinusoid
sin(0)

with amplitude —— - and no phase shift term [Abu-El-Haija et al, 1986]. With
sin(0)

y{-2) - -A sin(0), y(n) describes a sinusoid with amplitude A , and frequency a

function of 6 . We observe there is no simple definition of y (- 2) that provides

independent control of amplitude and phase for a particular frequency.

We now consider the ICs , y (-l) and y (- 2), required to generate the generalised DT

sinusoid y(n) = Asin(n& + (j>) for n > 0 . We first consider the z-transform of Eq. (3.2.3)

taking account of the initial conditions. We have Z{y(ri)} = Y(z) ,

Z {y{n -\)}= z~1Y(z) + y (-l) and Z {y(n -2)} = z~2Y(z) +z~ly (- l) + y (-2), where

Z{a} denotes the z-transform of a. Thus we obtain:

2 X - l) c o s (g) - X - 2) - y (- l)z -1
l-2 c o s(0)z -1 + z"

Y(z) = ^ ^ (3 .2 .4)

The inverse z-transform of equation Eq. (3.2.4) has the general form:

y(n) = A cos(^) sin(«0) + A sin(^) cos(n0), n> 0
(3.2.5)

= A sin(«0 + (ft), n > 0

and defines a generalised DT sinusoid with amplitude A , frequency a function of 0 ,

and phase $. If we set 0 = coT, with co the angular oscillation frequency, we can

establish a relationship between y (-l) and y (- 2) and the amplitude, frequency and

phase parameters of the general DT sinusoid of Eq. (3.2.5). The results follow from

comparing Eq. (3.2.4) with the inverse z-transform of Eq. (3.2.5) and equating the

coefficients of z° and z1 in the numerators of the two expressions. After some

algebraic and trigonometric manipulation we obtain:

88

y (- \) = As\n(<j>-9)
(3.2.6)

y { - 2) = A sin(^ - 20)

If the frequency parameter in Eq. (3.2.3) is changed from 6 to O' (i.e. o to o ') at

some sample index m , the ICs for the ‘new’ recursion, .y '(-l) and y '(-2) , will be the last

two samples of the recursion with frequency o, that is y '(- \) = y (m - \) and

y \ - 2) = y{m - 2) . The effect, illustrated in Figure (3.2.2), is to produce an

approximately phase-continuous frequency transition from o to o ' simultaneous with

a step change in amplitude from A to A ' . The underlying phase function of y(n) is

also shown in Figure (3.2.2) and illustrates the phase-discontinuity at the transition

point.

l

0.5

<D 3
~cL
6 ACG (J

JDCL
Ea c/o

-0 .5

-1
0 50 100 150 200 250

Sample index (n)

Figure (3.2.2): y{n) fo r the direct-form oscillator with frequency transition at n - 150,

showing the normalised phase with phase-discontinuity clearly evident.

89

The new amplitude is dependent on co' and the oscillation phase (a function of

y (m - 1)) where the frequency transition occurs. The new amplitude A' is found by

eliminating <j> from Eqs. (3.2.6), yielding:

A' =
f y(m - 1)cos(^yT)- y (m - 2) ^

sin(f»T)
+ (y (m - 1)): (3.2.7)

We can use (A') 1 as determined from Eq. (3.2.7) to normalise y(n) to unit amplitude

following a frequency transition. However, this introduces a step amplitude

discontinuity into y{n) as shown in Figure (3.2.3) and incurs additional computation of

the (A') 1 normalising term.

O O O Normalised y(n)
- -O - Phase o f y(n)

i :"
250

Sample index (n)

Figure (3.2.3): Normalising y(n) to unit amplitude (A = A f = l) introduces an

amplitude-discontinuity at the transition point (n = 150/

Inspecting Figures (3.2.2) and (3.2.3) we observe a phase discontinuity at the frequency

transition point. The end sample y(m -1) , o f the recursion with frequency co clearly

has a different phase to the initial sample y(m) , of the recursion with frequency co'.

90

Generating constant amplitude sinusoids with phase-continuous frequency transitions

requires computation of new ICs at every frequency transition point. These ICs require

knowledge of the oscillation phase just before the transition point which we consider

further in section (3.2.6).

We observe that a change in the frequency coefficient produces a corresponding change

in oscillation frequency simultaneous with a change in amplitude. It is also evident that

the amplitude change is well behaved in an analytic sense since there is no step

discontinuity at the transition point. Amplitude normalisation introduces a step

amplitude discontinuity at the transition point which is perceived as an audible ‘click’

and is therefore undesirable. It is not evident that the phase discontinuity observed in

the underlying phase function of Figure (3.2.2) is perceptible in isolation, but the

necessary amplitude normalisation will be. We observe that, in general, larger phase

discontinuities produce correspondingly larger step amplitude discontinuities upon

normalisation and will therefore be more audible.

3.2.2 Coupled-form

The coupled-form oscillator [Proakis & Manolakis, 1996] is illustrated in Figure (3.2.4)

and is characterised by the matrix multiplication of a two dimensional vector described

by the matrix difference equation, thus:

y M) a - b y \{ n - 1)"
b a

where a = r cos(0) and b = rsin (0).

The matrix operates on the vector [y{ (n - 1) y 2 (n - 1)]T to effect a combined 6

rotation and r scaling on each sample event, with ICs y l (-1) and y 2 (-1) obviating the

initialisation stimulus x(n) .

91

- r sin(0)

Figure (3.2.4): The coupled-form recursive oscillator.

Setting r = 1, ^ (- 1) = Acos(d) and y2(- l) = -Asin(d) produces unit amplitude

quadrature (complex) sinusoids y fr i) = cos(nO) and y2(ri) = sm(n0) for n > 0 . The

corresponding z-domain transfer functions are given by:

1 - az~x
HAz) =

H fz) =

1 - 2az~x + (a2 + b2)z~2

bz~x

(3.2.9)

1 - 2 az~x + (a2 + b2)z~2

We can factorise the denominators of Eqs. (3.2.9) into pz~x)(\-p *z ~ x) , where

p = (a + jb) and p* = (a - jb) represent the conjugate poles of H (z) with p = re+,°

and p* = re~j6 . Linearly combining these transfer functions and noting that the

numerators combine to give (1 - p*z~x) we obtain the pole-zero cancellation [Orfanidis,

1996]:

H(z) = H fz) + jH 2(z) =
1 - p* z-i 1

(\ - p z -x) (\ - p z-x) \ - p z
(3.2.10)

92

The z-plane representation therefore comprises a single pole at reje , and so the

coupled-form oscillator is a first order system. However, maintaining

r = sin2(0) + cos2(0) = 1 for all values of quantised 0 is not possible and causes

exponential growth or decay of the oscillation sequence when r ^ l . Figures (3.2.5a)

and (3.2.5b) illustrate the pole distribution over frequency in the complex z-plane, with

r = 1 and a coarse quantisation interval chosen to exaggerate distribution effects for

clarity. Accordingly, these figures have been obtained by plotting the complex roots of

1 - 2 az~l + z~2 = 0 and 1 - 2 az~l + (a2 + b2)z~2 = 0 for the direct-form and coupled-

form oscillators, respectively.

93

(a)

X-_
X -. X

0 .8 - 'X.
X

0 .6-

0 . 4 -

0 .2 -

XXX Direct-form poles
 Unit-circle

-4—
0.2

-t—
0.4

■¥-
0 0.6 0.8

Real component

(b)

-<-x-x.x, x
x ’x -x

0 .8”

0 .6 '

0.4'

0 .2 '

X-x
x’"x. X

x

XXX Coupled-form poles
 Unit-circle

0 0.2 0.4

K X
\
X 'X

k\
‘‘X
k
x\ X

\x
X
X

 ¥-
0.6 0.8 1

Real component

Figure (3.2.5): Pole distribution around the first quadrant o f the unit-circle fo r the

direct-form (a) and coupled-form (b) recursive oscillators with quantised arithmetic.

(Oscillator coefficients are quantised to 16 levels on the interval [0,1] to exaggerate

pole distribution effects.)

94

Figure (3.2.5b) illustrates two important results for the coupled-form oscillator - the

pole locations do not always lie exactly on the unit circle (r ^ l) , but are distributed

uniformly around it (i.e. the angular separation between adjacent poles is constant). We

define frequency resolution as the frequency change corresponding to a unit change in

the quantised frequency control coefficient. Uniform pole distribution as exhibited by

the coupled-form oscillator provides improved (i.e. decreasing) frequency resolution at

low frequencies in contrast to the direct-form oscillator whose non-uniform pole

distribution is illustrated in Figure (3.2.5a) [Oppenheim & Schafer, 1975]. The direct-

form pole distribution exhibits increasing angular separation between adjacent poles as

frequency tends to zero. Since frequency resolution can be equated to the minimum

possible angular separation between adjacent poles, we observe it is not constant and

increases with reducing oscillation frequency. Figure (3.2.6) illustrates the angular

position of low frequency pole-pairs for the direct-form oscillator and the relationship

with absolute frequency and frequency resolution, f r .

95

Im

#2 - 0, ^ #, => f r * constant

2 n

co = 0
 >
/ = o/ =

Figure (3.2.6): Pole distribution around the unit-circle in the complex z-plane

illustrating the non-uniform distribution o f low frequency conjugate pole pairs fo r the

direct-form oscillator.

Amplitude errors due to pole deviation from the unit circle can be reduced by

reinitialising the oscillator at periodic intervals when the amplitude error has exceeded a

predefined threshold [Curticapean et al, 2000]. The question of how to determine the re

initialisation period can be addressed by considering the amplitude envelope, r n. The

quantised pole radius, rq, with quantised frequency, 6q, is given by

r = sin2(#(/) + cos2(#(/) . We next define the pole unit-radius deviation error, d , where

d = |(rq - 1) |. For very small d , which applies for most practical quantisation intervals,

we observe that the amplitude growth and decay envelopes ((1 + d)n and (1 - d) n,

respectively) are mutually reciprocal, that is (\ + d)H = (1 -d)~ " . Therefore the metric of

max(d) computed over the operating frequency interval can be used to determine a

96

worst case amplitude envelope, (1 ± d)n, for a particular quantisation interval. The

amplitude envelope can be used to determine the re-initialisation period for a particular

amplitude error. Figure (3.2.7) plots the number of elapsed samples (i.e. time) following

initialisation for a given oscillation amplitude change against word size, b , assuming a

fixed-point number representation which gives a quantisation interval of 2~(h~l) . The

amplitude change is computed using the value of max(^) over the Nyquist interval of

24 kHz and therefore represents the worst case amplitude error for a given arithmetic

quantisation.

1 -10
l -io8
l -io7
l io6

m o 5
<D
I lio4cdC/0

1 io3

100

10

1
0.1

.X'

*,x

-O, o 'O
.O

K-X-*
* x *■

yy-

y-v-X -0y"X 0-V' X . O
X-*

v-X ,0
-X. 0'

. O '
. O>0

- *0 ■ Samples elapsed for 0.1 dB am plitude change
*cX X Samples elapsed for 1 dB am plitude change

10 15 20 25 30 35

Arithmetic quantisation (bits)

Figure (3.2.7): Elapsed samples fo r a given oscillation amplitude change against word

size varying from 8 to 32 bits assuming a fixed-point number representation computed

over the Nyquist interval o f 24 kHz.

The coupled-form oscillator permits sample rate frequency control without exhibiting

phase discontinuities typical of the direct-form. Frequency transition is inherently

phase-continuous and does not require computation of new IC values. The oscillator

requires four multiplies and two additions per sample, with further computational

97

overhead associated with re-initialisation to correct amplitude deviation over n .

Dynamic linear frequency control requires sample rate computation of cos(#(/?)) and

sin(0(ft)), with 6{n) = 27iF(n)T. Amplitude control requires an additional multiply

operation, or two if a complex (quadrature) output is required.

3.2.3 Modified Coupled-form

An improved coupled-form algorithm overcoming the inherent quantisation sensitivity

and computation cost has been suggested by Gordon and Smith [1985]. The so-called

modified coupled-form oscillator is illustrated in Figure (3.2.8) and is characterised by

the vector multiplication:

(n\ 1 — p v (n — 1̂
(3.2.10)TiO) "1 - £ y M - \)

y2(n) £ (} - £ 2)_ y2(n-\)_

where £ = 2 sin
.2 ,

Figure (3.2.8): The modified coupled-form recursive oscillator.

The algorithm requires only two multiplies per sample, is first order and most

significantly does not suffer from the quantisation sensitivities associated with

maintaining r -1 as seen with the coupled-form oscillator. The matrix determinant

represents the vector scaling (r) and is unity for all values of s and therefore

98

independent of quantisation effects. The frequency may be dynamically updated at the

sample rate requiring computation of s for each new frequency, and produces phase-

continuous frequency transitions.

Gordon and Smith [1995] present an alternative form of Eqs. (3.2.10) which considers

the phase relationship between yx(ri) and y 2(n) . We have:

(3.2.11)
y t(n) = G

where G =
sin(^>)

sin(« 0 + (p) - sin(w 0)
sin(« Q) - sin(« 0-(p)

and <p = ——— . If we set y l (-1) = 1

and <y2(- l) = cos(^) we obtain y l(n) = cos(nd) and y 2(ri) = sm.(nO-(p). As 0

71approaches zero, the phase between y {(n) and y 2(n) approaches — (quadrature).

However, as the magnitude of 0 increases and approaches ± j t , the phase between

y^ri) and y 2(ri) approaches zero (in phase). The modified coupled-form oscillator

does not provide frequency independent quadrature between yx (n) and y 2 (n) .

3.2.4 Waveguide-form

The second order digital waveguide oscillator, derived from digital waveguide theory,

has been proposed by Smith and Cook [1992] and is illustrated in Figure (3.2.9).

99

Gin)

Figure (3.2.9): The waveguide-form recursive oscillator.

This form requires one multiply and three additions per sample when amplitude and

frequency are constant. Frequency transitions are intrinsically phase-continuous and do

not require computation of new IC values. However, an additional multiply operation is

needed at each frequency transition to normalise the amplitude. In contrast to the

coupled-form, the waveguide-form oscillator does not suffer exponential amplitude drift

due to quantisation round-off errors since rounding occurs only at the tuning

multiplication involving C{n) and all other computations are exact. Quantisation in the

tuning coefficient, C(n) , can only cause quantisation in the frequency of oscillation

[Smith and Cook, 1992]. We have:

C(n) = cos (0(h))

g(n) =

G{n) =

a - c m
V (1 + C(n))

r{n)g(ri)
g i n - 1)

(3.2.12)

where 6(n) = 2nF{n)T and r{ri) is the exponential growth or decay per sample, with

r{n) - 1 for constant amplitude. When both amplitude and frequency are constant, we

100

have G(ri) = 1 and only the tuning multiply is required. Upon a frequency transition,

G(n) deviates from unity for one sample to normalise the amplitude. The normalisation

coefficient, G(n), incurs considerable computation overhead. For r(n) = 1 and a

* ™ n |0 - C (w)) (1 + C (m -1))frequency transition at sample m , we have G(m) = ------------------- -------—.
\ (1 + C(w)) (l-C (m - l))

The authors report that the waveguide-form is suitable for VLSI implementation and

can be readily applied to recursive FM synthesis. The waveguide-form offers little

improvement on the direct-form due to the computation overhead associated with

computing G(ri) at each frequency transition, particularly with sample rate control of

Fin).

3.2.5 Frequency Control and Quantisation Effects

All recursive algorithms exhibit adverse behaviour with quantised samples and

frequency control coefficient(s). If we assume that the coefficient(s) and signal samples

are represented by b fractional bits in a fixed-point number representation, two

quantisation effects are evident - frequency control sensitivity and computation round

off errors. Coefficient quantisation displaces the poles from their intended (desired)

positions on the unit circle. If the poles do not lie on the unit circle then r ^ 1 and a

sinusoid with exponentially decaying or growing amplitude is produced. If the poles are

located incorrectly on the unit circle due to quantisation effects, a constant amplitude

sinusoid is generated but with a frequency different from that intended. All single

multiplier oscillators have poles located precisely on the unit circle but at different

locations from the ideal (non-quantised) case [Abu-El-Haija et al, 1986]. The direct-

form oscillator has poles which lie precisely on the unit circle but are not uniformly

distributed around it (as depicted in Figure (3.2.5a)). For a given quantisation interval,

101

we observe increased pole separation at low frequencies and a corresponding reduction

in frequency control resolution. For the direct-form coefficient, 2cos(0), 0 can only

take on a finite number of values to ensure 2cos(0)26 takes on integer values. Furuno et

al [1975] report that the frequency coefficient must be implemented in terms of 6 with

§ <6 and 2cos(0) = 2~b\lcos{0)2b + l j . The actual oscillation frequency is then less

than the desired frequency.

Each coefficient multiplication produces a 2b bit product which must be truncated or

rounded to b bits on each recursion. Rounding is preferred to truncation since it makes

some use of the discarded information, but essentially the least significant b bits of

information are lost on each multiplication. (The nature of 2’s complement coding

causes the direct-form -1 multiplication to fit precisely within 3-bits and so is

absolutely precise.) Addition or subtraction of quantised samples produces results which

fit within the operand word size provided arithmetic overflow or underflow is

prevented.

All recursive oscillators reported in the literature have control coefficients which are a

sine or cosine function of the oscillation frequency (<9). None provide a linear transfer

function, which is a desirable property for musical additive synthesis. A linear

relationship between oscillation frequency and F(n) therefore requires computation of

the particular trigonometric coefficient equation in all cases.

Quantisation causes the oscillation frequency to differ from the limiting case (full

arithmetic precision), with error magnitude depending on the quantisation interval and

the coefficient equation. In musical applications we are concerned with relative

accuracy, that is, how precisely we can represent the ratio of two frequencies. This

arises from the fixed ratio of l$2 between adjacent semitone frequencies in the equally

102

tempered musical scale and a unit of measure in this regard is the cent, defined as of

a semitone or a frequency ratio of 120-\/2 [Chamberlin, 1985]. In particular, we require

maximum frequency control resolution at the lowest frequencies when the semitone

frequency difference is small. For example, a one semitone shift at 27.5 Hz (AO) is

approximately 1.64 Hz. Conversely, a one semitone shift at 440 Hz (A4) is

approximately 26.16 Hz. Coefficients which are a cosine function of 0 (i.e. the direct

and waveguide-forms) exhibit reduced frequency resolution at low frequencies with

fixed-point arithmetic. As 6 tends to zero the slope of the coefficient 2cos(0) also

tends to zero and therefore progressively more bits are required to represent 2cos(0) to

a given accuracy.

Hodes et al [1999] present a quasi floating-point direct-form algorithm which provides

greatly improved frequency resolution at low frequencies but requires two additional

operations per sample - an add with fixed shift and a variable barrel shift: which

increases computational overhead considerably.

Coefficients which are a sine function of 0 (i.e. the modified coupled-form) exhibit

increased frequency resolution at low frequencies for a given quantisation interval

compared to the direct and waveguide-forms. Figure (3.2.10a) illustrates the frequency

control characteristics for the direct-form and modified coupled-form oscillators with

quantisation interval sufficiently large to expose these effects (6 = 5 and f s = 48 kHz).

For the direct and waveguide-forms, the ratio between two frequencies separated by one

least significant bit with a 6-bit arithmetic quantisation is given by:

12 005(0)2* 1

2cos(0)2*|+l
(3.2.13)

103

Eq. (3.2.13) defines a relative tuning error metric which we plot in Figure (3.2.10b) over

frequency for three quantisation values. This ratio can be considered as a relative tuning

error for a particular quantisation interval. Moore [1990] suggests that the smallest

frequency ratio distinguishable by humans is around 5 cents (i.e. 2 1200 or approximately

1.0029) assuming an equally tempered scale. It is evident from Figure (3.2.10b) that

tuning error for low frequencies is above 5 cents with less than 24 bit arithmetic,

becoming progressively worse for 20 and 16 bit arithmetic.

(a)

20
NI

s—U-

0

Frequency control word

(b)
.006

27.5Hz — 24 bit quantisation
— 20 bit quantisation

■ 16 bit quantisation

.005£
i-.

1.004

.003

.002

.001

.4,3
1 10100 1 1010

Frequency (Hz)

Figure (3.2.10): (a) - Quantised frequency control characteristics for the direct-form

and modified coupled-form oscillators, (b) - Relative tuning error fo r the direct and

waveguide-form oscillators with b = 24, 20 and 16 bits.

J Direct-form
J"Modified coupled-form
 Direct-form trend
 Modified coupled-form trend

104

The coupled-form exhibits a uniform pole distribution over the whole Nyquist interval

and therefore a constant frequency resolution irrespective of absolute frequency.

Coefficient computation using a scaled F(n) argument represents a significant

computational overhead - the scaling multiplication of F(n) by 2nT and the

subsequent sine or cosine operation. The trigonometric mapping must be performed

with sufficient precision to ensure adequate F(n) resolution. This overhead is common

to all recursive oscillators discussed in the literature.

Computation round-off error leads to an accumulative error in y{n) whose nature

depends on the particular algorithm. Round-off errors arise because the output of the

coefficient multiplier must be quantised to b bits at every iteration causing the

oscillator output to deviate from the ideal over time. We can consider round-off error as

the variance of the output noise caused by post-multiplication quantisation, similar to

that presented in the recursive digital filter literature. The direct-form oscillator round-

2~lb Noff error variance over Ns samples is approximated by a (Ns) = ------— when
6 sin (0)

2 7T
N * » ^ r [Abu-El-Haija et al, 1986]. The noise variance (i.e. noise power) increases

0

steadily with N s and is inversely proportional to sin2 (0) . The direct-form oscillator

therefore requires periodic re-initialisation to prevent the build up of excessive round

off noise and hence signal-to-noise ratio (SNR) falling below an acceptable level. The

coupled-form oscillator exhibits only amplitude error due to quantisation effects,

however, re-initialisation is still necessary in practice. The modified coupled-form

provides invariant oscillation amplitude with coefficient quantisation, with SNR bound

only by sample quantisation noise.

105

3.2.6 Initial Conditions and P hase Continuity

The coupled-form, modified coupled-form and waveguide-form recursive oscillators

produce phase-continuous, constant amplitude sinusoids following a transition in the

frequency control parameter. The direct-form oscillator is attractive due to its low

computational overhead [Hodes et al, 1999], but requires computation of new ICs at

every frequency transition to maintain phase-continuity. We therefore investigate the

computational overhead associated with the direct-form IC values required for constant

amplitude, phase-continuous frequency transition.

To effect a constant-amplitude, phase-continuous frequency transition from co to co' at

sample index, m, using ICs from Eq. (3.2.6), we require the phase of the sinusoid at

sample index m - 1, just before the frequency change at m. We define the phase of a

particular sample with respect to the most recent zero phase point (cycle start) in the

sinusoidal sequence and within the interval [0,2n) . We may modulo- 2n accumulate

the oscillator phase increment, coT, synchronous with the recursive oscillator process to

compute the oscillation phase at a particular sample index. The phase is given by

</)(n) = (ncoT + ̂ o)2;r’ where 0O represents the initial phase. The modulo- 2n operation

is achieved by using an M-bit accumulator performing unsigned integer arithmetic with

initial condition

n producing the output

and 0O e [0,2;r).

ncoT + ̂ 0 ^
2 n

2 n
is accumulated modulo- 2M over

) after n samples. Multiplying the
2ai

2 71
accumulator output by —— effects modulo- 2n scaling. This approach requires two

multiplication operations and an M -bit accumulator, with M chosen to give the

2 k
desired phase resolution of —— radians. This technique provides optimal prediction of

106

the oscillation phase at sample n to a resolution governed by M, but will not precisely

track the phase of a recursively generated sinusoid due to round-off errors with fixed-

point arithmetic. Figure (3.2.11) illustrates simulated phase error behaviour with sample

index for the direct-form oscillator computed with fixed-point arithmetic. (The phase o f

the recursively generated sinusoid has been computed using a full precision floating

point arcsine function.)

0.04

0.02

-o
03u

fc 0
<L>
<D
03X*

CL,

- 0.02

-0 .0 4

0 8192 1 .64 -104 2 .4 6 -104 3.28 • 104

Sample index (n)

Figure (3.2.11): Simulated phase error between phase accumulator and the direct-form

oscillator with f = 48 kHz, f = 50 Hz and 24 bit fixed-point arithmetic. An offset

reference sinusoid is also shown and indicates that maximum error occurs at the

turning points o f y{n) as exemplified by the two markers at n = 3605 and n = 16563.

If we represent the DT phase argument, (n6 + , in Eq. (3.2.5) as <b(rz), and assume a

unit amplitude sinusoid (^4 = 1), then y(n) = sin(d>(«)) and so 0(/7) = s in '1 (y(n)) .

However, the trigonometric functions are not one-one on their whole domains. To

obtain inverse functions, each trigonometric function is restricted to a subset o f the

107

71 71domain where it is one-one. The sine function is one-one on the interval \---- , —1 with
2 2

71 71range [-1,1]. The inverse sine function thus maps [- l , l] - » [- —, —] in a one-one

manner. To unambiguously determine the phase of a DT sinusoid sample there are four

71 71 3>7U 3 7Tquadrants to consider with phase intervals [0, —) , [—, t z) , \n, —) and [— , 2k)

respectively. Considering the sign of y(ri) and the slope at y(ri) allows the interval

containing y(ri) to be determined. For a frequency change at y (m) , the slope, A , at

y (m - 1) is approximately proportional to y(m -1) - y(m - 2). Eq. (3.2.14) gives the

end-point phase, <p{m - 1), taking account of the particular phase-interval (quadrant) in

which (jt(m - 1) lies, where a denotes the Boolean AND operator:

sin_1(y (w -l)) , y (m - \) > 0 a A > 0

7r-sin \ y (m -1)), X< 0 (3.2.14)

2 7i + sin-1 (y(m - 1)), y{m - 1) < 0 a > 1 > 0

where X = y { m - \) - y { m - 2) . Eq. (3.2.14) defines ^ { m - 1) across all four phase

quadrants of the sinusoid cycle. (Substituting n + 1 for m in Eq. (3.2.14) gives a general

expression for ^(«) as a function of y(n) and y(n - 1).)

We now present a method for obtaining a constant amplitude, phase-continuous,

transition from frequency co to co'. Eq. (3.2.14) gives the DT sinusoid phase at the last

sample of the ‘first’ recursion, m - 1. The phase value, used in Eq. (3.2.6) is given

by:

</> = </>(m-l) + 0 f (3.2.15)

where the O' term represents the phase increment from the last sample at the original

frequency, co, to the phase start point of the new recursion at frequency co’ , with

6' = 27tco'. When substituting (j> from Eq. (3.2.15) into Eq. (3.2.6) to compute y '(- 1)

108

and y'(-2) for the recursion at frequency co', we consider two cases depending on the

A ’
phase interval containing <j>(m - 1). We have y'(-T) = — y(m - 1), where A and A! are

A

the amplitudes of the original and new recursions respectively, which we include for

generality. We also observe the special case y '{ - \) = y (m - 1) for unit amplitude

sinusoids or A = A! .

The IC y'(-2) takes one of two values depending on the slope of y(n) just before the

frequency change. Hence:

A
(3.2.16)

/ (- 2) =

A'cos

A'cos

cos -if y (m - 1)
I A

cos-1 y (m - 1)

\ ̂
+ 0 '

J)
\

, A>0

- O '

) J
, X <0

where X = y{m -1) - y(m - 2)

Figures (3.2.12a) through (3.2.12d) illustrate constant amplitude, phase continuous

frequency transitions using ICs obtained from Eqs. (3.2.16), and are arranged to occur

in each quadrant of the y(n) sequence. The technique is seen to give good results with a

discontinuity-free transition between the two frequencies.

109

0 128 256
Sam ple index (n)

0 128 256
Sam ple index (n)

Crt

128
Sam ple index (n)

a.£

128
Sam ple index (n)

256

Figures (3.2.12a) through (3.2.12d): Constant amplitude, phase continuous frequency

transition in each phase quadrant using ICs obtained from Eqs. (3.2.15). Frequency

transition occurs at n = 128 with the initial phase o f the first recursion chosen to

position the transition point in each quadrant.

The ICs given by Eqs. (3.2.15) give good results for oversampled signals, that is for

2nfrequencies co « — . When this condition is met, the ICs will provide a constant

amplitude, phase-continuous frequency change in any of the four quadrants of the y(n)

sequence. We note that the formulation of Eqs. (3.2.16) is more comprehensive than

that proposed by Lane et al [1997]. Using the notation of this thesis, the latter takes the

form y (- l) = y (m - 1) and y '(-2) = cos(cos_1 [y(m - 1)]- 0').

110

The single expression for y'{-2) reflects that these ICs are valid only for unit amplitude

71 2)71sinusoids and frequency transitions occurring in the interval [—, —] where the slope of

y(ri) is negative. Frequency transitions occurring when the slope of y(n) is positive

produce phase discontinuities between y(n) and y'in) using this method.

Eqs. (3.2.16) use the slope of the line between y { m - 1) and y(m - 2) to approximate

the instantaneous derivative (slope) at y(m - 1) and thereby give the particular phase

71 3 71interval containing y (m - 1). (i.e. A > 0 = > ^ (w - l) e [0 , —) u [— ,2;r) and

7T 3 7T
X < 0 => 1) e [— , —).) On closer inspection we find that this method produces

an incorrect determination of the phase interval containing y (m - 1) near local

maximum or minimum points and incorrectly places y(m - 1) in the next lower phase

quadrant under certain conditions. The phase interval over which this error can occur is

governed by the phase increment, coT, and approaches a limiting value dictated by the

Nyquist sampling criterion. As coT approaches the Nyquist limit value of n , the width

71of the error interval approaches a maximum value of — radians. This phase error causes

a phase discontinuity between y{n) and y\ri) if the frequency transition occurs near

the turning points of y(ri). The magnitude of the phase discontinuity increases as coT

approaches n . Eqs. (3.2.16) yield a progressively more accurate y'{-2) value in the

vicinity of a turning point in y(ri) as coT and hence the width of the error interval tends

coTto zero. In general, the width of the error interval at a particular frequency, co, is

radians. Figure (3.2.13) shows a contour plot where the vertical axis represents the start

phase of the first recursion and the horizontal axis represents sample index with

111

frequency transition occurring at n - 50. Contour lines represent lines of constant

amplitude in y(n) . As the start phase varies, the fixed transition sample index causes

the frequency transition phase to span 2n radians. Transition anomalies are seen in the

second recursion (right hand side of Figure (3.2.13)) for particular start phase values

which correspond to a transition point near the turning points in y(n) .

10 20 30 40 50 60 70 80 90 100
Sample index n

Figure (3.2.13): Contour plot illustrating the performance o f Eqs. (3.2.16). The vertical

axis represents start phase and the horizontal axis represents sample index. Contour

lines depict lines o f constant amplitude in y(n). Transition occurs at n = 50, with

f = I kco = \000 Hz, f = 2tccd' = 500 Hz and f s =48 kHz. (Notice the discontinuities

in the right hand region o f the plot fo r certain transition phases.)

Figures (3.2.14) parts (a), (b) and (c) provide a graphic illustration of this error

mechanism for the positive turning point of a generalised unit-amplitude DT sine

sequence, y(n), of frequency &>and sampling period T . The slope, A, o f the line

112

between two consecutive samples, y(ri) and y (n - 1), is —— which we
coT

normalise to y (ri)-y (n -V) for given signal and sampling frequencies. Eqs. (3.2.16)

test the sign of X to determine the slope on which y(ri) is located. Figure (3.2.14a)

shows the limiting case for the X > 0 condition, placing y(n) correctly in the first

quadrant. X reaches a limiting value of Xm when y(ri) is located exactly at the

maximum point on the sine curve. The magnitude of Xm is therefore

1 - sinf — - coT
U /

= 1 - cos(a>T), assuming a unit amplitude sinusoid, and the condition

holds for both turning points by symmetry. The condition places y(n) in

quadrant 1 or 4, that is, on the positive slope of the sine curve. X values satisfying

0 < X < X m can still occur over an interval when y(n) is in the second quadrant as

shown in Figure (3.2.14b). In this region the X > 0 condition would conclude that y(n)

is in quadrant 1 when it is actually in quadrant 2 - a region of negative sine slope. This

condition is maintained until X = 0 which allows the error interval to be determined by

geometric inspection as depicted in Figure (3.2.14c). A similar argument applies for the

negative turning point between quadrants 3 and 4 due to the symmetry of the sine

function.

113

X ccy (n) -y {n - \)

y(n - 1) p i
coT

 coT

(a)

y(n)

2 oc y { r i) - y (n - \)

/

(b)

Figures (3.2.14a) and (3.2.14b): Discriminating the phase o f y(n) between quadrants

1 and 2 by examining the slope o f the line between y(n) and y(n - 1).

114

Error interval

/

m

Figure (S.2.14c): The error interval where y(n) can be placed in the incorrect

quadrant. (y(n) is clearly in quadrant 2 but would be determined to be in quadrant 1

over the error interval when using the A > 0 condition as in Eqs. (3.2.15).)

By applying test conditions in line with considerations from Figure (3.2.14c) to A and

y(n) , we proceed to define an expression which gives the phase of a DT sinusoid with

amplitude A at sample y(n) given only y(n) and y (j? - l) , thus:

V A j

2n + sin 1 , y(n) < 0 a -A < A
\ 2L)

where A = y { n) - y { n - \)
A

and Am = 1 - cos (coT). The test condition intervals of Eq.

(3.2.17) are illustrated in Figure (3.2.15).

115

a < x <
71

2

2 n

O
y{ri) > 0 a X > Xn

• O
(,y (n) > 0 a 1 < Xm) v (y(n) < 0 a -A > Xm)

y{n) < 0 a —X < Xn
O

Figure (3.2.15): Phase intervals corresponding to the test conditions in Eq. (3.2.17),

illustrating their position across a single sinusoid cycle.

Using Eq. (3.2.17) we therefore define optimal values for the ICs y \ - 1) and y '(- 2) in

terms of y(m - 1), y(m - 2), A, A ' , and co' , thus:

y '{ - \) = A y (m - l)
A

/ (- 2) =

A' sin

^4'sin

y (m - 1)sin
V v

\
- O ' ,

y y
y A

+ 9'
[A J J

(y(m - l) > 0 A X > X m) v (y(m -1) < 0 a - X < Xm)

(y(m -1) > 0 a X < Xm) v (y(m -1) < 0 a -X > Xm)

(3.2.18)

where 6' = co'T, X = —— and Xm = 1 - cos(nfT).

For a constant amplitude frequency change (i.e. Af = A), the initial conditions given by

Eqs. (3.2.18) produce a precisely phase-continuous transition. Figure (3.2.16) illustrates

116

a contour plot showing constant amplitude, phase continuous frequency transitions over

a 2n range of start phase values using Eqs. (3.2.18) to generate the ICs for the new

recursion. There are no phase discontinuities evident in contrast to Figure (3.2.13).

10 20 30 40 50 60 70 80 90 100
Sample index n

Figure (3.2.16): Contour plot illustrating the performance o f Eqs. (3.2.18). The vertical

axis represents phase and the horizontal axis represents sample index. Contour lines

depict lines o f constant amplitude in y(n) . Transition occurs at n = 50, with

f = 2;rry = 1000 Hz, f = Inco' = 500 Hz and f s =48 kHz. (Notice the absence o f

horizontal discontinuities in the right hand region o f the plot.)

Sample quantisation causes Eqs. (3.2.17) and (3.2.18) to produce erroneous results

under particular conditions. The error magnitude can be reduced by increasing sample

word length and thereby reducing the quantisation interval. A unit-amplitude, 2’s

complement fixed-point fractional number representation of b bits has a range interval

of [1 -2 ~ (/,-1), -1] with quantisation interval q = 2~{h~l). Assuming a unit-amplitude DT

117

sinusoid with quantisation interval, q, and sample interval, 7, there will be a frequency,

sin fa) ̂ jjeiow which the sinusoid, y(n), is sufficiently oversampled as to cause
2 kT

groups of adjacent samples to lie within the same quantisation interval across the range

[1 — 2_(*_1), — 1]. This leads to y{n) - y{n - 1) = 0 even though the slope of the

underlying sinusoid function is non-zero and causes erroneous behaviour of Eqs

(3.2.17) and (3.2.18). As frequency increases above -sm ^ the region where adjacent
2 nT

samples lie within the same quantisation interval moves away from the zero crossing of

y{n) (where the slope is a maximum) toward the turning point. Residual errors remain

in the vicinity of a turning point in y(n) , reducing only with an increased number of

bits to represent the sample. Behaviour of the maximum phase error measured over one

cycle with b is shown in Figure (3.2.17) for a frequency of 32 Hz and fixed-point

quantisation.

0.1

o.oi

I 1,10-3
I M O 4

{ ,
3

j m o ’ 6

16 18 20 22 24 26 28 30 32

Fixed-point arithmetic word size (bits)

Figure (3.2.17): Variation o f peak phase error with quantisation bits for Eq. (3.2.17)

with f = 32 Hz and f = 48 kHz. (A low frequency test signal is used since error

magnitude increases with reducing frequency.)

118

3.3 Phase Accumulating Sinusoidal Oscillators

The concept of phase-accumulating frequency synthesis traces its origins to the

pioneering work of Mathews [1969] in connection with computer music signal

generation and Tierney et al [1971] in connection with generalised frequency synthesis.

The phase-accumulating oscillator exploits the property of an overflowing M-bit

accumulator to generate a modulo-2^ sequence used as an argument to a function which

maps from the phase to amplitude domain. Phase accumulating frequency synthesis is a

“ground up” technique involving essentially two stages - phase sequence generation

and phase-amplitude mapping. We review phase-accumulation as a precursor to the

more general wavetable lookup synthesis in Chapter 4. In this section we are only

concerned with the principal features of the technique sufficient to support a

comparative assessment against the criteria presented in Table (3.1.1).

3.3.1 P hase Sequence Generation

The accumulation process can be considered as the DT integration of frequency to give

phase. An M-bit accumulator generates a DT phase sequence whose frequency, / , is a

linear function of a phase-increment input parameter, (p. For a sampling frequency, f s ,

we have:

/ = § r (3-3-1)

f
The frequency resolution is -^p- and defined by the sample frequency and accumulator

word size alone. The phase sequence, (j){n) , is given by:

0(») = (0 (» - l) + ?>)2u (3.3.2)

We consider the development of Eqs. (3.3.1) and (3.3.2) in Chapter 4.

119

For a given sample frequency, arbitrarily fine frequency resolution is obtained by

appropriate selection of accumulator word size, M. Following a change in (p, phase

slope (and therefore frequency) transition occurs with a latency of one sample period

and is precisely phase-continuous, which we consider further in Chapter 4. The phase-

accumulator requires only adder and register elements and readily lends itself to

pipelining and time-division multiplexing. The phase-increment can be generalised as a

frequency control parameter, F(ri), that may be updated at the sample rate. Phase

control is effected by adding a phase parameter, O(n), modulo 2 to the phase

accumulator output before phase-mapping. Using an M-bit adder effects the modulo 2M

operation. The technique is illustrated in Figure (3.3.1) using a length 1M lookup table

(2n 2 7i ^(LUT). The output sample is given by y(ri) = ^4(n)sin ——F(n)nT + —̂ -O(w)
v 2 2

M,

>y(n)

Figure (3.3.1): The phase-accumulating sinusoidal oscillator process model.

Phase-accumulators using unsigned integer arithmetic produce phase sequences with

only positive slope and values bound on the interval [0,2M - 1] that overflow and wrap

around to zero. Alternatively, 2’s complement integer arithmetic, as suggested by

Moore [1977], produce phase sequences with positive or negative slope and values

120

bound on the interval [~2M \ l M 1 -1]. Positive or negative phase-increments generate

corresponding phase sequences with positive or negative slopes. Phase sequences with

negative slope underflow to positive full scale, precisely satisfying the mathematical

requirements of a negative frequency, which is essential in FM synthesis applications

[Chamberlin, 1985; Chowning, 1973]. Neither arithmetic produces radian-based phase

arguments as required by the sine function which is defined on the interval [0,2n) .

2 71
Multiplying (j){n) by —— gives radian-based phase values, bound on the interval

[0, In) or [-n, n) for unsigned or 2’s complement arithmetic respectively. Real-time

execution of this multiply operation is unnecessary with lookup table phase mapping

since it is performed during the pre-computed sine function tabulation.

3.3.2 Sinusoidal Phase-mapping by Table Lookup

The simplest phase-amplitude mapping (so-called phase mapping) uses a lookup table

containing a tabulated sine function [Tierney et al, 1971]. The lookup table contains one

cycle of a unit-amplitude sinusoid, tabulated across L equally spaced phase points and

may be defined as a vector, S, whose value, S[a], at address, a, is given by:

(2n(fl
S[a] = sin — , a e [0, L -1] (3.3.3)

V L J

Error-free phase mapping is realised when the lookup table contains 1M tabulated

samples, thereby mapping all accumulator phase states to a unique amplitude value,

assuming sufficient resolution in amplitude quantisation. Under these conditions, the

lookup table output samples are precisely equivalent to those of a generalised DT

sinusoid for all phase-increment values.

Values of M required to ensure sufficient frequency resolution in computer music

applications preclude this approach since lookup table lengths become excessive (M is

121

of order 24 bits). Truncating the M-bit phase value to the 7 most significant bits permits

smaller lookup tables of length L = 27, but introduces amplitude errors since the

accumulator phase states are no longer uniquely mapped into the amplitude domain.

The residual M - l bit-field represents the fractional distance between adjacent lookup

table values. Amplitude errors associated with truncated phase mapping manifest in the

frequency domain as components inharmonically related to the fundamental. The

magnitude, frequency and number of these components are related to the degree of

truncation and phase-increment [Nicholas and Samueli, 1987].

Moore [1977] considers phase-mapping errors in terms of an overall signal-to-noise

ratio (SNR) which we consider further in Chapter 5 as a precursor to algorithm

simulation and qualitative performance assessment. This SNR is based upon an error

defined as the difference between a reference DT sinusoid computed to full-precision

and the phase-accumulated table lookup approximation, computed over a large number

of samples with various phase-increments.

The SNR of the synthesised signal is a function of lookup table length, 21, and the

number of bits (excluding sign-bit), b - 1 , used to represent the tabulated samples.

Moore [1977] suggests an architecture having b - l = I gives a worst case SNR of

approximately 6 (7 -2)dB, which cannot be improved further by making b - \ > I

because of phase quantisation caused by discarding the M - I bit-field. Alternatively,

rounding the 7-bit phase value to the nearest sample using the M - I phase fraction bits

improves SNR by approximately 6 dB, and requires b -1 = 7 +1 giving a worst case

SNR of 6(7 -1) dB [Moore, 1977].

Truncation errors can be reduced by interpolating the lookup table access using the

discarded M - I phase bits as an implicit fractional address through appropriate

scaling. The simplest interpolation technique is linear interpolation of the lookup table,

122

S. We define a linearly interpolated sample, y(a, a a), at table address, a , and

fractional address, a a ias:

y(a, a a) = S[a] + a„(S[a + 1] - S[a]) (3.3.4)

where a - 0,1, 2 ,... L -1 and a a e [0,1). Denoting the integer and fraction bit-fields of

(j)(n) as <f>j(ri) and <j>F{n) respectively, we can express Eq. (3.3.4) in terms of <j)(n) as:

y{n) = S[^,(h)] + a in iSW , (n) +1] - S[^ («)]) (3.3.5)

where a(n) = e [0,1).

Moore [1977] suggests a linear interpolating architecture having b -1 = 2(7-1) gives a

worst case SNR of approximately 1 2 (/-l)d B , halving I with respect to the non

interpolated case for the same SNR. As I increases, the memory savings become

considerable using this method. It is evident from Eq. (3.3.4) that linear interpolation

requires a single multiplication, three add/subtract and two table lookup operations. The

technique is depicted in Figure (3.3.2).

fain) I

"5̂ $i (f0 m (*)+ i]

— > a («) (S 0 , («) +1] - S 0 ; (»)])+ S[<iS, (»)]

Figure (3.3.2) Linearly interpolated phase mapping using multiplexed access o f a

single lookup table.

123

There are principally two architectures for hardware implementation of linearly

interpolated phase-mapping. A single lookup table can be accessed twice as depicted in

Figure (3.3.2) and the first-order difference, S[^7(n) +1] - S[^7 («)], computed.

Alternatively, two lookup tables can be addressed in parallel, with the second containing

pre-computed first-order difference samples as depicted in Figure (3.3.3) [Snell, 1977].

In all cases, an additional multiplication by A(ri) is required to effect amplitude control.

Linear interpolation only approximates the amplitude value at a particular phase. We

consider lookup table interpolation further in Chapter 4 and present a phase mapping

technique that achieves ideal performance with L « 2M.

Sine
LUT

First-Order
Difference

LUT

a { r i)

Figure (3.3.3) Linear interpolation using two lookup tables to eliminate consecutive

access o f a single memory.

3.3.3 Truncated Taylor Series Sinusoidal Phase-mapping

We can implement the phase-mapping operation directly by computing sin(^(«)) using

a Taylor series of order k, given by:

3 5 7 2 k - l. . . X X X / - vsm(x) = x b---------- + ...(-1)
3! 5! 7! (2Jt-l)!

(3.3.6)
7C K

x e [-----, —]
2 2

124

The series converges rapidly to an accuracy that is governed by the number of terms, k .

For a 4th order series (k = 4), Eq. (3.3.6) can be factorised using Homer’s algorithm

[Orfanidis, 1996] to give:

sin(x)
(((f - \ '

IIW 7 ! ,

2 1
x + —

5!
x2- -

3!
x2 +1 x

(3.3.7)
r n n

X G , —]
2 2

tViEq. (3.3.7) represents the 4 order Taylor series requiring the minimum number of

arithmetic operations. In general, a k term factorised series requires k + \ multiplies,

k - \ additions and k - \ constants. A further multiply is required to normalise the

phase-accumulator argument to modulo- 2k form. The Taylor series is only defined on

71 K
the two quadrant interval [- —, —], the other quadrants are generated using

trigonometric identities, which adds computational overhead. We can assess the

performance of this method by defining an error function as the difference between the

&th-order Taylor series and sin(x) computed to full-precision. Figure (3.3.4) shows the

error variation measured in dB, against the phase argument, x , for several values of k .

71Maximum amplitude error occurs when x = ± — and requires k > 5 to be below -96dB,

tVicomparable with a 16-bit quantisation noise floor. A 5 -order Taylor series requires 6

multiply operations making it prohibitive compared to other techniques.

125

Er
ro

r
(d

B
)

“50

-100

"150

“200
 2nd order
 3rd order
 • 4th order
 5th order
 6th order

-250

V \ \ 1 t /
"300

"0.5 0.5"1.5

Argument (rads)

Figure (3.3.4): Error function for various order Taylor series approximations o f

sin(x). (16 and 24-bit quantisation noise floor levels are shown for reference.)

126

3.4 The CORDIC Algorithm

In this section we review utilisation of the CORDIC algorithm to solve the sinusoidal

phase-mapping problem. Since it is a technique not specifically developed for frequency

synthesis phase-mapping, we first develop its underlying principles using the concept of

a vector rotation.

3.4.1 The CORDIC Algorithm as a Vector Rotation

The CORDIC (Coordinate Rotation Digital Computer) algorithm uses a convergent

iteration process to compute the rotation of a vector in a Cartesian coordinate system.

The technique was first presented by Voider [1959] in connection with efficient (bit-

serial) airborne computation, and later unified by Walther [1971]. The CORDIC method

is based on the simple observation that a unit length vector, [l 0]r , rotated by 6 , has

an end point [cos(0) sin(#)]r . The CORDIC transformation is computed over m

iterative steps, each involving a ‘partial rotation’ by some fraction of 6 .

The rotation of a vector, [x0 y 0 J , by an angle, 6 , in Cartesian coordinates produces

the vector [xm y m]T, and can be represented by the matrix operation:

1
5

*
i

cos(0) - sin(0)
sin(0) cos(0) To

Using the trigonometric identity cos(0) =
1

^/l + tan2(0)

i 1 - tan(0) *0
y m. ^ l + tan2(0) tan(0) 1 _To_

(3.4.1)

Eq. (3.4.1) can be expressed as:

(3.4.2)

127

In the CORDIC method, rotation by 0 is implemented by a number of partial rotations,

a t . Any angle, 0 , within a defined interval can be represented to a particular accuracy

by a weighted sum of m partial angles, a t , with unitary weights, cr, e {-1,1}, thus:

m - 1

0 = ^ < 7 , a, (3.4.3)
/=0

where cr, e {-1,1}. The magnitude of a t decreases with index, i . The initial a i values

are weighted positively until the sum exceeds 0 , whereupon the a, values are

negatively weighted until the sum falls below 6 . This process is repeated for m

iterations until a specified accuracy is reached. The sign of the difference between 6

and the sum given by Eq. (3.4.3) controls the value of cr,.

The partial angles, a i , are chosen according to:

tan (<*,) = 2 ' i = 0,1,2,3,... m -1 (3.4.4)

An auxiliary variable, zi9 represents the accumulated partial angles and is used to

control the value of cr,. As m increases, z(tends to 0. For zQ=0 we have:

zm =zi - 0) tan_1(2_i)

(3.4.5)

cr, =
+ 1 zi > 0
-1 z, < 0

The CORDIC rotation is not a pure rotation but a rotation-extension since the

magnitude of the rotated vector increases as the rotation proceeds. This necessitates

introduction of a scaling factor to keep the vector at constant magnitude. Eq. (3.4.2) can

now be written as the matrix difference equation:

“v/+1
y M

= k,
i

<t . 2 '

-<7,2-
1

X,
y.

(3.4.6)

128

where the scaling factor, kt , is given by kt = . * , and can be generalised for m
Vl + 2-2'

iterations to a single value given by:

m - \“Ifek <3A7)
k approaches a limiting value of approximately 0.607253 as w -» oo.

We can move the kt scaling operations to the end of the iteration process, combining

them into a single multiplication by k . The iteration difference equations without the kt

scaling term become:

x m = x i - ° , 2 ~‘ y ,

y M = y i+ ° i2~‘xi (3-4.8)

zm = zi ~ <Ji tan_1(2“')

where z = 0 ,1 ,2 ,...m .

Eqs. (3.4.8) require add, subtract, and arithmetic bit shift operations only. A table-

lookup operation provides each tan-1 (2"') value. The principal advantage of the

CORDIC algorithm arises from the simplicity of these operations, especially when

considering VLSI implementation. After m iterations, the xm and y m values given by

Eq. (3.4.8) must be multiplied by k to give the correct result, thereby involving a costly

multiply operation. Alternatively, selecting the initial values x0 =k , y 0 = 0 and z0 = 0 ,

eliminates this multiply operation with xm = cos(0) and y m = sin(0) after m iterations.

This process is illustrated in Figure (3.4.1) computing sin
n over 15 iterations.

129

0.75

0.5
"STTTt

0.25

"0.25

"0.5

Iteration step

Figure (3.4.1): An example o f the CORDIC algorithm computing sin
V o

over 15

niterations. The red trace indicates the convergence to sin^— as the iteration proceeds.

Since tan 1 (2 ') « 2 ' for large i , b bits of phase-mapping precision can be obtained

with b iterations. The process remains convergent on the interval 0 e [-r, r] , where

oo
r = ^ t a n _1 (2"')«1.743286 radians. For convenience, we take the region of

/=o

71 7i
convergence as ., —]. Values of 0 outside this interval can be processed by using

the trigonometric identities: cos(x ±2nn) = cos(x), sin(x ±2 nn) = sin(x),

cos(x -7r) = - c o s (x) and sin(x - n) = -s in (x), where n = 1 ,2,3,..., to bring 6 within

the convergent interval.

130

3.4.2 CORDIC Application in Digital Sinusoidal Oscillators

Rotation of the vector [l 0j j by <j)(n) is equivalent to the discrete-time, unit-

amplitude, complex sinusoid (cos(^(«)) + sin(^(«))y). The rotation is therefore

mapping from the phase to amplitude domain. The so-called rotation form CORDIC

algorithm, outlined in section (3.4.1), performs this mapping and requires b iterations

for b bits of phase resolution. It is not a synthesis ‘from scratch’ technique and requires

prior computation of a phase sequence, <j>(n) , using phase accumulation as discussed in

section (3.3).

Application of the CORDIC algorithm requires partitioning of an M-bit phase word,

(j){n) , into two fields. Denoting the most significant bit (MSB) of (j){n) as <j>(n)M_}, the

two bit field, (^(«)M_i, ^(«)M_2) 5 represents the phase quadrant containing 0(n) . The

5-bit field, (<f>(n)M_2, (j>{n)M_3,... (f){n)M_B_x), represents the z0 phase value which

initialises the CORDIC algorithm. Maximum phase resolution is obtained when

B - M - 1, otherwise the phase word is truncated when B < M - 1. Figure (3.4.2) shows

the architecture of a CORDIC phase mapping processor including the (j)(n) bit-field

partitioning. The complement blocks are controlled by the quadrant bit-field

{(f){n)M_[i (j>{n)M_2) to correctly reconstitute the sinusoid.

131

\A(ri)k O]3

<tKn) 2's
ComplementComplement

CORDIC
Processor

/

1^(«) M - 2 00 ! 01

B+ 1 bits
< Quadrant bits >

^(W)m-5+1

B CORDIC processor phase bits

Figure (3.4.2) CORDIC phase mapping architecture.

The phase accumulator output is bound according to (f){n) e [0,2M - 1]. Since the

CORDIC algorithm expects z0 in radians we modify Eq. (3.4.5) thus:

ZM = Zi - ° i
v 71 J

tan”1 (2_/)

(3.4.9)

+ 1 z, > 0
cr, =

- I zf < 0

The algorithm is initialised with [jc0 y 0 J = \kA(ri) 0]r to obtain a sinusoid with

amplitude A(ri).

The CORDIC algorithm typically uses fixed-point arithmetic within each processing

stage. Barrel-shift operations with a fixed word size introduce truncation errors at each

stage and leads to degraded SNR for small sinusoid amplitudes. A CORDIC

132

architecture using floating-point arithmetic has been suggested [Phillips, 1997] which

mitigates truncation errors at the expense of increased computational complexity.

3.4.3 Sequential and Recursive CORDIC Implementation

The CORDIC algorithm can be implemented in essentially two ways - a sequential

pipeline of m processing elements, each performing a sub-rotation in accordance with

Eq. (3.4.8) or a recursive utilisation of a single processing element iterated m times.

The recursive approach is problematic in multiplexed systems computing one sinusoid

sample per clock cycle since process clocking is increased w-fold. The pipelined

architecture incurs an additional inter-stage register overhead but does not require an

explicit barrel-shifter function within each stage. This operation is effected by a

hardwired interconnect between the process stages. However, sinusoid computation

now has a latency of m sample clock cycles and is problematic for large m as required

for precise phase-mapping. Figure (3.4.3) illustrates both forms, with the processing

element detail shown in Figure (3.4.4). One table lookup, three addition/subtraction, and

two barrel shift operations are performed in parallel within each stage.

•*0
To
zn

CORDIC
Element

CORDIC
Element

CORDIC
Element * y .

-» z m

Sequential Architecture

To
Zn

Mux CORDIC
Element

Reg
-> x.

T»

Recursive Architecture

Figure (3.4.3) Sequential and recursive implementation o f the CORDIC algorithm.

133

n -\

'± select

,-(#»-!)

'± select

>Z,

ROM
± select

Figure (3.4.4): CORDIC processing element architecture. This represents the nth o f m

stages for a sequential architecture and a single stage within a recursive architecture.

A floating-point CORDIC algorithm [Phillips, 1997] represents an alternative to

sinusoidal phase-mapping using interpolated table lookup. Furthermore, the arithmetic

simplicity of component operations suggest the technique is attractive to VLSI

implementation. Madisetti et al [1999] describe a phase-accumulating oscillator using

CORDIC phase-mapping which is based upon the sequential architecture outlined

above. However, VLSI design and control complexities favour the interpolated table

lookup approach since it comprises highly optimised standard components [Phillips,

1997] and incurs less computational latency. In Chapter 5 we present a phase mapping

technique which achieves ideal performance (SNR bound by quantisation noise) with

greatly reduced lookup table length.

134

3.5 Conclusions

The number of arithmetic operations, state variables and control parameters are

important metrics which decide complexity and throughput performance in multiple

oscillator embodiments. Assessment metrics PI to P6 are summarised in Table (3.1.1).

Multiplication is the principal arithmetic operation due to its relatively high execution

time and larger VLSI area requirement. All recursive forms require two state variables

and between one and four control coefficients in contrast to the single state variable and

phase increment parameter of the phase-accumulating oscillator. All recursive

oscillators exhibit a non-linear relationship between oscillation frequency and the

control parameter(s) (property P5 of Table (3.1.1)). Linear frequency control imposes

additional sine/cosine operations with a scaled argument, greatly increasing

computational overhead.

The direct-form oscillator requires only one multiplication and one addition operation

(property PI) and suffers no exponential amplitude instability. A linear increase in the

round-off error variance over time is typical necessitating periodic re-initialisation to

maintain SNR below a predefined level (property P3). Phase-continuous frequency

transition requires a new IC computation comparable in complexity to the waveguide-

form amplitude normalising multiplication (properties P4 and P6). The coupled-form

requires four multiplication and two addition operations (property PI) and has

inherently unstable oscillation amplitude (property P3), requiring periodic re

initialisation to maintain amplitude drift within a predefined error bound. Frequency

transition is phase-continuous with no re-computation of IC values necessary (property

P6). The coupled-form exhibits a uniform pole distribution around the unit-circle

causing a corresponding uniform distribution of frequencies across the Nyquist interval.

The modified coupled-form requires two multiplication and two addition operations but

135

provides phase-continuous frequency transition (property P6) and unconditionally stable

amplitude (property P3). SNR is bound only by quantisation noise and low frequency

control resolution is optimal. In contrast, the direct-form and waveguide-form both

exhibit diminishing control resolution at low frequencies for a particular coefficient

quantisation interval. The waveguide-form requires two multiplication and three

addition operations and provides phase-continuous frequency transition with

unconditionally stable amplitude (property P3). However, direct computation of the

amplitude normalising coefficient (property P4) is problematic. Table (3.5.1)

summarises the performance attributes of the four recursive oscillators.

136

Property Direct-Form Coupled-
Form

Modified
Coupled-
Form

Waveguide-
Form

Multiplication overhead
including A(n) (PI)

2 N o te 1 5(6) Note2 3 (4) ^ ^ N o te 5

Addition overhead (PI) 1 2 2 3

State variables (P2) 2 2 2 2

Frequency coefficient(s) 1 4 2 1

ICs 2 2 2 2

Phase-continuous
frequency transition (P6)

No Yes Yes Yes

Frequency transition ICs Y N o te 4 0 0 0

Normalisation
multiplication

0 0 0 ^ N o te 3

Amplitude stability over
n (P3)

Quasi-stable
N o te 5

Unstable Stable Stable Noiel

F(n) - amplitude
interaction (P4)

Yes NoK6 No No Yes Nole3

F(n) control (P5) Non-linear Non-linear Non-linear Non-linear

Low-frequency control
resolution

Low Uniform over
Nyquist

High Low

®(«) control (P5) Re-initialise Re-initialise Re-initialise Re-initialise

1 We discount the multiplication by -1 as trivial.
2 A further multiply is only required for quadrature amplitude scaling.
3 An additional amplitude-normalising multiplication is required at every frequency transition.
4 Two ICs are required, but only one needs to be computed explicitly for constant amplitude.
5 Round-off error noise power increases as N s , but there is no exponential amplitude drift.

6 Non-interactive frequency-amplitude control requires re-initialising with new ICs.

Table (3.5.1): Summary o f recursive oscillator performance against metrics defined in

Table (3.1.1).

137

The phase-accumulating oscillator requires a single addition and table lookup operation

and has an intrinsically linear frequency control characteristic with resolution bound

only by the accumulator word size. The technique provides access to the underlying

phase-time function and forms the basis of advanced synthesis techniques, in addition to

providing a means of precise phase control. The oscillator provides unconditionally

stable amplitude irrespective of frequency and time. Phase-mapping errors due to

truncated lookup table addressing manifest themselves as a degradation in SNR and can

be reduced by interpolated table lookup. We have considered direct computation of the

sine function and found truncated Taylor series computations excessive in terms of the

number of multiplication operations required for reasonable phase mapping precision.

CORDIC phase mapping significantly reduces the lookup table overhead at the expense

of computational latency and is only applicable to sinusoidal phase-mapping.

We conclude that the phase-accumulating oscillator is the most flexible architecture

from a synthesis and efficiency of implementation perspective. However, the direct-

form and modified coupled-form recursive oscillators represent an interesting

alternative in particular applications. In Chapters 4 and 5 we develop wavetable lookup

synthesis based upon the phase-accumulating oscillator as a generic table lookup

synthesis technique using sinusoidal and non-sinusoidal phase mapping functions. The

inherent arithmetic partitioning of the phase-accumulating oscillator enables processing

in the phase domain and underpins a subclass of computationally efficient harmonic and

partial based additive synthesis techniques which we investigate in Chapter 6. We

define phase domain processing as the algorithmic modification of phase information,

prior to the phase-amplitude mapping process, to effect partial frequency or phase

control.

138

Chapter 4 Wavetable Lookup Synthesis

4.1 Background

In Chapter 3 we introduced the phase accumulation oscillator as a basis for synthesising

both sinusoidal and non-sinusoidal signals using a phase-amplitude mapping function

based on table lookup. This technique provides greater flexibility compared with

recursive algorithms which are restricted to the synthesis of sinusoidal signals and

hampered by nonlinear control characteristics and the need for periodic re-initialisation

in some cases. Phase accumulation synthesis is fundamentally a two-stage process -

phase sequence generation and phase-amplitude mapping. This approach underpins a

synthesis paradigm built on discrete phase-amplitude mapping that we generalise as

wavetable lookup synthesis (WLS). A subclass of WLS involves direct manipulation of

the phase sequence to effect frequency scaling or phase shifting (phase domain

processing) prior to phase-amplitude mapping, which we investigate in Chapter 6.

Chapter 3 introduced phase accumulation and sinusoidal phase-mapping algorithms.

However, WLS promises the synthesis of signals with time-varying, multiple harmonic

spectra.

Chapter 4 reviews and develops WLS as applied to the generation of musical signals.

WLS begins with a DT phase sequence, whose slope represents frequency, which is

then mapped to the amplitude domain using a lookup table or wavetable. The

fundamental premise for WLS is that table lookup operations are much faster than

algorithmically computing the tabulated samples from scratch in real time. The

computational efficiency of WLS therefore increases with the number of arithmetic

operations that would be needed to compute each tabulated value in real time.

139

We begin by presenting a taxonomy of wavetable classes currently prevalent in the

literature [Roads, 1996] and review the concept of resampling tabulated signals to effect

frequency control. We investigate frequency as the time rate-of-change of phase which

leads naturally to phase accumulating frequency synthesis and the concept of phase-

continuity. We conclude by investigating optimal phase mapping and the special case

when a wavetable contains a complete sampled sound - so-called sampling synthesis as

introduced in Chapter 2.

4.1.1 Foundations of W avetable Lookup Synthesis

A wavetable is a list of regularly time-sampled, amplitude-quantised signal values

stored in consecutive memory locations as a sequence of numbers. The signal can be a

single cycle of a periodic function (e.g. a sinusoid) or many cycles of a complex quasi-

periodic signal extending over an arbitrary period of time. Fundamentally, a wavetable

performs a discrete-time (DT) translation from the phase to amplitude domain - the so-

called phase mapping function. The tabulated sample values are necessarily quantised in

amplitude requiring a particular number of bits in the memory word and number

representation format, (e.g. 16 bit, fixed-point 2’s complement.) The samples may be

computed in non real-time from harmonic amplitude and phase data using a Fourier

series summation [Chamberlin, 1985] or obtained directly by sampling a sound signal

and quantising using an analogue-to-digital converter - so called ‘sampling synthesis’

[Roads, 1996]. We define two distinct wavetable classes which are exemplified in

Figures (4.1.1a) and (4.1.1b) - single cycle wavetables containing precisely one cycle of

a periodic function, where the beginning and end of the wavetable are phase-continuous,

and multi-cycle wavetables containing an entire sampled sound or pre-computed

waveform sequence.

140

Phase, 2n —
16

1

Amplitude,

T[a] = sin|
\ 16,

-1

T [a] 0 0.38 0.71 0.92 1 0.92 0.71 0.38 0 -0.38 -0.71 -0.92 -1 -0.92 -0.71 -0.38

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure (4.1.1a): A single-cycle wavetable tabulating precisely one cycle o f a sinusoid

over 16 samples. A coarse amplitude quantisation interval has been chosen fo r clarity.

T[a\ represents the tabulated wavetable sample at address a.

Sample index, n

1

Sample value
0

T[cr] = y(n)

-1

-3.2.10'-6.4.10'- 1.6 . 10' -1.3.10' -9.5.10'

L- 1L-2L-6 L-5 L-4 L-3

TW 0.022 0.045 0.067 0.089

Figure (4.1.1b): A multi-cycle wavetable tabulating a complex signal, y(n), (e.g. a

sampled sound) over L samples. T[a\ represents the tabulated wavetable sample at

address a.

141

All wavetables can be grouped into one of these two subclasses. Further classification is

possible according to signal characteristics and the method used to compute the

tabulated values as depicted in the taxonomy of Figure (4.1.2).

May be decomposed into a contiguous
sequence o f single-cycle wavetables

Time-domain

Sinusoid

Time-domain

Sampled

PeriodicQuasi-periodic Partial series

Complex

Fourier series

Pre-computed

Sampled

Harmonic series

Figure (4.1.2): Single and multi-cycle wavetable classification.

The systematic addressing of a wavetable to resynthesise the tabulated signal at a

particular frequency is the basis of all WLS. Single cycle wavetables are circular data

142

structures with beginning and end points precisely phase-continuous to ensure a

discontinuity free transition when the table index wraps-around. They contain precisely

one cycle of a periodic function and are addressed cyclically, modulo the table length, to

generate a continuous signal at a particular frequency. Violation of the phase-continuity

condition causes a corresponding amplitude discontinuity as the modulo addressing

wraps around the wavetable end point.

Multi-cycle wavetables typically contain a sampled sound (e.g. an entire musical

instrument note) although they can be pre-computed directly. Multi-cycle wavetables

can be decomposed into a contiguous sequence of single-cycle wavetables, as illustrated

in Figure (4.1.3), if the number of samples in the fundamental period of the tabulated

signal equals the single-cycle wavetable length. This condition can only be satisfied if

the fundamental and partial frequencies are constant over time and follow an harmonic

distribution. This decomposition enables the resynthesised pitch and timbral evolution

over time to be independently controlled.

<------------------------- k contiguous wavetables >

...
...

../
’V "

\/

-------------------- kL samples --------------------------------------- >

0 1 2 k — 2 k - l

Figure (4.1.3): Decomposing a multi-cycle wavetable into a sequence o f contiguous

single-cycle wavetables which are accessed sequentially to synthesise time-varying

timbre.

The physical wavetable memory space (comprising kL samples in the example of

Figure (4.1.3)) is organised into a contiguous sequence of k wavetables. The wavetable

address now comprises a sample component (the least significant bits) and a table

143

component (the most significant bits) which specifies the particular wavetable (and

therefore timbre) being indexed by the phase accumulator. Quasi-periodic signals

cannot be subdivided into contiguous single-cycle wavetables of fixed length without

introducing discontinuities at the wavetable boundaries.

The signal-to-noise ratio (SNR) of the tabulated signal represents an important quality

metric. We define SNR as the ratio of signal power to noise power, computed over the

length of the wavetable, with noise including both stochastic and deterministic (i.e.

unwanted) components. The SNR of a pre-computed wavetable signal is bound entirely

by the signal-to-quantisation-noise ratio (SQNR) corresponding to the number of bits

used to represent the sample values, the tabulated signal amplitude relative to full scale,

and the probability density function (PDF) of the tabulated signal [Zolzer, 1997]. We

consider the SQNR of tabulated signals further in section (4.1.2). Multi-cycle

wavetables obtained by sampling a sound invariably contain additional noise

components due to incomplete suppression of spectral components above the Nyquist

frequency prior to sampling. These components, whose magnitude can only be

minimised, will alias into the Nyquist interval and can therefore be considered as

unwanted noise-like components additional to amplitude quantisation noise. Pre

computed wavetables (both single cycle and multi-cycle) have SNR bound entirely by

quantisation noise since their frequency domain characteristics can be band-limited to

the Nyquist interval prior to tabulation. An important exception are wavetables specified

in the time-domain (i.e. specified completely by shape). This easily introduces

frequencies above the Nyquist frequency which will alias into the Nyquist region upon

resynthesis and degrade SNR.

144

4.1.2 W avetable Signal Tabulation

A wavetable is fundamentally a list of numbers which represent time-sampled signal

amplitudes. In principle, this list can be generated in many ways. For example, a direct

time domain specification (e.g. ‘drawing’ the desired waveform) or specification in the

frequency domain as a weighted series of harmonically related sinusoids. Time domain

specification allows the shape of the waveform to be precisely controlled and was one

of the input techniques available in the Fairlight CMI series of computer music

synthesis systems [Roads, 1996]. However, this method risks the introduction of

discontinuities into the waveform, especially at the waveform end points, leading to

frequency components above the Nyquist limit that will alias into the Nyquist interval

upon resynthesis. However, the principal disadvantage of time domain specification (i.e.

drawing or shape specification) is the limited correlation between waveform shape and

perceived timbre which bears a much stronger relation to the harmonic structure of the

signal [Chamberlin, 1985, Moore, 1990]. Sampling real musical signals (e.g. a

complete musical instrument note) is an alternative time domain wavetable filling

technique, generally known as ‘sampling synthesis’ in the literature [Roads, 1996].

Assuming the sampled signal is appropriately bandlimited prior to sampling and

quantisation, there can be no tabulated frequency components above the Nyquist limit,

unlike direct time-domain specification. We consider sampling synthesis further in

section (4.2.6).

We now consider the tabulation of a precisely periodic signal using a concise analytical

definition where there are two dimensions to consider - phase and amplitude. In the

digital domain both of these dimensions necessarily take on discrete values. When

computing samples of a particular signal in real-time, the independent phase variable is

a function of discrete time, n T , where n is the sample index and T is the sampling

145

period. However, the non real-time nature of signal tabulation causes the phase variable

storage forces the dependent amplitude variable to become discrete, or quantised

according to the number of bits available in the wavetable memory locations. We begin

by considering the phase of a tabulated signal.

A signal, fix), is periodic with period r if f (x) = f (x + r), where x denotes the phase

variable. For the simple case when we tabulate the sine function, f (x) = sin(x), we note

the periodicity condition is satisfied when r = 2k . The sine function should therefore

be tabulated on the interval x e [0, 2n) which is mapped to the wavetable address range

[0, L - 1], where L is the wavetable length. To effect this mapping for a particular

X Clwavetable address, a, we must preserve the equality — = — when computing the
2 n L

tabulated values of fix) to ensure phase continuity at the wavetable boundaries. The

phase argument of our periodic signal, f (x) , is therefore given by

x = 2n —, a g [0, L — 1], where a is analogous to the phase of the tabulated signal with
L

2 ka resolution of — radians. Sine and cosine wavetables of length L are defined thus:

Wavetables generated using Eqs. (4.1.1) and (4.1.2) satisfy T[a] = T[a + L] and

T[L] = T[0]. The end and beginning samples of the wavetable are therefore phase-

continuous as required.

to become a function of the wavetable address variable. Similarly, the nature of digital

L

(4.1.1)

(4.1.2)

t l i *where T[a] denotes the a location of the vector T which represents the wavetable.

146

It is informative to compare a single cycle sine wavetable defined according to Eq.

assuming a single cycle is tabulated and is the only frequency related parameter

preserved in the tabulation of a periodic signal - the absolute values of sample rate and

sinusoid frequency are lost. The time index, n, is equivalent to the wavetable address, a,

over the interval [0, L - 1].

We extend the tabulation of sinusoids to define a single cycle, multi-harmonic

wavetable vector using the inverse discrete Fourier transform (IDFT) to effect harmonic

additive synthesis. The IDFT may be recast in non-complex form allowing the

wavetable values to be specified as a function of wavetable address, a, the highest

harmonic number, Nh, and the harmonic amplitude and phase vectors, A and ® ,

respectively. We have:

t f iwhere Ak e [0,1] and ®k e [0, 2n) are the k harmonic amplitude and phase

coefficients respectively and L is the wavetable length in samples. By choosing

appropriate amplitude and phase values for each harmonic component, any single cycle

periodic function can be tabulated, subject to the bound imposed by the Nyquist limit on

the highest harmonic number in the series. The number of samples per cycle in the

I f(4.1.1) with a generalised DT sinusoid given by s(n) = sin 2 n n — , with frequency,/
V f s)

f
sample rate, f s, and time index, n. The ratio — is equivalent to the wavetable length, L ,

a e [0 ,1 -1] &e[0,WJ (4.1.3)

147

L
fundamental is simply L. Therefore, a particular harmonic number, h, will have —

h

samples per cycle and so the highest harmonic multiplier in the series, Nh, will be

bound by Nh < y to satisfy the Nyquist sampling criterion.

Tabulating a signal (e.g. a sinusoid), necessarily involves amplitude quantisation

according to the wavetable word size, b. We define the signal-to-quantisation-noise

ratio, SQNR as:

where g\ and cr? represent the signal and quantisation error variance, respectively. For

a typical quantiser, defined by the function Q(x) , with quantisation interval q, input

SQNR = lOlog
I a.

(4.1.4)

2 Qrange ± xmax and word-length b bits, we have cre = — and q = 'max . We define

Q(x) , thus:

0(x) = q - (4.1.5)

max

We now define a peak factor (ratio of peak to RMS value) PF max _

2 xexpress the signal and quantisation error variances as crx = —
2
max and

a 2 1
cre2 = ^ - = — x2ax 2 2b [Zolzer, 1997]. We can now express Eq. (4.1.4) as:

dB (4.1.6)

148

A sinusoidal signal with PF = V 2 gives SQNR = 6.026 +1.76 dB. A signal with

uniform probability density function (PDF) and PF = f 3 gives SQNR = 6.026 dB.

Although not pertinent to a discussion on tabulating simple periodic signals, it is evident

that uncompressed musical signals typically exhibit peak factors between 16 and 20 dB

[Eargle and Foreman, 2002]. Therefore, sampling and quantising such signals for

wavetable tabulation causes SQNR to be between 13 and 17 dB worse compared to the

baseline value for sinusoidal signals. Indeed, all signals with PF > f l give a reduced

SQNR upon quantisation compared to the sinusoidal baseline value.

4.1.3 Sampling a Tabulated Function

Consider a radix-2 length wavetable filled with L samples of a continuous-time (CT)

sinusoidal signal, x(t) = cos(27ifat) , of frequency f a, uniformly sampled at f sa samples

per second. The wavetable therefore contains L samples of the corresponding DT

sequence x(«) = cos(27fanTa) f with each unit address increment corresponding to a

sample interval of Ta = — seconds. The number of x(n) cycles, Nc, contained in the
f s a

wavetable is given by:

N c = i f - (4.1.7)
J sa

where Nc e [1, to satisfy the Nyquist sampling theorem [Orfanidis, 1996] which

requires more than two samples per cycle. If L is radix-2, then Nc always takes integer

values preventing a discontinuity between the beginning and end of the wavetable. We

therefore assume for this discussion that Nc takes on radix-2 integer values.

149

We resynthesise the tabulated signal at a new frequency, / , by cyclically addressing the

wavetable with a log2(Z) -bit counter whose value is incremented by cp at the read

sample rate, f sb. Wavetable output samples feed a digital to analogue converter (DAC)

and reconstruction filter to generate the CT signal. Since the wavetable address,

a(n) = (j)(ri) = (n<p), is equivalent to the phase of the tabulated signal the wavetable

provides a phase-amplitude mapping. This hypothetical arrangement is illustrated in

Figure (4.1.4) where the wavetable is filled by setting (p = 1 and using f sa to clock the

address generator until L samples have been written.

/«

ADC

Address 1
increment (p

x{n)
Wavetable

<

y(n)
DAC

Address
Generator

* yit)

fsc

fsl
Clock

— Wavetable write (fill) activity Wavetable read activity

Figure (4.1.4): Hypothetical arrangement for tabulating a CT sinusoidal signal, x(t),

and resampling to effect resynthesis at a new frequency, y (t) .

During resynthesis, the wavetable is cycled every seconds with output frequency,
<Pfsb

f given by:

/ =_ M L l (4.1.8)

For (p> 1 the tabulated sinusoid is effectively sampled at a lower frequency than the

original sampling frequency, f sa. A unit address increment represents a time interval of

150

Ta = — seconds and so an increment of cp represents a sample interval of (pTa seconds
fsa

f Lor a new sampling frequency of — . For Nc tabulated cycles, we have — samples per
<P K

cycle and so (p e [1, to satisfy the Nyquist sampling theorem. We observe that the
2NC

f
samples per cycle parameter, , is the only frequency related information preserved

fa

when a function is tabulated.

Combining Eqs. (4.1.7) and (4.1.8) to eliminate Nc we obtain:

y _ (pfafsb_ (4.1.9)
fsa

where © e l l , —) .
2 N f

Assuming a unified sample rate we have f sa = f sb= f so Eq. (4.1.9) becomes / = (pfa

and substituting from Eq. (4.1.7) with N c = 1, we obtain:

f = < P l = (4.1.10)

This discussion has described a rudimentary system for a digital oscillator which

samples a tabulated signal stored in a wavetable with oscillation frequency constrained

to integer multiples of the original signal frequency, f a .

Let us now assume we have a single cycle of a sinusoid tabulated and so Nc = 1. It is

clear that for a fixed sampling rate and integer address increments, we can only increase

f
the output frequency relative to the minimum frequency, — , when (p - 1. For (p> \,

L

the wavetable is decimated and the tabulated sinusoid resampled at a lower sample

frequency, f's , given by:

151

/ ; = ^
<P

(4.1.11)

For example, with (p = 2 alternate samples are skipped, the wavetable sample rate

halved and the output frequency precisely doubled, equivalent to an upward pitch shift

of 1 octave.

f
For Nc = 1 (i.e. f a = —) the wavetable is defined by T [a\ = cos

L L j
a e [0 , Z - l] .

The resampled output sequence, y{ri) , is then given by:

y(n) = T[{n(p) J = c o I^ j{n c p)L j = COS

L \ f ' s l u

(4.1.12)

and illustrates the inverse relationship between effective wavetable sample rate, / / , and

the frequency of y(n). Resampling a sequence x(ri) = cos' / ' 2 n — n
f , y

at a sample rate

defined by Eq. (4.1.11) produces the sequence, y(ri) = cos
(f

2 n — nr, j = cos 2
f s J

which is equivalent to the frequency of x(ri) being scaled by (p.

We define the frequency control resolution, f r , as the frequency change corresponding

to a unit change in (p, thus:

f = L -
r L

(4.1.13)

and observe f r can be reduced (i.e. improved) only by increasing L or decreasing f .

However, decreasing f s reduces the Nyquist frequency and hence maximum oscillation

frequency in direct proportion. Increasing L increases memory cost and wavetable

computation and loading time. We consider frequency resolution pertinent to computer

152

music requirements in section (4.2.5) and accept a priori that L = 2k where k = 0(24)

for sufficiently precise frequency control in these applications.

4.1.4 Fractional Addressing

Frequency resolution is enhanced by employing the concept of fractional addressing,

introduced by Max Mathews in his pioneering work at Bell Telephone Laboratories

developing software based music synthesis oscillators [Mathews, 1969]. To understand

fractional addressing, we first generalise the wavetable address counter as a phase

accumulator with phase increment, (p. The wavetable address is now considered a time-

varying phase argument. Fractional addressing of a tabulated signal requires extension

of the phase accumulator resolution below the least significant address bit of the

wavetable. We now have an M-bit fractional phase value in fixed-point format,

partitioned into I integer bits, which address a radix-2 wavetable of length L = 21, and

F fraction bits which represent the fractional address between adjacent wavetable

entries. The phase increment, cp, is similarly partitioned into integer and fraction fields

in a fixed-point format with an implied binary point between them as depicted in Figure

(4.1.5). (p can now take on fractional values on the interval (p e [0 ,21 -1] with

resolution 2~F . The phase resolution is thereby increased exponentially with each

additional fraction bit. We investigate fractional addressing further in Chapter 5 and for

our present discussion we accept that phase resolution can be improved by adding a

fraction component to the phase accumulation computation.

153

f------------------------------------ M

^ -------------- I -----------------

Wavetable address

F

2/_1 2i-i 1

Phase accumulator output

2/-i 27-2 1 <> I 2~f+i 2~f

Phase increment (p e [0, 27-1] Aq> = 2~F

2/_1 27-2 1 <► I 2~f+i T f

Figure (4.1.5): Data fields for fractional phase accumulation and wavetable

addressing. (In rudimentary embodiments the phase word fraction component is

discarded.)

Figures (4.1.6) and (4.1.7) illustrate examples of resampling a tabulated sinusoid with

(p - 2 and (p = 0.5, respectively. For the case when (p - 0.5 (and all non-integer values

of (p) the wavetable is being fractionally addressed. When (p > 1 we are reducing the

wavetable sample rate (down-sampling) and increasing the synthesised frequency.

Conversely, with (p < 1 we are increasing the wavetable sample rate (up-sampling) and

decreasing the synthesised frequency. We can therefore model fractional address WLS

as a sample rate conversion of the tabulated signal.

154

Wavetable address, a —>

->
nT

(p -2

f .= 0.5/,

Figure (4.1.6): Time domain view o f down-sampling a tabulated sinusoid with (p - 2

and thereby increasing the frequency o f y (n).

155

Wavetable address, a —>

(p = 0.5

/ ; = 2 / s

nT
o Interpolated samples

Figure (4.1.7): Time domain view o f up-sampling a tabulated sinusoid with (p — 0.5

and thereby decreasing the frequency o f y(n). The wavetable is being fractionally

addressed and interpolated samples must be computed.

156

4.1.5 The Sample-Rate-Conversion View

The process of generalised sample rate conversion is well documented in the literature

[Proakis and Manolakis, 1996; Smith and Gossett, 1984 and Crochiere and Rabiner,

1983]. Here we present an overview of the salient points peculiar to WLS, which can be

viewed as a block processing embodiment of the conversion algorithm. The classical

sample rate conversion model of a sequence, x(n) , to a corresponding sequence, y(m) ,

requires that the conversion ratio be expressed as a reduced fraction, where the

numerator and denominator have no common factors apart from 1. Sample rate

conversion is then a three stage process - up-sample x{n) by U, low-pass filter by h(n)

and down-sample by D as depicted in Figure (4.1.8).

Lowpass
Filter
h(n)

Upsampler

t u
Downsampler

I d

Figure (4.1.8): An analytical view o f the sample rate conversion process.

f 1 U
We know from Eq. (4.1.11) that — = — = — , hence:

fs <P D

<p = — (4.1.14)
U

Up-sampling is effected by inserting U - 1 zero-valued samples in between the existing

x(n) samples, giving a sequence with sample rate Ufs . Down-sampling is effected by

selecting every Dth sample of the sequence. The low-pass filter, h(n) , has cutoff

157

frequency, f c, whose value normalised to the input Nyquist frequency is given by

(U \ Df c < min| 1, — [Proakis and Manolakis, 1996]. Since (p = — we have:
V D j

(1 "lfc ^ rnin 1, —
\ <P)

(4.1.15)

If we are decreasing the wavetable sample rate and increasing the frequency, we have

1 f
f c < — and so f c < — . Conversely, if we are increasing the wavetable sample rate and

(p 2 (p

fdecreasing the frequency, we have f c < 1 and so We note that h(ri) is time-

variant since (p and therefore ^ is time variant. In its simplest form h(n) is defined

by the zero-order hold function h(n + m) = x(n) for m e [0, U - 1] [Massie, 1998]. This

definition repeats the x(n) sample U -1 times as depicted in Figure (4.1.7) instead of

inserting U -1 zeros between samples as typically described in the literature. We see

that h{ri) interpolates values between tabulated samples and will be a function of the

fractional component of the DT phase signal. Figures (4.1.9) and (4.1.10) illustrate

frequency domain examples of this process and indicate the upper bound on f c.

158

Spectrum of original sinusoid tabulated at sample rate fs

f f

L 2
Spectrum of resynthesised sinusoid with (p - 1.5

* \ /

/ < M \
c 3 2 \

fs

D 3 1<Z> =--= —>1
U 2

f
2

f s

Figure (4.1.9): Frequency domain view o f wavetable resampling with (p = \ . The h(n)

passband is shown shaded and sets an upper bound on f c.

Spectrum o f original sinusoid tabulated at sample rate f s

L L f
L 2

Spectrum of resynthesised sinusoid with (p = 0.75
L> 3 t<p = — = —<1
U 4

/ . s< L

<tfs_

L
f
2

f

Figure (4.1.10): Frequency domain view o f wavetable resampling with (p - \ . The

h(n) passband is shown shaded and sets an upper bound on f c. (For (p <1 f c can

f
remain fixed at f c < ^-.)

159

The sample rate conversion view of fractional address WLS is particularly appropriate

when the wavetable contains a band-limited, non-sinusoidal signal. For the down-

sampling condition when (p> 1, frequency components in the tabulated signal above the

f ffrequency, — , will alias into the Nyquist interval [0, —]. This condition is prevented
2 (p 2

f
by setting f < — . For the up-sampling condition when (p < 1 f can be fixed at

2 (p

f
f c ^ Y ' In §enera^ there are two tabulated signal classes to consider - sampled natural

sounds comprising numerous cycles of the fundamental frequency and single-cycle

periodic signals. We discuss the sampling synthesis model in section (4.2.6) where

wavetables contain samples of natural instrument sounds.

Resampling wavetables containing a single cycle, band-limited periodic function causes

f t ^
components above to alias into the Nyquist interval, [0 ,^ -], when the “new”

fNyquist frequency, , falls below the highest frequency component in the wavetable

signal. For a periodic wavetable function defined according to Eq. (4.1.3), the highest

frequency component is simply the product of fundamental frequency and highest

f
harmonic number, Nh, and so Nhf < ~ .

We know from Eq. (4.1.10) that / = — - and so we define an upper bound on (p, thus:
L

Vm- - W h (4.1.16)

and for (p > <pmax upper harmonics will alias into the Nyquist region.

160

4.2 Frequency Control

The preceding discussion presented an overview of wavetable lookup synthesis and the

underlying principles for resynthesising at arbitrary frequencies. We now present a

detailed review of phase accumulating frequency synthesis from first principles and its

application to wavetable lookup synthesis. The simple integer phase increment

oscillator discussed earlier requires a large wavetable to achieve the frequency control

resolution necessary for computer music applications. The concept of fractional

addressing enables reduced wavetable length simultaneous with arbitrarily high

frequency control resolution. The penalty for decoupling wavetable length and

frequency control resolution is the introduction of spectrally complex noise components

into the output signal that can only be reduced by interpolating the phase-amplitude

mapping process and incurring additional computational overhead.

4.2.1 The Phase-Frequency Relationship in DT Sinusoid Synthesis

Frequency may be defined as the number of complete cycles of a periodic process (e.g.

a sinusoid) occurring per unit time. Interpretations of frequency in the DT domain are

different compared to the CT case. For example, the DT phasor

y(ri) = ejan = cos con + js m con, with angular frequency, co, and integer indexing

variable, n e (- 00, 00) , is periodic if and only if the frequency (expressed in radians per

sample) is a rational multiple of 2n . That is, the frequency is the ratio of two integers.

We now review the continuous-time (CT) sinusoid as a progenitor for the DT case

through the sampling process. A CT sinusoid may be expressed as

y a (t) = A cos (fit + 0), t g (- 00, 00), where A is the amplitude of the sinusoid, Q is the

angular frequency in radians per second, 0 is the phase in radians and t is time. We

can also consider the frequency, F , in cycles per second (Hz) since Q = 2nF and so

161

y a(t) = Acos^lnFt + 9 \ t e (- oo, oo). We see that for every constant value of F ,

y At) is periodic and so ya(t + r) = ya(t) , where the period, r, is given by t = — . CT
F

sinusoids with distinct frequencies are themselves distinct. Increasing the frequency

increases the rate of oscillation and produces more cycles within a given time interval.

The instantaneous phase, <f>(t) and angular frequency, oo(t), of a CT sinusoid are

interrelated according to the integral and differential equations:

t
(j){t) = dt + C

o
(4.2.1)

dt

In general, we set C = ^(0) = 0 and hence the instantaneous phase for constant oo(t) is

in precise agreement with the argument of a generalised CT sinusoid (i.e.

(f){t) = cot+ 0).

A discrete-time (DT) sinusoid may be expressed as y(ri) = Acos(a>n + 0), n e (-o o , o o),

where A is the amplitude of the sinusoid, oo is the angular frequency in radians per

sample, 0 is the phase in radians and n is the sample index which takes on integer

values. Since co- 2^f, we also have y(ri) - Acos{^7tfn + 6 \ n e (- 00, 00) , where /

represents the frequency of the DT sinusoid in cycles per sample. DT sinusoids possess

three important properties:

• A DT sinusoid is periodic only if its frequency, / , is a rational number. The

smallest value of N for which y{n + N) = y(ri) is the fundamental period

[Proakis & Manolakis, 1996]. So for a DT sinusoid to be periodic we require

cos(2^ (n + N) + O) = cos(2rfn + G) which is only satisfied if there exists an

162

integer, k , such that 2rufN - 2kn or / = — . Since / is the ratio of two
N

integers, / must be a rational number.

• DT sinusoids whose angular frequencies are separated by an integer multiple of

2n are identical and indistinguishable from each other since

cos[(<y + 2kn)n + 0\ = cos {con + 2 k m + 6) = cos (con + 0) for all integer values of

k .

• The highest frequency of a DT sinusoid is attained when co = ± n , or

equivalently when f = ± \ .

The sample index, n , counts discrete time intervals whose spacing is the sample period.

Sampling the CT signal y a(t) = Acos(2n;Ft + 6) with sample rate f s = ^ establishes

the relationship t - n T between the CT and DT domains and yields the DT sinusoid

y a{nT) = y(n) = Acos(27rFnT + d). Comparing this expression with the generalised DT

sinusoid y(n) = ylcos(2;z/h + #), we determine that f — —— which denotes the relative
fs

or normalised frequency of the sinusoid [Proakis and Manolakis, 1996]. Therefore, the

interrelationship between / and F can only be defined if the sampling frequency is

f f 1 1known. For F e [— then / g an<̂ so Ike relationship between / and F

is one-one and we can reconstruct the CT (analogue) signal, y a (t) , from the sequence,

y{n) . In general, we may express a DT sinusoid thus:

y{n) = cos(2 nFnT + 0) (4.2.2)

For DT sinusoids with constant frequency (i.e. = 0), the underlying phase
dt

sequence, </>(n) , is a sawtooth function with constant slope (a>) and maximum

amplitude 2n . For the constant frequency condition we may define (j)(n) exactly by the

difference equation:

<j>(n) = T - + <j>{n -1) (4.2.3)
dt

where — = co. If we set the initial condition = 6 -c o T , then the general
dt

solution is simply ^(«) = (ncoT + 0) = (j27tfhT + 0) , which is in precise agreement with

the argument of a DT sinusoid.

(j){n) is computed by a modulo 2n accumulation of a phase increment, (p, at the

sample rate, f s, and can therefore be expressed by the difference equation:

<l>{n) = {<l>{n-\) + (p)li! (4.2.4)

where the frequency of the (/){n) sequence is a function of (p. In a physical realisation,

f̂tn) and (p are represented by unsigned binary numbers of width M bits. Modulo

operation is effected by discarding the carry in a binary accumulation comprising an M-

bit adder and register as depicted in Figure 4.2.1. The accumulation of (p proceeds

modulo 2m as the accumulator overflows. The radian value of the phase sequence,

2 7t$.(w), is given by (/>r(n) = (j)M(n)—̂ , where <f)M(n) e [0,2M -1] and represents the

phase value from an M-bit integer accumulator. By tabulating a single cycle sinusoid

with phase increment — and L = 2M samples as in Eq. (4.1.2), the address interval

[0, 2m) corresponds to the phase interval [0, 2ti) .

164

a Cosine » cos r0 <P '2 Tt-t-rrn
V

2 m
J

T[flr] = cosl 2^r—

Figure (4.2.1): An M-bit accumulator with phase increment, (p, generates an M-bit

phase sequence, (fi(n), which addresses a 2M location wavetable to effect phase-

amplitude mapping.

The phase accumulator may be considered as a DT integrator followed by a modulo 2M

operator computing a modulo 1M integration of phase increment to give frequency.

Using Eqs. (4.2.1) and (4.2.3) we express the output frequency,/ as a function of M, (p

and f , thus:

/ =
1 <p

In 2mT 2M

(4.2.5)

<pe[\,2M~l - 1]

Eq. (4.2.5) is fundamental to phase accumulating WLS and indicates two important

d fproperties - / is directly proportional to (p and frequency resolution as defined by
d(p

is precisely .

4.2.2 Frequency Control Precision

Human pitch perception is based on the ratio of frequencies rather than absolute

frequency [Moore, 1990]. The equal tempered scale defines the h a lf step or semitone

frequency ratio as lyfl ~ 1.059463. Since this tuning system is relative, a basis

frequency is needed to define an absolute pitch scale. For the equal tempered scale, this

basis frequency is defined by the international pitch standard [Moore, 1990] as precisely

440 Hz and defines the A above middle-C (A4) on a conventionally tuned piano. The

cent is defined as one-hundredth of a half-step or a ratio of U0tf2 »1.000578. In general,

a ± k cent pitch shift equates to frequency scaling of (120\/2)~*.

There is a limit to human audio perception in distinguishing the relative pitch between

two sinusoidal tones of equal intensity presented one after the other. When the

difference in frequency between the two tones is below this limit, both tones are

perceived as having the same pitch. When the frequency difference exceeds the just

noticeable difference (JND) threshold a change in pitch is perceived. The pitch change

JND is widely reported in the literature and depends on the frequency, intensity and

duration of the test tone. It also varies greatly from person to person, is affected by the

level of musical training and depends considerably on the measurement technique

employed [Roederer, 1973, Rossing, 1990]. The literature consensus is that a 5 cent

pitch change represents the order of JND for most listeners and listening conditions,

although Rakowski [1971] reports that under ideal listening conditions a very well

trained ear can discriminate a frequency change of between 0.03 and 0.08 Hz around

160 Hz. This corresponds to a pitch change JND of approximately 0.3 cents. The pitch

change JND is crucial in determining the absolute tuning accuracy or frequency

resolution of a musical oscillator. However, frequency resolution below that required to

satisfy the pitch change JND is needed when the beat frequency between two (or more)

closely tuned oscillators must be precisely controlled - a common requirement in

orchestral computer music synthesis. A 5 cent pitch tuning resolution at 7040 Hz (A8)

requires a frequency resolution of 20.4 Hz which is inadequate for precise beat

166

frequency control (i.e. beat frequencies could only be specified in integer multiples of

20.4 Hz).

We now consider phase accumulator frequency resolution taking into account both pitch

change JND and beat frequency tuning across the audio range. We postulate that a

frequency resolution on the order of 0.01 Hz will provide sufficient beat frequency

control resolution for all conceivable musical applications. Furthermore, we consider

the impact of achieving a pitch tuning accuracy between 0.3 and 5 cents. The number

of phase accumulator bits, M , is related to the frequency resolution, f r , according to:

f r V
los

log 2

For a sample rate of 48 kHz, a frequency resolution of 0.01 Hz requires M - 23. Since

a pitch change is a fixed ratio of frequencies, a given frequency resolution will represent

an increasing pitch tuning error with reducing frequency. We define the pitch tuning

error, s p, in cents, as the frequency ratio corresponding to a unit change in (p for a

given minimum oscillation frequency, / min, sampling rate, f s and phase accumulator

word size, M . We have:

M = 1 log L
\ f r j

(4.2.6)

1200,
‘ • " i S i log

/ \

2M f mi. ,\ J nun J

(4.2.7)

The pitch tuning error is plotted in Figure (4.2.2) as a function of M with / min = 27.5

Hz (A0) and three values of f s - 48 kHz, 96 kHz and 192 kHz, with 5 cent and 0.3 cent

markers shown for reference. Pitch tuning error is maintained below 1 cent at all

frequencies above 27.5 Hz when M >22 for f s = 48 kHz and M > 24 for

ff s =192 kHz . Figure (4.2.3) illustrates the variation of frequency resolution, f r = -^p- ,

with M for the same three values of f .

167

10

1

0.1

e e o fs = 48 kHz
X * X fs = 96 kHz
s e a fs = 192 kHz

0.01

M (bits)

Figure (4.2.2): Variation o f pitch tuning error, sp, with M for / min =27.5Hz.

0.1

o.oi

1-10

© 0 O fs = 48 kHz
X*cX fs = 96 kHz
s e a f s = 192 kHz

27

M (bits)

Figure (4.2.3): Variation o f frequency resolution with M for three values o f f s.

168

We conclude from inspection of Figures (4.2.2) and (4.2.3) that acceptable M values lie

in the range 20 to 24 depending on JND threshold and sampling frequency. Choosing

M - 24 provides surety of pitch and beat frequency tuning accuracy for all f s values

peculiar to computer music applications. Increasing the sampling frequency over that

required for normal audio bandwidth (oversampling) causes a corresponding increase in

the Nyquist frequency reducing susceptibility to upper harmonics aliasing when

complex wavetables are resynthesised.

4.2.3 P hase Accumulation and Phase Continuity

For modulo 2M phase accumulation, Eq. (4.2.4) becomes (j>{n) = {^{n - 1) + q?) u and in

general, the (j){n) sequence with initial condition, ^(0), is given by:

</>{n) = U((S) + Y d<p) = {4 (0) + n(p)t , (4 .2.8)
\ 1=1 / 2U

For an M-bit unsigned binary accumulator there are 2M possible phase states

represented by the set ® = {o,l,2,...(2M -1)} and so e ® . The frequency of the

phase sequence is given by Eq. (4.2.5) where the upper limit on the range of (p is

f
imposed by the Nyquist sampling theorem to ensure / < . Values of cp greater than

2m_1 produce an aliased output frequency equal to f s - f .

Figure (4.2.4) illustrates an example phase sequence given by $(ri) = (7n) .

169

32 0—
28 0~I
24

20

16

12

8

6-14

0
10 350 5 15 20 25 30

Sample index n

Figure (4.2.4): Phase accumulator output sequence with M = 5 and (p = 7.

It is observed that the phase sequence comprises different values on successive cycles

and repeats every 32 samples. The average period of the underlying sawtooth function

computed over the numerical period of this sequence is in precise agreement with Eq.

(4.2.5), as illustrated in Table (4.2.1).

(j){n) Segment Period (f)(n) Segment Period

{0,7,14,21,28} 5 {5,12,19,26} 4

{3,10,17,24,31} 5 {1,8,15,22,29} 5

{6,13,20,27} 4 {4,11,18,25} 4

{2,9,16,23,30} 5 . J 32 2 "
Average period — = —

7 <p

Table (4.2.1): Illustrating the precise average period o f the sawtooth phase sequence

l n \ .

In Chapter 3 we discussed phase continuity and the corresponding amplitude domain

effects of phase discontinuous transitions. Phase continuous frequency transition is an

170

essential attribute in a digital oscillator, particularly in computer music applications.

Before considering phase continuity in c()(n) about a change in (p, we consider a step

change in the frequency parameter of a DT sinusoid at an arbitrary sample index. We

first define a step change in the frequency parameter, f { r i) , at sample index m, thus:

/ n < m
/(«) = (4.2.9)

/ ' n > m

It is apparent by considering the DT sinusoid y{ri) = A cos(27if (n)nT + 0 \ - oo < n < oo

that a step change in / («) at n = m produces a corresponding step change in the sine

function argument, y/(n) = 27rf(n)nT+ 9. This causes a discontinuity in y(n) as

depicted in Figure (4.2.5a) with the underlying phase sequence shown in Figure

(4.2.5b). The magnitude of the step change in phase is 2nT{mf - { m - 1)/) radians.

Q.S
t/3

o
0
Q
O
Q
O
9
©

-1

Ec3

6
9

9
9

9
9

20

9Q
O
O
9
9

(a)
| w
© © 09 I

9 9

U ? ? 9 ©
9 9

M
9 '
: 9

i

v o
© /

9© ;
: \ ©

9 9
; i 9J

9 © :
© ; \ 9

V 9 0 A^9
40 60

Sample index n

(b)

80 100

60

40

20

0
20 40 60 80 1000

Sample index n

Figure (4.2.5): (a) - A DT sinusoid with phase discontinuous frequency transition at

n — 50. (b) - Corresponding phase sequence.

171

A phase continuous frequency change in y(ri) requires that we compute the underlying

phase function, y/(n) , by integrating f (n) over n samples. Since this is a DT system,

this integration can be represented by the two stage summation assuming n > m , thus:

n T m T n T

= 2* Z / (”) = f + ln lL f = 2nf'nT - - f '>mT
0 0 m T

(4.2.10)

In general, we have:

fInf t iT n < m
\i/(n) = \ J (4.2.11)

\ 2 7 i f h T - 2 7 i (f ' - f) m T n > m

Eq. (4.2.11) provides an analytical definition of a phase continuous sequence for n > m ,

effectively subtracting the phase discontinuous step change from the 2nf'nT phase

argument. The amount subtracted is the magnitude of the step change,

2nT\m f’ - (m - 1)/] , less the phase increment at the original frequency, 2 n j T , as

illustrated in Figure (4.2.6). Eq. (4.2.11) defines a generalised phase sequence, y/(n) ,

having an instantaneous change in slope at the frequency transition point with no step

discontinuity, thereby producing a phase continuous change in y{ri) as illustrated in

Figure (4.2.7).

172

Phase

Phase discontinuous
transition

Phase continuous
/ transition

m

m + 1m - 1 Samplem
Index, n

Figure (4.2.6): Graphical representation o f phase-discontinuous and continuous

sequences. Frequency transition from f to f occurs at sample index m . The phase

continuous sequence is defined by Eq. (4.2.11).

173

(a)

0

20 40 1000 60 80

Sample index n

(b)
40

20

0
40 1000 20 60 80

Sample index n

Figure (4.2.7): (a) - A DT sinusoid with phase continuous frequency transition at

n — 50. (b) - Corresponding phase sequence.

Let us now consider a step change in the phase accumulator increment parameter at

sample m, given by:

\(p n < m
cp{ri) = r, (4.2.12)

\q> n> m

Following similar reasoning to the development of Eqs. (4.2.10) and (4.2.11), we

obtain:

^ 4 > „ = \ I >) + \ L ?’ / = {n<p'- m(<p'- <p)) 2„ (4.2.13)
\ o / 2a/ \ m / 2 U

and hence:

r [n(p) u n <m
</>(") = . (4.2.14)n(p -m((p -<p)) M n > m

174

Since Eq. (4.2.14) is precisely analogous to Eq. (4.2.11) we conclude that the phase

accumulator produces phase continuous output sequences following a step transition in

(p at any sample index. Figure (4.2.8) illustrates the inherently phase-continuous output

sequence of a phase accumulator with step change in phase increment, (p, at sample

index m - 50. The corresponding phase mapped sinusoidal signal is also shown.

I
50

Sam ple index n

C l.

I
a.
6C3a)

50 0 §

50
Sam ple index n

Figure (4.2.8): A typical phase accumulator output sequence (a) and associated phase

mapped sinusoidal sequence (b), with M = 6, (p = 2, cp' = 5 and m = 50.

The frequency of the phase sequence, <j>{ri) , is a minimum when cp = \ when all phase

states are output contiguously, taking 2M sample clocks to complete a cycle. The

frequency resolution, f r , is therefore given by:

fJr ryM (4.2.15)

175

and is governed only by M and f s. The value of M (and therefore the frequency

resolution) is constrained only by carry propagation time within a physical realisation of

the accumulator adder and may be set at any desired value to achieve a specific

frequency resolution consistent with hardware computational speed.

4.2.4 Optimal P hase Mapping

A wavetable maps a phase sequence to an arbitrary waveform amplitude sequence

according to its tabulated values. This mapping will be optimal (i.e. utilise all available

phase information) when all M bits of the phase sequence, c/)(ri), are used to address the

wavetable. However, we have seen in section (4.2.2) that the typical values of M

required in computer music applications prohibit this condition. To accommodate a

reduced wavetable length, the M-bit phase sequence is truncated (or rounded) to I bits

with I < M and L = 2J [Moore, 1990]. The wavetable now comprises 27 locations and

the implicit phase truncation generates phase-amplitude mapping errors that manifest as

distortion components in the output signal which we consider in Chapter 5.

We now consider the ideal case of phase mapping to a sinusoidal sequence with no

phase truncation (i.e. I = M). We also assume that the tabulated samples are stored

with infinite precision allowing us to ignore amplitude quantisation effects and focus on

error components corresponding to phase mapping alone. A 2M location sinusoidal

thwavetable, whose a element we represent by C[a\ , is defined by:

C[a] = cosf2tf-^r

(4.2.16)

a = 0,1,2,3,...(2" -1)

Since all phase sequence bits are used in the phase mapping we have (j)(ri) = (n(p)2u and

so the output sequence, y(ri) , is given by:

176

yin) = C[(j){n)\ = cos^2 (4.2.17)

r

where y(n) represents a DT sinusoid of frequency / 0 = with discrete Fourier

transform, Y { f) , given by the Poisson summation formula [Orfanidis, 1996]:

— ((n \
2 * - ^ n k ! # r

2"
Y (f)= '£y (nT)e -2’* T = £ cos

«=-oo /?=—co \ ^ j

1 00
= j ' L Y(f~ n fs)

(4.2.18)

where F (/) represents the spectrum of the periodic CT signal y(t) = cos(27tf0t) with

r

f , = and given by:

Y (f) = f j ctS (f - k f li) (4.2.19)
£=-oo

fl « = 0
where £(«) is the unit impulse function defined as £(a) = < . . Since jf(0

[0 otherwise

is periodic with period F0 = — , the Fourier coefficients are given by:
To

ck = — h (/) e _ 2 # 'rf/ = \ 2 (4.2.20)
T„ I [0 otherwise

Hence the discrete spectrum of y(n) is given by:

h f) =fs Z S ' 5 (/ ■- kf» - "/<) <4-2-2 1 >«=-co £=-1

and represents all the frequencies in the periodically replicated set

{(/o + ^ X ^ - 0, ± 1, ± 2,...} . We therefore conclude there are only alias images o f / 0

in the spectrum of y(ri) .

177

We now consider the output spectrum of a 2M location wavetable, W , containing a

single cycle, periodic band-limited signal, whose a value we represent by W [#]. W

tabulates the weighted sum of N h harmonics (a truncated Fourier series with zero DC

term), thus:

W[tf] = j i ^ c o s
k=0 \ J

a = 0,1, ...(2 " -1) (4.2.22)

* = 0 ,1 ,...#* , N„<=[1 ,2 "- '-1]

where Ak e [0,1] and O*. e [0, 2ti) respectively denote the k harmonic amplitude and

phase coefficients with DC term Aq=0. The wavetable is indexed by all M bits of the

phase sequence giving the amplitude sequence, y w(ri) :

y w(n) = W[$*(«)] = X 4 cos((4.2.23)
V Zk=0 y

Following a similar argument to the sinusoidal wavetable case, we have:

Nh
y w(0 = Y , Ak cos(2^rf 0kt + O k)

k=0

(4.2.24)

_ ^ (Lej(2rfokt+®k) + e-jbxfokt+®k) j
£=0

where y w(t) represents the CT signal sampled at f s to give yw(nT) at sampling

instants t = n T . The Fourier coefficients, ct , are given by:

178

cl~ —T-L n

l l

2 J 2 J
dt

— ej®k for I = k

— e JQ>k for I = - k
2

(4.2.25)

k e [0 ,N h] I e [0 ,N h]

Substituting for ck from Eq. (4.2.25) into Eq. (4.2.19) gives the corresponding spectrum

of (/) , thus:

(4.2.26)
k = - N h

The spectrum, Yw(f) , is given by substituting for Yw(f) from Eq. (4.2.26) into Eq.

(4.2.18), thus:

h n ^ / s Z (4.2.27)
n =-co k = - N h

Setting O to zero we have c* = - j - and so:

f s
00

Y (n = f ' Z Z ' W - V o - " / ;)
n = -& k = -N i.

(4.2.28)

Eq. (4.2.28) shows that under the optimal phase mapping condition all harmonics of

yw(nT) are aliased about every integer multiple of the sample frequency, f s, with no

other frequency components present.

For completeness, we consider the effects of the zero-order hold implicit on conversion

into the CT domain. The zero-order hold has impulse response:

' l 0 < t< T
h(t) =

0 otherwise
(4.2.29)

179

and therefore frequency response, / / (/) , given by:

H (f) = \h(t)e~nnl> dt = j e ' ^ d t = T
sin (xfT)

nfT
(4.2.30)

Hence Eq. (4.2.28) becomes:

nn=
r . sin

£ w * W .)
Jn=-cc k=-l

(4.2.31)

Figure (4.2.9) illustrates the spectrum Y (f) under optimal phase mapping conditions

(L = 2M), indicating that only the base spectrum and its alias images are present.

“ 10

B B S Y(f)

Frequency (cycles/sample)

Figure (4.2.9): Resynthesised spectrum, Y(f) , from a 4 harmonic wavetable with

harmonic amplitudes set to unity to illustrate how alias images conform to the zero-

order hold frequency response, H (f) .

We conclude that the output spectrum of the phase accumulating wavetable oscillator

with non-truncated phase mapping is in precise agreement with the spectrum of an

equivalent sampled continuous time signal for all frequencies up to the Nyquist limit.

4.2.5 Phase Control

The partitioned nature of phase accumulating WLS permits precise control of signal

phase. Adding an offset p e [0, 2M - 1] to the phase signal, </>(n), provides a phase

180

offset of 2 radians, assuming the wavetable contains a single cycle periodic signal.

The offset addition must be performed modulo 2M as depicted in Figure (4.2.10). The

offset DT phase sequence, </>'(n) , is given by <f{n) = (0(n) + p) kl and the resolution of

2 71
the M-bit phase offset is — r radians.

M/ J <P *

-7’1z
M

M ‘
V

/

M.
/

Figure (4.2.10): Phase accumulator with phase offset adder.

2 71
Truncating <j)(n) to I-bits reduces the phase resolution of p to —f radians. If p is a

time-varying sequence, </)(n) , generated by another M-bit phase accumulator with phase

increment (p and sample rate f s, the resulting sequence is given by:

<t>\n) = (<*(«) + k n)) 2„ = (”(<P + <P'))2« (4.2.32)

The frequency of the phase mapped sequence, T[(j>'{n)], is therefore the sum of the

individual phase sequence frequencies and for the specific case when <j)(n) = k(j){n) with

k taking on positive integer values, k e {l,2,3,...}, we have:

fiiri) = ((k +1 V(«))2a/ = {n(k +1)cp) u (4.2.33)

181

and observe that the frequency of the phase mapped sequence is multiplied by (& + l).

A

We infer from this discussion that the frequency of the k -scaled phase sequence <f>(n)

is exactly

4.3 Sampling Synthesis

4.3.1 Overview

In our preceding discussions we have investigated wavetables containing precisely

periodic signals. We now consider wavetables filled with numerous cycles of a sampled

musical instrument sound recorded at a particular pitch - generally reported as sampling

synthesis in the literature [Roads, 1996]. Since the sampled sound is captured at a

known pitch, we model resynthesis as a relative pitch shifting process, where broadly

two techniques are reported in the literature - asynchronous and synchronous pitch

shifting. However, both of these techniques effectively represent a sample rate

conversion of the tabulated signal.

The frequency scaling implicit in pitch shifting a tabulated signal (whether synchronous

or asynchronous) causes an inverse scaling of the temporal features of the signal.

Upward pitch shifting causes the signal to be compressed in time (i.e. reduced in

duration) and downward pitch shifting causes the signal to be stretched in time (i.e.

increased in duration). The key perceptual consequence of this phenomenon is that

features in the attack region are compressed or stretched as a function of pitch shift.

This is particularly objectionable with sampled vocal sounds where the underlying

formant spectra are rescaled, becoming noticeable with only a few semitones of pitch

shift [Massie, 1998]. Multisampling as outlined in section (2.2.1), with small pitch shifts

applied to each sample, reduces (but does not eliminate) this effect.

182

4.3.2 Asynchronous Pitch Shifting

Asynchronous pitch shifting changes the clock rate of the wavetable indexing counter to

effect a variable sample rate resynthesis of the tabulated signal according to clock

frequency. Each channel therefore requires a dedicated digital-to-analogue converter

(DAC), sample clock oscillator (whose frequency relative to the acquisition sample rate

determines the resynthesis pitch shift) and reconstruction filter whose cut-off frequency

tracks the Nyquist frequency. Massie [Massie, 1985] reports the principal advantage of

asynchronous pitch shifting as the elimination of pitch shifting “noise artefacts”

observed with synchronous techniques. However, asynchronous wavetable indexing is

not conducive to multiplexed memory addressing used in multi-voice implementations

to reduce cost. Implementation complexity is increased further by the need for multiple

analogue reconstruction filters with cut-off frequency that must track the fundamental

frequency to remove alias components. Despite these disadvantages, several successful

commercial systems were evident in the early 1980s, including the Fairlight Computer

Musical Instrument series [Roads, 1996], E-mu Emulator and Emulator 2 [Massie,

1985] and underpin the diverse range of commercial sampling synthesis systems seen

today.

4.3.3 Synchronous Pitch Shifting

Synchronous pitch shifting operates entirely in the digital (DT) domain and employs

sample rate conversion by fractional addressing as outlined in section (4.1.3). The

technique uses a fixed sample rate simplifying time-division access to a central sample

memory. Post-processing of pitch-shifted signals occurs entirely in the digital domain

before conversion into the analogue domain with a single DAC and reconstruction filter.

However, there are distinct differences with phase increment and phase sequence data

partitioning compared to the single cycle wavetable case. The phase increment

183

fractional component determines the pitch shift resolution and the integer part

determines the maximum upward pitch shift in octaves. The phase sequence is

partitioned into integer and fraction components as before, with the integer component

addressing the wavetable in a “single shot” manner at an effective sample rate

controlled by the fractional phase increment according to Eq. (4.1.11), with cp taking on

fractional values. The integer address sequence (which spans the whole wavetable

address space) may contain “looped” sections which cyclically repeat carefully chosen

segments of the wavetable to provide sustain of the resynthesised sound [Massie, 1998].

The fraction component controls interpolation of the wavetable data. In the simplest

embodiments, the phase fraction information is discarded (i.e. phase truncation) and no

interpolation is applied. A fractional wavetable fetch is then approximated by the

tabulated value addressed by the integer component. This is known as drop sample

tuning in the literature and is equivalent to a zero-order hold interpolation filter in the

sample rate conversion model. The normalised frequency response of the zero-order

hold is a function of U (see section (4.1.5)) as determined by the number of fraction

bits in the phase sequence and given by [Massie, 1998; Lyons, 2004]:

Figure (4.3.1a) depicts the zero-order hold frequency response for U = 4 over a

frequency range normalised to the up-sampled Nyquist frequency (/r), placing the

71original Nyquist frequency at —. This frequency response exhibits poor rejection of

alias images outside the passband with a peak sidelobe attenuation of only -1 ldB. There

71are zeros at integer multiples of the original sample frequency (—) and so alias images

(4.3.1)

2

184

of low frequency components in the tabulated signal are well suppressed. Fractional

addressing using linear interpolation is equivalent to a first-order hold interpolation

filter whose normalised frequency response is given by [Lyons, 2004]:

1
sin coU

\ 2

u sin
r co

v 2 j j

(4.3.2)

and illustrated in Figure (4.3.1b) for U = 4 . This frequency response exhibits better

rejection of alias images outside the passband with a peak sidelobe attenuation of -

23dB. There is better suppression of alias images near multiples of the original sample

frequency, giving improved performance when the tabulated signals are oversampled.

(a) (b)

“ 10

c -20

-3 0

-4 0
0.5

Radian frequency (Pi)

-10

-3 0

-4 0
0.5

Radian frequency (Pi)

Figures (4.3.1a) and (4.3.1b) : (a) - Zero-order and (b) - first-order hold frequency

responses fo r U = 4 over a frequency range normalised to the up-sampled Nyquist

n
frequency (n), placing the original Nyquist frequency at —.

4

4.3.4 Interpolation Filtering

Higher order interpolation filters give improved alias image rejection at the expense of

greater computational complexity. Smith and Gossett [1984] present a time-varying

sample rate conversion technique appropriate to sampling WLS. The Smith and Gosset

185

interpolator computes each output sample from the dot product of a wavetable sample

vector and a set of filter coefficients obtained from a lookup table.

The prototype filter coefficients may be pre-computed using a large U value and

tabulated in reordered form [Crochiere and Rabiner, 1983]. During operation, the sub

phase of the filter is chosen according to the fractional part of the phase accumulator

output sequence on each sample. In general, the filter is described by the linear time-

variant filter response function [Proakis and Manolakis, 1996], thus:

g(n,m) = h(nl + (jw-D)y) (4.3.3)

where h{n) is the impulse response of the FIR sample rate conversion filter with an

ideal low-pass frequency response:

H(co) =
U C O E 0, min ̂n n N

~D'U (4.3.4)

0 otherwise

If we set the length of the FIR filter to an integer multiple of U , say K U , the set of

coefficients {g(«,w)} for each m = 0 ,1,2 ,...,C /-1 , will contain K elements. Since

g(n , m) is periodic with period U , the output sample, y(m) , is given by:

K - \

y{m) = Y Jg\ n ,m -
n =0

m \ mD
U T - n

U_ _ U _
(4.3.5)

where
mD
~TT

is the integer part of the phase accumulator output at time index m . Eq.

(4.3.5) computes the dot product of K consecutive wavetable values and K filter

coefficients g
f m \

n,m — U
V _U_ J

with n = 0,1,2,..., K - 1. In practice, the set of K

coefficients is determined by the fractional component of the phase accumulator output

which effects a page address into the coefficient lookup table. Figure (4.3.2) illustrates a

process model for this algorithm suggested by Massie [1998].

186

Ph
as

e
A

cc
um

ul
at

or

A
dd

re
ss

O

ffs
et

C

oe
ff

ic
ie

nt

A
cc

um
ul

at
or

f

A
dd

er

M
ul

tip
lie

r

5,

(N

O

£ 2 O T3

(N

o < O

8-

187

Fi
gu

re

(4
.3

.2
):

Sa
m

ple

rat
e

co
nv

er
sio

n
of

a
ta

bu
la

te
d

sig
na

l
us

ing

a
K

sa
m

ple

in
te

rp
ol

at
io

n
fil

te
r

[M
as

si
e,

 1
99

8]
.

4.3.5 Pitch Shift Resolution and P hase Fraction Field Width

We conclude by considering the fractional phase resolution needed in a pitch shift

application, as this in conjunction with the number of filter coefficients, K , dictates the

size of the coefficient lookup table. As in our previous discussion, we let F denote the

number of fraction bits in the phase increment. From section (4.1.3) we know that the

fractional phase increment, (p, can be considered as a pitch shift factor with respect to

the original pitch of the sampled sound assuming the same sample rate is used

throughout the system, (e.g. (p = 2 causes an upward pitch shift of 1 octave and (p = 0.5

causes a downward pitch shift of 1 octave.) If / represents the original frequency of

the sampled sound, / ' represents the pitch shifted frequency corresponding to a 2~F

(i.e. minimum change for F fraction bits) change in cp and A f represents the

corresponding frequency change, then:

A / / ' - / / '

f f f
1 (4.3.6)

A c cent pitch change with c e corresponds to a frequency ratio of 21200 giving:

^ - = 2m - l (4.3.7)
/

Observing that c > 0 => A f > 0 and c <0=> A f < 0 gives:

L
f

2 1200 c > 0
(4.3.8)

2 1200 c < 0

f ' m*
From Eq. (4.1.10) we have — = — , where cp’ = (p + l~F for A f >0 and (p’ = (p-2~F

f <P

ffor A f < 0. Substituting for -y- in Eq. (4.3.8) we obtain the expression:

188

2~f =

(c 'I
9 21200 -1 c> 0

I
(c ^

9 1 - 2 1200 c < 0

(4.3.9)

which simplifies to a single expression since
r c > / c ^
21200 - 1 1_ 21200

V J I y

for \c < 10

(\
F » - \o g 2(p-\o%~ 21200 -1 d <10 (4.3.10)

By defining a maximum downward pitch shift of <7max octaves we thereby set a

minimum (p value given by (pm[n = 2"^max and obtain:

F > d -max

f
log;

A
21200 -1 d< 1 0 (4.3.11)

where the floor function takes account of F only taking on integer values.

For c = 1 and c = 5, which represent a 1 and 5 cent pitch tuning error respectively, we

have F > dmzx +11 and F > dmax +9. If we require precise beat frequency tuning

between two oscillators as discussed in section (4.2.2), the condition on F becomes

F > dmax + 20 for a frequency resolution of » 0.01 Hz at 7040 Hz (A8) corresponding

to a » 0.002 cent pitch tuning error. (The frequency resolution improves (i.e. f r

reduces) with reducing frequency.)

189

4.4 Conclusions

This chapter has introduced the concept of wavetable lookup synthesis (WLS) and

presented a taxonomy of wavetable classes differentiated principally by the means used

to fill the wavetable. We have reviewed pre-computed wavetable filling techniques and

investigated the concept of sampling both single-cycle periodic and multi-cycle

aperiodic tabulated signals. This leads to the concept of phase accumulation and the

sample rate conversion perspective of pitch shifting a tabulated signal which underpins

the sampling synthesis subclass. Phase accumulation WLS has been introduced,

focussing particularly on phase continuity, frequency resolution and optimal phase-

amplitude mapping where we have presented respective theoretical treatments

appropriate to computer music requirements.

We conclude that fractional WLS (with implicit phase truncation and hence interpolated

wavetable lookup) provides optimal frequency control resolution simultaneous with

practicable wavetable lengths. In Chapter 5 we investigate interpolated WLS and

present a comparative assessment of interpolation algorithms based on computer

simulation. In Chapter 6 we develop the concept of phase domain processing introduced

in section (4.2.5) as a means of generating harmonic and inharmonic phase sequences

which underpin implementation of the HAS and PAS processing models introduced in

Chapter 2.

190

Chapter 5 Interpolated Phase Mapping

5.1 Introduction

In this chapter we investigate interpolated phase-amplitude mapping where the

fractional component of a partitioned phase sequence is used to interpolate the

wavetable indexing operation according to a particular interpolation algorithm. The

concepts of phase truncation, wavetable fractional addressing and interpolation are

reviewed and developed. We have reviewed non-truncated (i.e. optimum) phase

mapping in section (4.2.4) where each phase sequence value within the set of 2M

possible phase states maps to a unique location in the wavetable. This condition

produces optimal phase-amplitude mapping with no distortion components in the

synthesised signal spectrum peculiar to the phase accumulation frequency synthesis

process. However, non-truncated phase mapping imposes an impractically large

wavetable memory overhead (i.e. 2M locations) given the phase accumulator word

length, M , needed for computer music frequency control resolution.

Truncated phase mapping (TPM) indexes a smaller wavetable using a truncated phase

accumulator output word. Compared to the optimal length of 1M locations, the

wavetable size halves with each truncated bit. However, TPM introduces errors into the

phase-amplitude mapping process due to some phase-amplitude mappings being

approximated to the nearest tabulated value. This causes distortion of the amplitude

signal and erroneous spurs in the corresponding spectrum which are extremely

frequency (i.e. phase increment) dependent. The fractional phase information (which is

discarded with truncated phase mapping) may be used to interpolate (i.e. fractionally

address) the wavetable lookup reducing the magnitude of these distortion components at

the expense of increased computation.

191

In this chapter we investigate wavetable phase mapping using a phase sequence

partitioned into integer and fraction components. This suggests a fixed-point fractional

phase representation thereby enabling interpolation of the tabulated data. We begin by

reviewing zero-order interpolation (i.e. phase truncated wavetable lookup with

discarded phase fraction information) which causes fractional phase-amplitude

mappings to be approximated to the lowest tabulated value. In section (4.2.4) we

showed that optimal phase-amplitude mapping is obtained when a wavetable of length

2m samples is indexed by all M phase bits and represents a limiting condition

corresponding to zero phase-amplitude mapping error.

We substantiate our investigation with computer simulation of reviewed interpolation

phase mapping techniques using performance metrics and simulation conditions which

we develop in section (5.4). The simulation results presented in section (5.5) represent

the focus of this chapter.

5.1.1 Truncated P hase Mapping

We illustrate the effects of truncated phase mapping (which can be viewed as a zero-

order interpolation of the tabulated data) by simulating a 12-bit phase accumulator

whose output sequence is truncated to 4-bits indexing a 24 location wavetable

containing a single sinusoid. Simulation results are presented in Figures (5.1.1) through

(5.1.3) using parameter values contrived to exaggerate the principal effects. The

intentionally poor resolution of the truncated phase sequence exposes phase errors,

shown in Figure (5.1.1c), which lead directly to phase-amplitude mapping errors

compared to the reference (i.e. optimum) case when all 12 phase bits index a 212

location wavetable.

The corresponding phase mapped reference and phase truncated amplitude signals are

shown in Figures (5.1.2a) and (5.1.2b), respectively. The amplitude error sequence

192

shown in Figure (5.1.2c) clearly confirms the presence of signal distortion in the time

domain, with Figure (5.1.3a) illustrating the corresponding amplitude error spectrum.

This spectrum exhibits a large number of lines directly attributable to phase-amplitude

mapping errors consequential to the phase truncation process. The spectrum

corresponding to the reference sinusoid is illustrated in Figure (5.1.3b) for comparison.

There are no spurious spectrum lines evident.

4000

2000

(a) Reference phase

s>
0

or
0 0

I

10

16

20 30 40

Sample index

(b) Truncated phase

50 60

01)9

000

,9?f
0 0

©00
ffiO

-,od9?T

0

10 20 30

Sample index

(c) Radian phase error

40 50 60

- 0.2

“ 0.4

6
6 O

6
Q

pi
6

6

6

6

A J Q

6
6 6

A'<b A
6

6 -

Q

10 20 30

Sample index
40 50 60

Figure (5.1.1): Example phase sequences, (a) - Reference phase sequence with

M = 12 and (p = 217. (b) - 4-bit truncated phase sequence (i.e. 8-bits truncated), (c) -

Phase error sequence in radians.

193

(a) Reference sinusoid

j
9W0

____ L

.Til 11 l i tMW f i i i i f
I 6d>6 I rM

J

10 20 30

Sample index
40 50 60

(b) Phase-truncated sinusoid
q 9 q q I q¥q rQQ

Be-1 £

 r
QQ Q<

(DO QQflQ l Lroo

0.5

10 20 30 40

Samp le index

(c) Phase-truncated amplitude error

50 60

M iq q !I I I Yqq9

F ^

99©
_ J l 5 W ©Qq

99©

: . hF
-0.5

o
 I__

10 20 30

Samp le index
40 50 60

Figure (5.1.2): Phase mapped amplitude sequences corresponding to the phase

sequences o f Figure (5.1.1). (a) - Reference sinusoid with L = 2M. (b) - Phase

truncated sinusoid with L = 24. (c) — Amplitude error sequence.

194

Truncation error spectrum (a)
0 | 1 1 1 1 1

_ -10

I ~20
5 -3 0

I -4 0G.
< "5 0

-6 0

"7 0 "
0 0.1 0.2 0.3 0.4 0.5

Frequency (cycles/sample)

Reference spectrum (b)
10

0

£ -io-o
r ‘20
| "3 0

f - “ 40

< "5 0

“ 60

"7 0
0 0.1 0.2 0.3 0.4 0.5

Frequency (cycles/sample)

Figure (5.1.3): Phase truncation and reference error spectra corresponding to Figures

(5.1.2c) and (5.1.2a). Stem markers o indicate the abundance o f closely spaced

spectrum lines in the phase truncated error spectrum.

5.1.2 Fractional Phase Representation

We now consider truncation of the M -bit phase accumulator output sequence to an I -

bit sequence, with I < M , which indexes a wavetable of length L - 27. This yields a

partitioned phase sequence comprising an /-b it integer field, (frfn), and an F -b it

fraction field, <j>F(n) , which represents the normalised phase fraction a (n) e [0,1).

Hypothetically, the fraction field may be further truncated from the available (M - /) -

bits to suit a particular arithmetic processing word size as illustrated in Figure (5.1.4).

In general, we have M = (/ + f) = (/ + F + R), where R denotes the discarded fraction

bits from an available F -bit fraction field to give an F -bit truncated fraction field.

©

© 9
o

©

cP
©

© © ©
O
o©

or
J 1

iiii$ 8 ! $ u\ kin i;: PM iiM; \ ‘i i k I ̂ ri* I ?S"I I?! 3 r« i J|i j ii Sill:-: IK |I« :ii 8; PIHŜ |ii S?; sill

195

R > 0 is typical when we require frequency resolution consistent with large M

(determined by M and f) but do not require full phase fraction precision in an

interpolated phase mapping computation. For our present discussion we assume R = 0

and so F = F .

MSB

M

LSB

>A7-1

t M - 2

F

F

R

M/ \l/

>7-1

, 7-2

, - F + l

2~f

Wavetable address
</>i(n)

Fractional address
</>F(n)

Discarded bits

Figure (5.1.4): Phase word partitioning showing truncation o f the fraction field.

We now present expressions which model the phase accumulation process and define

the non-truncated, truncated and fractional phase sequences, thus:

<f>(ri) ={n<p+ 0(0))2.„ e [o, 2“ - l] (5.1.1)

(f {n) =
(/){n)

e 0 ,2 ' -1 (5.1.2)

196

h (n) = + 0.5 [o, 2 ' - 1] (5.1.3)

<f>r (n) = (<fi(n) - 2F> , (n))e [o, 2F - 1] (5.1.4)

a(ri) = [0, 1) (5.1.5)

where (j)Ir (ri) denotes the truncated phase sequence obtained by rounding the fractional

value as distinct from (/)1 (n) which is obtained by discarding the phase fractional field

entirely. Eq. (5.1.3) is expressed in modulo 27 form since the rounding operation can

take the result outside the interval [o, 27 - l] . For the general truncated fraction field

case (i.e. R > 0) we modify Eqs. (5.1.4) and (5.1.5), thus:

</>R(n) = 21 [o,2F - l] (5.1.6)

«*(») = ^ e [0,1) (5.1.7)

where t/>R(ri) and a R(n) denote the truncated forms of (j>F(ri) and a(n), respectively.

For the specific case, when i? = 0 we have:

^(w)S 2/r^/ («) + ̂ (w) (5.1.8)

For I < M , this phase sequence is interpreted as the fractional quantity <j>j (n) + a(n)

which fractionally addresses the wavetable through interpolation.

A distinction is evident between truncated phase mapping (TPM) (i.e. zero-order

interpolation) which effects phase-amplitude mapping with a discarded phase fraction

field and interpolated phase mapping (IPM) which uses the fractional phase information

197

to interpolate the wavetable lookup. Rounded phase mapping (RPM), which can be

viewed as an alternative form of zero-order interpolation, provides a smaller phase

quantisation error on TPM since some of the phase fraction information is used to round

the truncated phase value.

5.2 Fractional Wavetable Addressing and Polynomial Interpolation

5.2.1 Preliminaries

Implementation of phase-amplitude mapping by means of a fractionally addressed

wavetable with unit-spaced tabulation, requires that we interpolate values of the

underlying function between tabulated points according to a fractional phase

representation as discussed in section (5.1.2) and depicted in Figure (5.1.4). In essence,

interpolating non-tabulated (i.e. fractionally addressed) values requires construction of

an interpolating polynomial that passes through each sample within a localised subset of

tabulated samples in the vicinity of the sample being interpolated. The interpolating

polynomial therefore locally approximates the underlying continuous-time function

tabulated in the wavetable at discrete phase points and may be expressed in several

mathematically equivalent forms which include power series, Lagrange and Newton

representations. Appendix A reviews the analytical basis of polynomial interpolation

applied to the interpolation of a well-behaved function, / (x) , tabulated at distinct

values of x .

Referring to the interpolation analysis presented in Appendix A, we define the

generalised fractional address, x , in terms of the phase sequence, </>(n) , partitioned into

an /-b it integer field, ^7(n) = and an F -bit fraction field,

« (» > = #
</>(") , hence modifying Eq. (5.1.8) thus:

198

x = = h M + (5-2-1)

where the integer and fraction components of (j>{ri) are represented by

(j)j{n) e [0, 21 -1] and a{n) e [0,1), respectively. In the subsequent discussion we drop

sequence time-indices for brevity and use ^7 and a to denote the sequences (j)j (n) and

a(n) , respectively.

5.2.2 The Cubic Interpolation Polynomial

By way of an example, we consider the cubic Lagrange interpolation polynomial (i.e.

N = 3) interpolating x with the tabulated data set { / (x0), / (Xj), / (x2), / (x3)} for

x g [x0, Xj] using the notation of Appendix A. In the WLS context, this corresponds to

four (i.e. N + 1) wavetable read operations which interpolates x = (^7 + a) with the

wavetable sample set {t[^7 \ T[^7 + l \ T[</>} + 2\ T[^7 + 3]}). (We further relax

denotation rigour by noting that strictly the wavetable is indexed modulo 21 and so

T[^7 ± «] is properly denoted as t[(^7 ± a) ,] where a is an arbitrary integer offset.)

We note from the interpolation error discussion presented in Appendix A that

x = (<f>j + a) is placed in the first sub-interval of the sample set leading to a non-optimal

error magnitude bound.

The fractional phase value, a , spans the sub-interval [07, 07 +1) and so for unit-spaced

tabulation (i.e. x = 0 ,1, 2 ,...) x- =<j>j + j in the numerator of Eq. (A-5). From Eq.

(5.2.1) we have x = (^7 + a) and so the numerator terms in Eq. (A-5) reduce to (a - j) .

Adding an offset to the wavetable index so that ^7 -» (fj - 1) interpolates x = (^7 + a)

with the tabulated sample set {T[^7 -1], T[^7], T[^7 +1], T[^7 +2]} as illustrated in

199

Figure (5.2.1) and places the fractional address in the middle sub-interval of this set,

[TV,]. TV, +1]], as required for a minimum interpolation error bound.

fan) = m o

Figure (5.2.1): Illustration o f the optimal fractional address interval fo r the cubic

interpolation polynomial with x = (^7 + a).

5.2.3 The Optimal Order-A/ Polynomial Interpolator

In general, optimal positioning of the interpolation sample set with respect to the

fractional address interval requires that we offset each numerator and wavetable index

which places x = ((j>1 + a) in the middle sub-interval of

the sample set for all odd N and in the lower sub-interval from the middle sample for

term in Eq. (A-5) by -
N - 1

2 0 0

all even N . Observing modulo 21 wavetable indexing, the generalised wavetable read

operation now becomes T (a -
W -l

+ *)
2 12' .

, k e [0, N] .

For unit-spaced sample sets corresponding with wavetable tabulation, the (xk - Xj)

denominator terms in Eq. (A-5) reduce to constant integer values (i.e. (jr* - X j) = k - j) ,

hence for an order- N interpolated output sample, PN{(j)j + a), we have:

N - 1

^ f o + «) = Z
k=0

$ 1 -
N - 1

+ k n
7=0j&k

a + - j

k - j

(5.2.2)

which reduces to linear interpolation as given by Eq. (3.3.4) when N = 1 and truncation

when N = 0. We simplify Eq. (5.2.2) by defining a single scaling factor, J3k(a), for

each summation term, thus:

' N - 1

A(«)=n
7=0j*k

a + J

=n
7=0
j * k

(f
a +

k - j

N - 1

(5.2.3)

{ k - j V , k e [0, N]

and so, in general we have:

iV

Pn($i ■*" = XI
k=0

A(a)T
N - 1

+ k
2'

(5.2.4)

For the cubic interpolation example we have:

pM +“)=A torfc -i]+A (a)rfc]+ A («)rfo +1]+A («)rfc + 2]

(5.2.5)

201

where fi0 (cc) = - j a (a -1 \ a - 2) , ftx (a) = } (a + 1)(a -1 \ a - 2),

f t (a) = - y a(a + i)(a - 2) and P^ipt) = | a(a +1 \ a - 1).

Appendix A reviews the Newton interpolation form defined by Eq. (A-11) which

expresses an order- N interpolating polynomial in terms of an order N - 1 polynomial

and leads to computational advantages under certain conditions. Following similar

reasoning applied in section (5.2.2), we substitute x = (^7 + a) in Eq. (A-11) and

optimise location of the fractional address interval thereby obtaining the recursive

equation:

V /

Eqs. (5.2.6) and (5.2.7) define a recursive algorithm for computing the order-A

Homer’s algorithm (as presented in Appendix A-3) allows the Newton interpolation

polynomial form to be expressed in a reduced-multiplier form which we exemplify with

the cubic interpolation polynomial, thus:

a, = T f o] - T f o -1], a2 + l] - l f o] + ± T f o - l] and

«3 = LA<t>, + 2]-± T fo + l]+ * T fo]-* T fo -1] with lookup table indexing offset to

ensure optimal placement of the fractional address interval and hence minimum

thwhere the m divided difference term, am, is defined by:

Newton interpolation in N iterations, requiring (N +1) wavetable read operations.

P3 (</>j + a) = a0 + \ax + [a2 +a3(a - 0 W « +1)

where the divided differences, a0 to a3, are given by aQ

(5.2.8)

2 0 2

interpolation error bound. It is evident that each divided difference term is a linear

combination of the (N + 1) sample set elements with constant weightings.

5.2.4 Interpolation Arithmetic Overhead

In the assessment of arithmetic overhead, we are primarily concerned with the number

of multiplication and memory read operations. Multiplication count is significant since

multiplier architectures impose a much greater area penalty and execution time in VLSI

implementations compared to adder architectures, which are generally smaller and

faster. Memory read-access and cycle times discourage multiple reads from a single

memory in high speed applications consistent with a time-division multiplexed WLS

oscillator generating multiple voices. However, the falling cost of high speed memory

encourages the use of relatively small lookup tables to eliminate real-time computation.

The order- N Lagrange interpolation polynomial given by Eq. (5.2.4) requires:

N

• ^ (N - 1) multiplication operations associated with the a terms;
o

• (V + l) multiplication operations associated with the (k - j)~l terms (each of

which is constant for a given interpolation order);

• (N + 1) multiplication operations associated with the Pk(a)T terms;

• < N (N + 1) addition operations associated with the a terms;

• N addition operations associated with the pk (a)T terms;

• N addition operations associated with the offset terms;

• N + 1 memory read operations.

Hence, the total multiplication and addition counts are (v 2 + 2N +1) and N (N + 3),

respectively and are both of o(w2). For the cubic interpolation polynomial example, we

require sixteen multiplication, fifteen addition and four wavetable read operations.

203

Algorithmically, Eq. (5.2.4) represents a linear combination of (iV + l) wavetable

samples whose weighting coefficients, flk(a), k e [0,N], are a function of fractional

address, a , and interpolation order, N (which is constant in a given implementation).

Computing the J3k(a) terms from scratch is computationally intensive requiring N

multiplications per term. Alternatively, we may obtain the fik(a) terms directly by

indexing (N + 1) lookup tables with the phase fraction field, thereby eliminating N

multiplication operations at the expense of lookup table memory. In general, for lookup

table computed J3k(a) terms, we observe a minimum of (tV + 1) multiplications, N

additions, (vV + l) wavetable read operations and (N +1) fik(a) table lookup operations

to compute the Lagrange interpolation algorithm.

Inspecting Eqs. (5.2.6) and (A-14) we deduce that for N >2 the order N reduced-

multiplier Newton interpolation polynomial requires:

N

multiplication operations associated with the am divided
/=0

difference terms;

• N multiplication operations for the a weighting terms;

N N• =(N + 1)— addition operations associated with the am divided difference
k=i 2

terms;

• N addition operations associated with the PN summation;

• (N — l) addition operations associated with the a terms;

• N addition operations associated with the fa offset terms;

• (N +1) memory read operations.

204

N

Hence, the total multiplication and addition counts are £ (iV - /) + 2 jV - 3 and
/=0

/ \N(JV + 1)— + 3W -1, respectively. For our example cubic interpolation polynomial, we

have nine multiplication operations against sixteen for the Lagrange form. Furthermore,

four of these multiplications are by exactly y and may therefore be effected by

arithmetic right shifts, reducing the multiplication count to five.

If the am terms in Eq. (5.2.8) are obtained from four distinct wavetables each tabulating

a particular am term with all tables indexed by , the multiplication count reduces to

three. For the order- N , reduced-multiplier Newton interpolation polynomial with

coefficient terms computed by table lookup, we observe a minimum of N

multiplications and (./V + l) distinct wavetables each tabulating a unique divided

difference of the underlying wavetable being interpolated. However, this imposes an

(N + 1) fold increase in wavetable memory length compared to the recursive algorithm

of Eq. (5.2.6) which follows a sequential processing model with (7V + l) memory read

operations from a single wavetable memory.

Figures (5.2.2) and (5.2.3) illustrate the respective variation in multiplication and

addition operation count with N for three interpolation classes: Newton, Lagrange and

Lagrange with coefficients computed by table lookup. We see that the latter form

requires the lowest number of multiplication operations for a given N .

205

— ------------
— __.._

,.-■ 3
. “*■ - “

Z4— — , -X ' ------ y *
„ - -A - i3 '

....

- i 3 ' ~ ' '
,}

/ ' ■ T
y ' '

_____ ------------
\ -f

----------------- F - -<
£

... ------- 1-----
y - ~ ~ “

EH3D Newton polynomial
X X X Lagrange polynomial
- -O - Lagrange polynomial with LUT coefficients

1 ---
2 3 4 5 6 7 8 9 10

Interpolation order

Figure (5.2.2): Multiplication count as a function o f interpolation order fo r three

interpolating polynomials.

100

10

, - - X " -----T=1
...- —

. _ -4
#< . - u

3'
_.X'‘

.FT
3"

--
| -

___ -O’ "
^ --------- ’---

3'.... ..— - - - -- — |------------
............ “ "pA7

EH3Q Newton polynomial
X X X Lagrange polynomial
- -O - Lagrange polynomial with LUT coefficients

10

Interpolation order

Figure (5.2.3): Addition count as a function o f interpolation order fo r three

interpolating polynomials.

206

5.3 Trigonometric Identity Phase Mapping (TIPM)

This section develops the exploitation of trigonometric identities to reduce memory

requirement in the computation of sinusoidal phase-amplitude mapping. This work has

been published by the author in [Symons, 2002] as part of this research and

subsequently extended here to consider optimal phase word partitioning, memory

saving compared to brute force phase mapping and arithmetic precision requirements.

5.3.1 The Trigonometric Addition Identity and Sinusoidal P hase Mapping

The phase sequences, (j>j(ri) and <j>F(n), combine according to Eq. (5.1.8) to form the

non-truncated sequence, (j){n) , suggesting consideration of the trigonometric identities:

sin(^4 + B) = sin(^4)cos(5) + cos(^4)sin(2?) (5.3.1)

cos(^4 + B) = cos(^4) cos(i?) - sin(^4) sin(J5) (5.3.2)

to effect the phase mapping function. This phase mapping is absolutely exact since the

identities are themselves exact (by definition) and all phase information is used. Using

Eqs. (5.1.2) and (5.1.4) we decompose the non-truncated phase sequence, (j){ri) ,

expressed in radian form, thus:

f(n)
+ ■

2 n
oT

<j>(n)

(5.3.3)
2n 'Ik

Equation (5.3.3) enables an optimal sinusoidal phase mapping definition by substituting

Figure (5.3.1) illustrates the arithmetic process model associated with Eqs. (5.3.4) and

(5.3.5) where four lookup tables indexed by </>j(n) and </)F(n) provide the sine and

cosine terms. Additional arithmetic overhead includes four multiplications, one addition

and one subtraction to compute the quadrature sinusoid samples. Figure (5.3.2)

illustrates the simplified process model particular to non-quadrature phase mapping,

removing two multiplications and one subtraction operation.

Cosine
LUT

Sine
LUT

Cosine
LUT COS

Sine
LUT

Figure (5.3.1): Arithmetic process model for quadrature trigonometric phase mapping

given by Eqs. (5.3.4) and (5.3.5).

Cosine

Cosine

Figure (5.3.2): Arithmetic process model fo r non-quadrature (single sinusoid)

trigonometric phase mapping given by Eq. (5.3.4).

The A and B wavetables are of length 21 and 2h samples respectively, with total

memory requirement now (2 /+1 + 2 /-+l) representing a significant reduction on the brute

force value of 2A/ samples. We define the four wavetable functions, thus:

T, [a] = cos
21

T2 [a] = sin
 ̂2n ̂
— a

v 2 j

T3 [a] = cos
2k

M
\

a

T4 [a] = sin
\

a
<■) M

2n

a e [0 , 2 ' - 1] (5.3.6)

o e [0 ,2 ' -1] (5.3.7)

209

observing that lookup tables T3 and T4 contain a sinusoid sub-cycle (i.e. 2 1 of one

cycle). Since the angle summation formulae represented by Eqs. (5.3.1) and (5.3.2) are

mathematical identities (i.e. absolutely exact), we hypothesise that trigonometric

identity phase mapping (TIPM) provides optimum signal-to-noise-ratio (SNR1)

constrained only by sample quantisation and computation round-off errors.

5.3.2 Optimal Phase Word Partitioning

We now consider optimal partitioning of the phase word (i.e. the relative magnitude of

/ and F) so as to minimise the total wavetable memory requirement compared to the

brute force value of 2M samples. We first define the “memory reduction” ratio, rj, as

the ratio of total wavetable memory size using trigonometric phase mapping to the

corresponding brute force value, thus:

, = (5-3.8)

Setting — = (27 - 2M~J)= 0 gives the minimum of this function as I = F = — .
d l 2 2

Figure (5.3.3) illustrates the behaviour of rj according to Eq. (5.3.8) as I varies over

Mthe interval [1, M - 1]. Optimum reduction ratio is evident when I = F = — .

1 See section (5.4) for a definition o f this performance metric in the context o f phase-amplitude mapping
error.

10

.ao.i

o.oi .a
o.“ 3 o-©-o

” 4
1 -10 0 105 15 20 25

Integer field width (bits)

Figure (5.3.3): Wavetable memory reduction ratio as a function o f integer fie ld width.

We deduce that maximum wavetable memory saving occurs when the phase word is

M
partitioned equally when all four lookup tables have length — samples. The memory

2reduction ratio is then 2 ̂ " ; and improves as M increases.

5.3.3 The Reduced-Multiplier Quadrature TIPM Form

Eqs. (5.3.4) and (5.3.5) can be manipulated as a pair to give an equivalent but reduced

multiplier form applicable to quadrature sinusoid generation. Arithmetic saving comes

from identifying the common term cos(^)[cos(i?) + sin(5)], thus:

sin(^ + B) = cos(^4)[cos(5) + sin(5)]+ cos(^)[sin(^4) - cos(^)] (5.3.9)

cos (A + B) = cos(^)[cos(5) + sin(5)]-sin(5)[sin(^) + cos(^)] (5.3.10)

requiring four table lookup operations, three multiplications, three additions and two

subtractions. Exchanging a multiply for one addition and two subtraction operations is

advantageous in VLSI implementations due to silicon area saving. Figure (5.3.4)

illustrates the arithmetic process model for quadrature phase mapping using Eqs. (5.3.9)

and (5.3.10).

211

Cosine
LUT

Sine
LUT sin

Cosine
LUT

Sine
LUT

Figure (5.3.4): Arithmetic process model o f the reduced-multiplier TIPM algorithm

which is applicable to precision quadrature sinusoid synthesis only.

212

5.3.4 Arithmetic Precision and Sample Word Size

For the condition I = F , it is clear from Eqs. (5.3.7) that the fractional phase ranges

over smaller positive intervals as M increases. The corresponding sine and cosine

amplitude values are therefore always positive and tend to zero and one respectively as

M increases. Hence, the fractional sine and cosine terms obtained from lookup tables

T4 and T3 require fewer bits for accurate representation within a fixed-point number

system. It is clear from the Taylor series expansions of sin(x) and cos(x) that

sin(x) -> x and cos(x) -»1 as x —» 0. The maximum fractional phase angle is

A 2’s complement fixed-point number representation of b -bits has a resolution

Hence, an arbitrary value, a , lying within the positive half of the range (i.e.

fraction field to represent it, with the remaining b -1 - b' bits set to 0. Similarly, an

arbitrary value, a , lying very close to positive full-scale (i.e. a -» (1 - 2_(*_1))), requires

bits required to accurately represent our fractional sine and cosine amplitude values.

We can assess the saving in arithmetic word size by considering an example where

M = 24 as concluded in section (4.2.2) and hence 7 = 12 for optimum lookup table

radians for 2F » 1 and so the corresponding fractional sine and

cosine amplitude values are sin(2;r2 7) « 0 and cos(2/r2 7)« 1, respectively.

(quantisation interval) of 2"(i 1} normalised to a full scale range of [-1, (1 -2 (b 1})].

a e [o, (1 — 2 (b !))]), requires b' = log2 bits of the available (7> — l) -bit

bits of the available (7 - 1) -bit field to represent it, with the

remaining b - \ - b ' bits set to 1. We therefore observe a reduction in the number of

memory utilisation as concluded in section (5.3.2), whereupon sin(2;r2 7)« 0.001534

213

and cos(2;r2 1)«0.999999. The corresponding 24-bit 2’s complement fixed-point

binary representations are therefore (0) 000 0000 0011 0010 0100 0100 and (0) 111

1111 1111 1111 1111 0110, respectively where (0) denotes the sign bit value and the

shaded areas illustrate the significant bits. Hence, we have b' = 14 and b' = 4 for the

fractional sine and cosine amplitude values, respectively. This saving in arithmetic word

size affords a significant reduction in multiplier gate count in VLSI implementations.

For our above example, we now require 24 by 14 and 24 by 4 bit multipliers for the

fractional sine and cosine terms, respectively. Finally, for arithmetic processing where

b <20 , M - 24 and 1 - F = 12, the fractional cosine amplitude term cannot be

represented within the available resolution and so becomes superfluous, thereby

removing one lookup table and multiplication operation.

214

5.4 Simulation Development

In this section we consider a simulation framework that supports a qualitative

assessment and comparison of interpolated WLS phase mapping algorithms using

numerical computer models implemented in Mathcad version 11.2a and presented in

Appendix B. We are also concerned with the definition of critical parameter values (e.g.

phase increment, the number of samples simulated and tabulated signal spectral

characteristics) which ensure an accurate and consistent simulation of worst case error

performance. This section develops the qualitative evaluation work of Moore [1977] in

the simulation of rudimentary sinusoidal WLS and Dannenberg [1998] in the simulation

of multi-harmonic (i.e. spectrally rich) WLS. We generalise and develop this work to

provide a “modelling toolbox” that enables simulation and assessment of particular

WLS configurations and tabulated signal spectra with independent variation of all

control parameters.

The phase sequences defined by Eqs. (5.1.1) through (5.1.5) underpin all the Mathcad

models and together with the particular interpolation algorithm under evaluation (e.g.

linear interpolation), compute a simulated output vector which is compared to a

reference vector computed to full arithmetic precision. The simulation is run for a

specific number of samples designed to ensure the output vector contains a near-integral

number of cycles. Simulation results are presented and discussed in section (5.5) for

several interpolating phase mapping algorithms (including the trigonometric identity

algorithm) using a range of test conditions typical of real-world situations.

We use two qualitative metrics - the signal-to-noise ratio (SNR) computed over N s

samples, SNR(Ws), as defined in section (5.4.1) and the spectrum of the amplitude

error signal defined as the difference between the interpolated signal and a reference

215

signal having the same frequency, phase and spectral composition computed to full

arithmetic precision. In this context we define “noise” as amplitude error components in

the simulated signal corresponding to both phase truncation error and amplitude

quantisation effects. The magnitude of phase truncation noise is reduced by

interpolative phase mapping but, in general, can only be minimised. Quantisation noise

sources take on two distinct forms - noise due to intended simulation of amplitude

quantisation (e.g. 16-bit fixed-point linear quantisation) and “computation noise” due to

the finite resolution of the full precision arithmetic used in the Mathcad modelling

environment. We employ full precision computation when we wish to determine SNR

performance “uncontaminated” by amplitude quantisation noise (i.e. determining SNR

due to phase truncation errors alone).

5.4.1 The Signal-to-Noise Ratio (SNR) Metric

The perceived tonal quality of an audio signal synthesised using sinusoidal or multi

harmonic WLS can be quantified by determining the ratio of RMS signal to noise

amplitudes, or signal-to-noise ratio (SNR) [Moore, 1977]. SNR provides a simple and

intuitive performance metric for evaluating and comparing phase mapping algorithms.

To determine the noise magnitude we first define the phase mapping amplitude error

sequence, s a(n) , thus:

ea(n) = y (n) - y r(n) (5.4.1)

where y{ri) denotes our synthesised signal sequence computed using a particular phase

mapping algorithm (e.g. interpolated WLS) and yr(n) denotes an ideal reference signal

sequence of the same frequency, amplitude and phase computed using full arithmetic

precision. The RMS noise amplitude is obtained by taking the standard deviation of the

error sequence, ea(ri) , with respect to the mean over N s samples, thus:

216

(J

(5.4.2)

fi(ea(n),Ns}=0

where ju(sa(n),Ns) and cr(ea(n \N s) respectively denote the mean and standard

deviation of the amplitude error signal computed over N s samples. For

ju(sa{n \N s) = 0 we have the form given by Moore [1977]. Hence, we define the signal-

to-noise ratio, SNR(iVv), computed over N s samples, thus:

Phase accumulating oscillators using simple (i.e. phase truncated) table lookup phase-

mapping exhibit exponential growth in table length with improving SNR. However,

interpolation and trigonometric techniques reduce lookup table growth for a given SNR

specification. Quantisation noise corresponding to the sample word size and arithmetic

round-off error define an upper-bound on SNR performance.

We now define the reference and synthesised sequences (i.e. yr(n) and y(n)) to support

a simulated assessment of phase mapping algorithms using the SNR metric. We define

the sinusoidal and multi-harmonic reference sequences, thus:

SNR(W5) = 20 log (5.4.3)

V J
(5.4.4)

where our normal parameter denotations apply.

217

For a given value of / and therefore wavetable length, we define the single-cycle

sinusoidal or multi-harmonic wavetable vector, T , according to Eqs. (4.1.2) and

(4.1.3), respectively. There are three cases to consider for the definition of our

synthesised signal sequences: interpolated phase mapping, rounded phase mapping and

TIPM, observing that TIPM applies to sinusoidal synthesis only. Using the Lagrange

interpolation expression of Eq. (5.2.2) we define the phase mapped sequence using

order- N interpolation, thus:

y(p) = £
k =0

M n)~
N - l + k n

j =oj*k

a(n) + N - 1
- J

k - j
(5.4.5)

where </>j(n) and a(n) are defined by Eqs. (5.1.2) and (5.1.5), respectively. We also

define the rounded phase mapping sequence according to Eq. (5.1.3), thus:

y(n) = T[/ ^ + 0 . 5 \ 1A. 2 / 21 _
(5.4.6)

We define the synthesised sinusoidal sequence using trigonometric identity phase

mapping (TIPM) according to Eqs. (5.1.2), (5.1.4), (5.3.4), (5.3.6) and (5.3.7), thus:

y(n) = T2 [f, (n)] T3 («)] + T, f t („)]T4 [</>F (n)] (5.4.7)

The sequences defined in Eqs. (5.4.4) through (5.4.7) underpin the SNR models

presented in Appendix B.

5.4.2 P hase Increment and Phase Truncation Error

Nicholas et al [1987, 1988] derive analytical expressions for the number of lines in the

phase-truncated sinusoidal signal spectrum, their amplitude and relative position as a

function of M , cp, F and f s . The numerical period, P , of <f>(n) (i.e. the minimum

value of P for which (j){n) = (j){n + P)) is fundamental to quantifying phase truncation

218

2M

spectral errors and given by P = ----------- — , where gcd((p, 2) denotes the greatest
gcd(^, 2)

common divisor of (p and 2M.

The authors represent the phase-truncated sinusoidal output sequence as

y,(«) = sin ^-[n < p -£ p («)]], where ep(n) denotes a phase error sequence due to
v2)

phase truncation and given by s p (n) = n (p -2 1 n(p 2 71
[0,—r). s p(n) is periodic

with period p eT , where p E e [1,2F) and underpins the results presented. The principal

result is that the number of spectral lines and their magnitude depend on (p through

gcd(^>, 2f) alone. As a consequence, values of cp that have the same value of

gcd(<p, 2F) cause the number of lines and their respective amplitudes to remain the

same - only the position of each line in the spectrum changes. It is shown that the

number of spectral lines is given by:

2 f
A = ----------- -— 1 (5.4.8)

gcd($>, 2)

and is a maximum when cp is odd and so gcd{(p, 2) = 1, hence Amax = (2 -1). Values

of (p which give gcd(^>, 2F) = 2F produce no phase truncation errors since A = 0 and

so s p(n) = 0.

In the simulations whose results are presented in section (5.5), we choose values of cp

which give gcd(#?, 2F) = 1 to maximise the number of phase-truncation error lines in

the spectrum. This tends to maximise the energy in the error spectrum and hence by

ParsevaTs theorem the corresponding energy in the amplitude error sequence ensuring a

worst case simulated SNR figure. (ParsevaTs theorem relates the total energy of a DT

sequence, y(n), to the corresponding discrete Fourier transform (DFT), Y(k) , thus

219

N - 1 1

X y 2 (w) = — 2 1 ^ [Ifeac^or & Jervis, 2002]. Hence the energy of a DT amplitude
N k=(\n =0 JV £=0

sequence and its DFT are equivalent.)

Since Eq. (5.4.8) gives only the number of phase truncation spectral lines and not their

amplitude distribution, we investigate the assumption that Amax corresponds with worst

case SNR by simulating an example configuration over the permissible range of (p

values and confirm approximate SNR invariance with (p. Figure (5.4.1) illustrates the

simulated variation of SNR with (p for a 12-bit phase accumulator with 6-bit phase

truncation indexing a 64 location sinusoidal wavetable. The relatively small phase

accumulator word size enables all (p values to be simulated. The results confirm that the

2 f
condition-----------— = 1 yields maximum SNR bound only by computation round-off

gcd(^,2)

error, with minimum SNR for all odd (p. Figure (5.4.2) presents a corresponding

theoretical prediction for the number of error spectrum lines, A , against (p according to

Eq. (5.4.8). As expected, this corresponds with Figure (5.4.1) where A = 0 and

A = 2 F -1 yield maximum and minimum SNR, respectively.

220

35

34

33

32

31

30
29.2

29

28

27

26

25

24
,3 41 -1010 100 1 - 10 -

Phase increment

Figure (5.4.1): Variation o f SNR with (p e [1, 2M - 1] fo r M = 12 and I = F =

plot - (p ranging over all values on [1, 2A/ -1] showing SNR maxima when (p

Red plot - (p ranging over all odd values on [1, 2A/ -1] showing minimum SNR.

. Blue

' even.

221

70

60

50

40

30

20

o o o

10

0

.4,310 1001 M O1 - 10-

Phase increment

Figure (5.4.2): Variation o f A with cp e [1, 2M -1], M = 12 and 1 = 6. Green plot -

(p ranging over all values on [1,2M - 1] corresponding with local SNR peaks from

Figure (5.4.1) when A deviates from the modal value o f 63. Red plot - (p ranging over

all odd values on [1, 2M -1]. Observe A is always a maximum for odd cp. (Plot lines

have been omitted for clarity.)

222

5.4.3 The Amplitude Error Spectrum

As an adjunct to the SNR(tVs) metric we compute the amplitude error spectrum by

taking a windowed discrete Fourier transform (DFT) of the amplitude error sequence

given by Eq. (5.4.1) to illustrate the frequency domain characteristics of phase

truncation noise. Computing the DFT necessarily forces a finite duration analysis record

or “window” of NST seconds. In the simplest case, the window is effectively a

rectangular function of width N s samples. The DFT periodically extends this analysis

window causing signals whose period is not a sub-multiple of N ST to exhibit

discontinuities at the window boundaries. These discontinuities cause spectral leakage

in the DFT output spectrum which manifest as spectral lines not present in the original

signal. To mitigate spectral leakage we apply a non-rectangular window to the analysis

record. The window function applies a multiplicative weighting to the analysis record

which tapers to zero at the record boundaries and so reduces the contribution from the

periodic extension discontinuities. We use the Hamming window function as this

provides good sidelobe suppression of -43 dB and a sidelobe roll-off of -6 dB/octave

[Harris, 1978]. Figure (5.4.3) illustrates the Hamming window for N s =1024 together

with its frequency response for N s = 1024 and N s = 65536. As N s increases, the main

lobe width decreases and the highest sidelobe level remains the same. However, since

the density of sidelobes increases with N s, the constant sidelobe roll-off causes

suppression of higher sidelobes to improve with increasing N s .

223

(a)

0.5

0 0 512 1024

Sam ple index

(b)

"20

S'•o
£ "4 0
Cl3o

“ 60

-8 0

- 4 3

M l !M

-0 .1 5 -0 .1 -0 .0 5 0 0.05 0.1 0.15

Frequency (rads/sam ple)

Ns = 1 0 2 4
Ns = 65536

Figure (5.4.3): (a) - Time domain response o f the Hamming window fo r Ns = 1024.

(b) - Frequency response o f the Hamming window fo r Ns = 1024 and Ns = 65536. A

particular bin centre is normalised to zero frequency on the frequency axis.

When computing the phase truncated signal spectrum, the DFT bin width for a record

size of N s samples is given by [Orfanidis, 1996]:

f ,
/* = N.

(5.4.9)

The spectral resolution, A /, [Harris, 1978] must take account of the equivalent noise

bandwidth (ENBW), f3 , of the window function expressed in bins and is defined thus:

4f = P

For the Hamming window we have f = \ 36 .

v V y
(5.4.10)

224

5.4.4 Defining the Wavetable Spectrum

To simulate phase truncation effects and interpolated phase mapping WLS with non-

sinusoidal wavetables, we define piecewise-linear spectrum models of musical signals

to construct wavetable spectra using results presented in Borch & Sundberg [2002].

This paper presents analyses of several music types using long-term average spectrum

(LTAS) analysis presented in Jansson & Sundberg [1976] to measure an average

spectral “signature” for a particular type of music. Both popular and classical music

types have been analysed and the results approximated here by piecewise-linear spectral

envelopes allowing the computation of multi-harmonic wavetables using Eq. (4.1.3).

We first define a generalised piecewise-linear harmonic spectrum, Ak, comprising Nh

harmonics with k e [1, N h], fundamental frequency, f 0 and a single breakpoint

harmonic index, kb (with corresponding frequency kbf 0). Two variables, rx and r2,

define the spectrum slopes before and after the breakpoint harmonic, respectively. We

have:

A —
\ k

1VI

m n~ri r n
U J Kk j

k e [l , k b)

(5.4.11)

k e [k b, N h]

t i l •where A represents the fundamental amplitude and Ak represents the k harmonic

amplitude. Using the results from Borch & Sundberg [2002] and Eq. (5.4.11) we define

several piecewise-linear spectra which approximate various musical types. Our

objective is to define wavetable spectra which capture the essence and diversity of real

musical signals and hence underpin simulation of interpolated WLS SNR performance.

These spectral envelopes are illustrated in Figures (5.4.4) through (5.4.6) and define the

amplitude coefficients, Ak, which generate reference wavetables using Eq. (4.1.3) with

225

= 0. We base these spectra on two fundamental frequencies - f Q =16.35 Hz (CO)

and f 0 =130.81 Hz (C3) with corresponding phase increments (£> = 5715 and

#> = 45721, assuming f s - 48 kHz and M = 24. Both of these (p values satisfy the

condition gcd(#>, 2 7) = 1 presented in section (5.4.2), thereby ensuring a maximum

number of error spectrum lines according to Amax = (21' -1) and hence worst case SNR.

16.35 163500

X

“ 50

-3 dB/oct
-6 dB/oct
-12 dB/oct

"1 0 0

.3 ,5,4
10 100 1 10 1 1 0 1 -10

Frequency (Hz)

Figure (5.4.4): Single slope spectra ranging over 1000 harmonics covering a

bandwidth o f 16.35 Hz to 16,350 Hz which approximates various popular music LTAS

reported in Borch & Sundberg [2002].

226

13080130.:

"20

n.P
<

"4 0

-12 dB/oct

"6 0
,5,3 A 1 -101-101 -1010010

Frequency (Hz)

Figure (5.4.5): Piecewise-linear spectrum ranging over 100 harmonics, covering a

bandwidth o f 130.81 Hz to 13,081 Hz which approximates various classical music LTAS

reported in [Borch & Sundberg, 2002].

1635016.35

-20u-a3
Q.
E
<

-4 0

-12 dB/oct

“ 60
100

Frequency (Hz)

Figure (5.4.6): Piecewise-linear spectrum ranging over 1000 harmonics covering a

bandwidth o f 16.35 Hz to 16,350 Hz.

227

5.4.5 Simulation Record Length

Ideally, we require the fundamental of the simulated synthesised signal to lie precisely

at a bin centre implying an output frequency, / , which is a precise integer multiple of

f b , or / = kfb> with k a positive integer. Setting N s = 2U ensures that cp is always

precisely equivalent to the DFT bin number and also accommodates the maximum

numerical period of the phase sequence when (cp, 2M) = 1. However, this requires a

DFT length on the order of 224 samples which is impractical for reasonable simulation

f
execution times and vector sizes. For N t < 2M, the ratio — takes on fractional values

f b

and bin leakage results. We define the fractional bin tuning error metric, s b (Ns), as the

f
fractional component of — , thus:

fb

eb{Ns) = (5.4.12)

and we select N s for particular values of cp and M so as to minimise s h(Ns) on a

range of acceptable N s values.

Having defined our fundamental test frequencies and therefore corresponding (p values

in section (5.4.4), we now proceed to determine N s given a particular error bound on

sb (Ns). The function £b (Ns) is sawtooth in nature with a distribution of sharply

defined minima over a range of N s for particular values of <p and M . The localised

minima are exposed with a logarithmic plot as illustrated in Figures (5.4.7) and (5.4.8),

which show the variation of s b(Ns) with N s over the range N s e [210, 216] . (N s = 216

represents the limit of DFT record length for acceptable execution time on the available

computer platform.) Inspecting Figures (5.4.7) and (5.4.8) we have determined values of

228

N s yielding minimum sh (Ns) over a range of N s values and hence maximum DFT

lengths consistent with acceptable simulation times. For f =48 kHz the chosen record

length values Ns = 49906 and N s =56143 provide corresponding DFT frequency

resolutions of 1.3 Hz and 1.2 Hz, respectively (i.e. » 1 Hz), assuming a Hamming

analysis window. We use a non-radix FFT algorithm available in Mathcad to compute

the DFT spectra presented in section (5.5).

o.i
o.oi
" 3

■10

" 4
•10

“ 5
•10

"6
10

,4 ,4 ,4 .4,4 ,4
3-10 4-10 5-10 6-101 10 2-10

Record size (sam ples)

Figure (5.4.7): Behaviour o f sh(N s) over N s fo r (p = 51\5 and M = 24, where the

marker x denotes sh(N s)<\Q~A. Ns = 49906 gives minimum £h(N s) on

Ns e [2 10,2 16].

l
0.1

o
c 0.01
00 _
‘5 1■102

1 1•10 4cc
1•10 5

~6
1•10

4 4 4 4 4 4
M 0 2-10 3-10 4-10 5-10 6-10

Record size (sam ples)

Figure (5.4.8): Behaviour o f sh{Ns) over N s fo r (p = 45121 and M = 24, where the

marker x denotes £h(Ns) < 10“4. Ns =56143 gives minimum sh(N s) on

Ns e [2 10,2 16].

I | | - l | - l | - I | M | ' I | | | ’ l | ■»! <1 'I i| •>! "I 'l 'i i| ’*1 "Ii i. i. h I. I. ii i i. i. i. I, 1 'l| "I "I

229

5.5 Simulation Results

5.5.1 Introduction

In this section we present simulation results for six phase-mapping algorithms and

define the following acronyms and corresponding colour codes to simplify annotation:

• TPM - truncated phase mapping colour code red

• RPM - rounded phase mapping colour code brown

• LIPM - linear interpolation phase mapping colour code blue

• QIPM - quadratic interpolation phase mapping colour code green

• CIPM - cubic interpolation phase mapping colour code magenta

• TIPM - trigonometric identity phase mapping colour code black

TPM and RPM are both forms of zero-order interpolation, with RPM utilising phase

fraction information to round the phase integer component to the nearest integer value.

LIPM, QIPM and CIPM effect Lagrange polynomial interpolation of the wavetable

indexing operation with interpolation order N = 1,2,3, respectively. We are not

concerned with the computational advantage afforded by the Newton interpolation

polynomial representation and seek only to present a relative qualitative assessment of

each interpolation algorithm applied to the phase mapping problem. In particular, the

Lagrange polynomial is likely to give a larger (i.e. worst case) amplitude error estimate

due to the increased number of multiplication operations and hence corresponding

round-off errors in the p coefficient computations (see Eq. (5.2.3)). TIPM represents

the phase mapping technique presented in section 5.3 which uses the angle summation

230

trigonometric identity to effect optimal sinusoidal phase mapping with reduced

wavetable memory compared to the brute force approach.

SNR and amplitude error spectrum simulations use the Mathcad programs presented

and documented in Appendix B. We adopt the definition of SNR peculiar to phase

mapping accuracy given by Eq. (5.4.3) which returns positive values for signal power

greater than noise power (i.e. increasingly positive values indicate improving

performance). The amplitude axes of amplitude error spectrum plots indicate absolute

noise power relative to a unit-amplitude reference signal (i.e. increasingly negative

values indicate improving performance). As an adjunct to amplitude error spectra we

also consider the spurious-free dynamic range metric (SFDR), defined as the largest

spectral component within the Nyquist region of the normalised amplitude error

spectrum.

Mathcad simulation programs model fixed-point arithmetic operations and wavetable

tabulations using the quantiser function given by Eq. (4.1.5). Interpolation is modelled

by the Lagrange polynomial defined by Eq. (5.2.2). Multiplication operations are

rounded to double fixed-point precision relative to the input operands with subsequent

accumulation operations performed to full fixed-point precision (e.g. two 16-bit

multiplier operands produce a 32-bit result which is accumulated to 32-bit resolution).

The interpolated output sample computed from the multiply-accumulate operation

implicit within Eq. (5.2.2), is rounded to the appropriate word size prior to SNR

computation (e.g. 32-bit multiply-accumulate results are rounded to 16-bit precision).

231

5.5.2 Sinusoidal Phase-Mapping - Non-Truncated Phase Fraction

Figures (5.5.1) through (5.5.3) illustrate composite simulation plots of SNR variation

with I (i.e. wavetable length L = 2 7) using a single sinusoid wavetable, the six

interpolation algorithms and three arithmetic quantisation levels: full floating-point

precision, 24-bit fixed-point precision and 16-bit fixed-point precision. In all cases it is

evident that the SNR value obtained with TIPM is independent of / and bound by

quantisation noise only. The «300 dB SNR upper-bound evident in Figure (5.5.1)

represents the “computational noise” ceiling corresponding to the floating point

arithmetic precision of the Mathcad simulation environment.

400

300

S'
T 3

* 200
;z
C /3

100

0
6 7 8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.1): SNR variation with I fo r interpolated sinusoidal phase mapping, with

M = 24, (p = 5715, Ns = 49906 and fu ll precision arithmetic.

232

200

150

S
5 100

C /3

50

0 1 1 1 1 1 1 1 1 1 1 1-------
6 7 8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.2): SNR variation with I fo r interpolated sinusoidal phase mapping, with

M = 24, (p — 5715, Ns = 49906 and 24-hit arithmetic.

150

100

S'
3
cc
c / 3

50

0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.3): SNR variation with I fo r interpolated sinusoidal phase mapping, with

M = 24, cp = 5715, Ns = 49906 and 16-bit arithmetic.

Figure (5.5.2) shows that SNR levels consistent with a 24-bit quantisation noise ceiling,

where Eq. (4.1.6) gives SQ N R «146dB , require wavetable lengths o f 256, 512 and

8192 samples using cubic, quadratic and linear interpolation, respectively. Similarly,

J3'
.O'

JZf' ' .-O'-O ''
.-O ''.O '-.-Q '-

S y ' .- O 'y
_ J I I I I L_

,-Q-
--o-‘3 o '

■O''". 'O'-
■ O ' "

, - 0 -
; .-o "

1 1 1 1 r i r

3...

c'

K ’

r ' '

,4-'
, .0 '

.O'
. a ■': 1 -■=!

J I I I I I I I L

233

SNR levels consistent with a 16-bit quantisation noise ceiling, where Eq. (4.1.6) gives

SQNR «98 d B , require wavetable lengths of 64, 128 and 512 samples using cubic,

quadratic and linear interpolation, respectively. SNR expressed in dB, improves linearly

with 7 and is always constrained by the SQNR upper-bound. Figures (5.5.4) and (5.5.5)

illustrate the behaviour of SNR with interpolation order over the range TV e [0,10] with

phase integer field widths 7 = 8 and 7 = 12, respectively. For a given arithmetic word

size and hence quantisation interval, SNR increases monotonically with N and is

constrained by the SQNR ceiling for large N . The rate at which SNR approaches the

SQNR ceiling increases with 7 and hence wavetable length.

4 0 0 r I I T I T 1 I I T----------------
O O O Full precision

350 24bit
EH3D 16 bit

,-Q— — G — — O <
300 “ . O
250 " o ' " '

g 200 -
z1/3 .O

15 0 “ , - -V-O---------O --------- O- - - « - *♦•** •» - * -G - - -i~4tj

100 - Q ---------- EF------------ B - ------------ E3--------------- B ------------ - □ ------------

50 y '
Q _____ I_____ I_____ I_____ I_____ I______I_____ I______I______I______

0 1 2 3 4 5 6 7 8 9 10

Interpolation order

Figure (5.5.4): SNR variation with interpolation order N e [0,10] using fu ll precision,

24-bit and 16-bit arithmetic and a 256 sample wavetable (1 = 8).

I
O O O Full precision
- - $ - ■ 2 4 bit
EH3D 16 bit

, - - Q — — O — — O -J

.O'

_,Q‘
.o

—B-----

- o -

- o -

O- * - * - --O ----- *-« -G- - - - - - -$*-*■- - - O - - - - i*4t

-------- &--------□--------.q ---------- ^

234

400

350

300

250

200

150

100

50

0

O O O Full precision
- - O- 24 bit
EH3G 16 bit

,0

- E3- E3- •

i i i i i i r

.G - O - o- -j

,0

-<S>------- o------ O----O-..............— - - -<S>- “ - * 1-M

.E --Q-■*-«------£3--------q . — - - -0-....................911

10

Interpolation order

Figure (5.5.5): SNR variation with interpolation order N e [0,10] using fu ll precision,

24-bit and 16-bit arithmetic and a 4096 sample wavetable (I = 12).

The results confirm that TIPM yields SNR bound by sample quantisation noise and is

independent of the partition between I and F , as expected. TIPM requires two

M h2
multiplication operations and imposes a lookup table memory overhead of 2 2

samples, irrespective of the SNR requirement. LIPM yields a SNR which is a function

of / alone and bound by sample quantisation noise. LIPM requires a single

multiplication operation and imposes a lookup table memory overhead of 2 7+1 samples,

assuming two lookup tables provide the sample and first-order difference operands

within a single read cycle as illustrated in the process model of Figure (3.3.3). We

conclude that TIPM and LIPM are the preferred phase mapping algorithms for

sinusoidal wavetables based on the SNR metric. In general, TIPM is preferred over

LIPM when we require SNR values above the 24-bit SQNR bound or optimal phase

2 TC
control resolution of —— radians. For computer music applications which are

235

constrained by human auditory perception requirements, LIPM provides an optimal

solution to the sinusoidal phase mapping problem.

5.5.3 Sinusoidal Phase Mapping - Truncated Phase Fraction

We continue our investigation of sinusoidal wavetable phase mapping by simulating the

effect of a truncated phase fraction field on SNR. Section (5.1.2) reviewed the

partitioning of an M -bit phase word into integer and fraction fields with the fraction

field truncated by R bits. For QIPM, CIPM and higher order interpolation algorithms, it

is evident from simulations whose results are not presented here that a single bit

truncation of the phase fraction field (i.e. R = 1) causes a large reduction in SNR whose

magnitude increases with I . Figures (5.5.6) and (5.5.7) illustrate SNR variation with

R for the TIPM and LIPM algorithms, with 1 = 12 (i.e. 1 = ^ -) for the TIPM

simulation and / varying over the range I e [6,12] for the LIPM simulation.

200 ; I | | | | | | | | I i

150 >
m
T 3

C£
2
C /3

100 .

'1
50 I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12

Phase fraction truncation (bits)

Figure (5.5.6): SNR as a function o f R fo r TIPM using fu ll precision, 24-bit and 16-bit

arithmetic with M = 24, 7 = 12, ^ = 5715, Ns = 49906 and f = 48 kH z.

O O O Full precision
24 bit

EH3E] 16 bit

'1
J I I I I I I I I I I

236

140

120

£ 100 ■o
a£
Z
C / 2

80

60

0 1 2 3 4 5 6 7 8 9 10 11 12

Phase fraction truncation (bits)

Figure (5.5.7): SNR as a function o f R fo r LIPM using fu ll precision arithmetic with

M = 24, 7 e [6 ,12], (p = 5715, Ns =49906 and f = 48kHz.

From Figure (5.5.6) it is evident that SNR with TIPM is extremely sensitive to phase

fraction truncation. A single bit truncation of the phase fraction field (i.e. R = 1) reduces

SNR from the full precision computation noise ceiling (> 300 dB) to approximately 133

dB (i.e. 15 dB below the 24-bit SQNR ceiling). For 24-bit arithmetic, SNR falls with

increasing R at an initial rate of 10 dB per bit reducing to 6 dB per bit for large R . For

16-bit arithmetic, SNR stays constant at the SQNR ceiling for ^ e [0, 6], thereafter

falling at the same rate as the 24-bit case with increasing R . We conclude that with

M = 24, 7 = 12 and 16-bit arithmetic, the 6 least significant bits of the phase fraction

field are superfluous and can be truncated with no loss of SNR. This gives a total

lookup table memory overhead of 2(212)-h 2(26) = 8320 16-bit words. However, in this

particular example we have / + F = 18 and by setting / = F as discussed in section

(5.3.2), we can reduce the lookup table memory overhead to 4(29)= 2048 16-bit words,

237

L' — o .
o.

■©•O.

<............ *X- X "

 - +- H ---+• +--- - —u_ ""5i ---- -

-□ -a q □ a-

■O O" ■ -o -o

1OOO 1 = 6
- - o - 1 = 7

EH3D 1 = 8
+ - H - 1 = 9
XXX 1= 10
OOO 1=11
--O- 1= 12

 O ©- O O ©- O O ©- O

with no loss of SNR. In general, with reducing arithmetic word size and R > 0 optimum

memory utilisation is evident when 7 = F = (M - R) , giving a total memory overhead

of 4
f M - R \

2 2
v j

words, assuming M - R is divisible by two.

Figure (5.5.7) shows that LIPM with 7 < 10 exhibits SNR invariance with increasing R

up to a “knee point” after which SNR falls linearly with increasing R . The initial SNR

value (R = 0) is proportional to 7 , increasing by 12 dB for each bit increment in 7 .

Decreasing 7 yields wider SNR invariance with R . For I > 12 there is essentially no

SNR invariance region and SNR reduces steadily at 6 dB for each unit increase in R .

We conclude that LIPM with 7 >12 supports a well-behaved trade-off between SNR

and phase fraction field width, F . This property finds utility in VLSI implementations

where we wish to optimise the interpolation multiplier operand width and therefore gate

count for a given SNR specification.

5.5.4 Sinusoidal P hase Mapping - Amplitude Error Spectra

Figure (5.5.8) illustrates a composite plot of simulated amplitude error spectra for the

six interpolated phase mapping techniques using the Mathcad program presented in

Appendix B with M = 24, 7 = F = 12 and f s = 48 kHz. We see a steady reduction in

the amplitude of spurious spectral components and hence improving SFDR with

increasing interpolation order. SFDR ranges from -62 dB for TPM, through -135 dB for

LIPM to -325 dB for TIPM. The RPM error spectrum exhibits a suppressed component

at the fundamental frequency in contrast to the TPM error spectrum where a residual

fundamental component is evident. The two spectra are otherwise very similar, which is

expected given the constant 6 dB difference in the corresponding SNR values,

irrespective of 7 . Figure (5.5.9) illustrates the variation in SFDR with 7 e [6 ,18]

238

indicating an essentially constant SFDR performance with TIPM and linearly improving

SFDR performance with our five interpolating phase mapping algorithms.

Frequency (cycles/sam ple)

Figure (5.5.8): Composite amplitude error spectra fo r the six interpolated phase

mapping techniques using (p = 5715 (i.e. & 0.00034 cycles/sample), with M = 24,

I = F = 12, f - 48 kHz and fu ll precision arithmetic. (RPM error spectrum is shown

dashed to illustrate similarity with the underlying TPM error spectrum.)

239

0

-100

S'
- a

J-200Q u.
c /2

"3 0 0

"4 0 0
6 7 8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.9): SFDR variation with / e [6,18] fo r six interpolated phase mapping

techniques using (p = 51\5 (i.e. & 0.00034 cycles/sample), with M = 24, f = 48kHz

and fu ll precision arithmetic.

I ' - . i
T

'X -

T

ED--.

1 I 1 T

'X -

-Q-..

"4 '.,

X.-
'X-

'43 '-- n-'-. ■43'..

'K.

* o ----
4 3 - * . . Q — q

X - ' 4 * . . .

X.

3 Q- O ©- O O €> O ----

'4-'
' 4 ' - .

J L J L J I I L

240

5.5.5 Multi-Harmonic P hase Mapping

Figures (5.5.10) through (5.5.25) illustrate simulation results for interpolated multi

harmonic WLS assessing five interpolation algorithms with three arithmetic

quantisation levels. We organise our simulations into four categories whose respective

parameters are summarised in Table (5.5.1) and which comprise:

• SNR variation with /

• Amplitude error spectra across the Nyquist frequency range

• SFDR variation with I

• SNR variation with wavetable spectrum roll-off slope displayed as a contour

plot with contours defining loci of constant SNR

We simulate the TPM, RPM, LIPM, QIPM and CIPM interpolation algorithms using

full floating-point precision, 24-bit fixed-point precision and 16-bit fixed-point

precision. Full precision simulations serve as a reference point providing baseline data

free from quantisation error. The wavetable used in a particular simulation tabulates a

single period, multi-harmonic waveform computed using Eq. (4.1.3) from an amplitude

spectrum specification defined by the number of harmonics and the harmonic amplitude

envelope profile according to Eq. (5.4.11). Our objective is to determine an

interpolation order and corresponding wavetable length which provides an SNR value

comparable with the SQNR of typical audio DSP environments (i.e. 16 and 24-bit fixed-

point).

241

Figure Type Wavetable
Spectrum I <P N,

(5.5.10a)
(5.5.10b)

(5.5.11)
(5.5.12)

SNR- I
SNR - /

Error spectrum
SFDR - I

Fig. (5.4.4)
-3 db/octave

100
1000

100
100

[8,18]
[11,18]

12
[8,18]

5715 49906

(5.5.13a)
(5.5.13b)

(5.5.14)
(5.5.15)

SNR - /
SNR - /

Error spectrum
SFDR - /

Fig. (5.4.4)
-6 db/octave

100
1000

100
100

[8,18]
[11,18]

12
[8,18]

5715 49906

(5.5.16a)
(5.5.16b)

(5.5.17)
(5.5.18)

SNR - I
SNR - /

Error spectrum
SFDR - /

Fig. (5.4.4)
-12 db/octave

100
1000

100
100

[8,18]
[11,18]

12
[8,18]

5715 49906

(5.5.19a) SNR - / Fig. (5.4.5)
-12 db/octave
low-pass

100 [8,18] 45721 56143

(5.5.19b) SNR - I Fig. (5.4.6)
-12 db/octave
low-pass

1000 [11,18] 5715 49906

(5.5.20)
(5.5.21)

Error spectrum
SFDR - I

Fig. (5.4.5)
-12 db/octave
low-pass

100
100

12
[8,18]

5715
5715

49906
49906

(5.5.22)

(5.5.23)

(5.5.24)

(5.5.25)

I - roll-off
TPM
I - roll-off
LIPM
I - roll-off
QIPM
I - roll-off
CIPM

Single slope
spectra according
to Eq. (5.4.11)
with roll-off
ranging from
0 to -24 dB/octave

100 [8,18] 5715 49906

Table (5.5.1): Simulation parameters and multi-harmonic wavetable characteristics

supporting the performance assessment o f interpolated phase mapping.

242

200

150

ffl
S' 100
£m

50

0
8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

200

150

/—S
CO

S' 100
w

50

0
11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.10): SNR variation with I for two N h values. The phase mapping

wavetable tabulates a multi-harmonic signal with -3 dB/octave spectrum as illustrated

in Figure (5.4.4) with M = 24, (p - 5715, N s - 49906, f = 48 kHz and fu ll precision

arithmetic.

243

” 50

"100

“ 250

0.2 0.3

Frequency (cycles/sam ple)

Figure (5.5.11): Composite amplitude error spectra fo r five interpolated addressing

algorithms using a multi-harmonic wavetable tabulating a -3 dB/octave spectrum with

^ = 1 0 0 as depicted in Figure (5.4.4). M = 24, 1 = 12, (p = 51\5, Ns = 49906,

f = 48 kHz and fu ll precision arithmetic.

244

¥ " 1 5 0

1 12 13 14 15

Phase index integer field width (bits)

Figure (5.5.12): SFDR variation with 1 e [8,18] and the phase mapping wavetable

tabulating a multi-harmonic signal with -3 dB/octave spectrum as illustrated in Figure

(5.4.4) with Nh = 100, M = 24, (p = 5715, Ns =49906, f s= 48 kHz and fu ll precision

arithmetic.

245

200

150

CQ
T 3

S 100
zoo

50

0
8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

200

150

22
T3

S ioo
z

50

0
11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.13): SNR variation with I fo r two Nh values. The phase mapping

wavetable tabulates a multi-harmonic signal with -6 dB/octave spectrum as illustrated

in Figure (5.4.4) with M = 24, (p = 5715, Ns = 49906, f = 48kHz and fu ll precision

arithmetic.

246

"50

“ 100

"2 5 0

■300 ‘ ‘ ----------------------------
0 0.1 0.2 0.3 0.4 0.5

Frequency (cycles/sam ple)

Figure (5.5.14): Composite amplitude error spectra fo r five interpolated addressing

algorithms using a multi-harmonic wavetable tabulating a -6 dB/octave spectrum with

jV/ ;=100 as depicted in Figure (5.4.4). M = 24, 7 = 12, (p = 51\5, Ns = 49906,

f = 48 kHz and fu ll precision arithmetic.

247

0

"5 0

-100
S'
T3

£ "150 Q
IX
c/ 2

-200

"2 5 0

"300
8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.15): SFDR variation with / e [8,18] and the phase mapping wavetable

tabulating a multi-harmonic signal with -6 dB/octave spectrum as illustrated in Figure

(5.4.4) with Nh = 100, M = 24, (p = 51\5, Ns =49906, f s = 48 kHz and fu ll precision

arithmetic.

248

200

150

S'
T 3

* 100
z
C /3

50

0
8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

200

150

s
* 100
z
C /3

50

0
11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.16): SNR variation with I fo r two Nh values. The phase mapping

wavetable tabulates a multi-harmonic signal with -12 dB/octave spectrum as illustrated

in Figure (5.4.4) with M = 24, <̂ = 5715, Ns =49906, f s =48 kHz and fu ll precision

arithmetic.

N, =100

249

"50

"100

■150

"200

"2 5 0

“ 300 0 0.2 0.3

Frequency (cycles/sam ple)

Figure (5.5.17): Composite amplitude error spectra fo r five interpolated addressing

algorithms using a multi-harmonic wavetable tabulating a -12 dB/octave spectrum with

Nh = 100 as depicted in Figure (5.4.4). M = 24, 1 = 12, <̂ = 5715, Ns = 49906,

f = 48 kHz and fu ll precision arithmetic.

250

k “ 200

11 12 13 14 15

Phase index integer field width (bits)

17 18

Figure (5.5.18): SFDR variation with / e [8 , 18]. The phase mapping wavetable

tabulates a multi-harmonic signal with -12 dB/octave spectrum as illustrated in Figure

(5.4.4) with Nh = 100, M = 24, cp = 5715, Ns = 49906, f s = 48 kHz and fu ll precision

arithmetic.

251

300

200 -

CQ-o
DC
CZ)

100

Nh = 100, q> = 45721, Ns = 56143
Spectrum as in Figure (5.4.5)

^ '

- • X

. - X ' ' ' .

G " '
___G '

-X
-■K
■ G '

. . ■ X '

-X''

. -Q "

, - x

,--K

. - - O '

, - X "

. - X

= : = :::& = = :

__I

; = : : = :6 ::: = : = 8

10 11 12 13 14 15

Phase index integer field width (bits)

16 17 18

200

150

CQ
T 5

ai 100 Z
C /3

Nh = 1000, cp = 5715, Ns = 49906
Spectrum as in Figure (5.4.6)

50
P l
v--:

X '

■ O'

, . X '

--43'

.-'X'

. X '

, - - K

. - X '

.-X*'

li 12 13 14 15 16

Phase index integer field width (bits)

17 18

Figure (5.5.19): SNR variation with I fo r two Nh values using fu ll precision

arithmetic with M = 24 and f s = 4 8 KHz. The phase mapping wavetahle tabulates a

multi-harmonic signal with -12 dB/octave low-pass spectrum as illustrated in Figures

(5.4.5) and (5.4.6).

252

-50

0.2 0.3

Frequency (cycles/sam ple)

Figure (5.5.20): Composite amplitude error spectra fo r five interpolated addressing

algorithms using a multi-harmonic wavetable tabulating a -12 dB/octave low-pass

spectrum with Nh =100 as depicted in Figure (5.4.5). M - 24, 7 = 12, #> = 5715,

N s = 49906, f = 48 kHz and fu ll precision arithmetic.

253

0

-100

CQ
3
g "200Qu.
C /3

"3 0 0

"4 0 0
8 9 10 11 12 13 14 15 16 17 18

Phase index integer field width (bits)

Figure (5.5.21): SFDR variation with / e [8 , 18] and the phase mapping wavetable

tabulating a multi-harmonic signal with -12 dB/octave low-pass spectrum as illustrated

in Figure (5.4.5) with Nh = 100, M - 24, (p = 51\5, Ns = 49906, f s = 48kHz and

fu ll precision arithmetic.

254

Wavetable signal sped rim roll-off (dBtoctave)

Wavetable signal spectrim rdl-off (dB'octave)

Figures (5.5.22) and (5.5.23): SNR variation with I and wavetable spectrum ro ll-o ff

slope ranging from 0 to -24 dB/octave over the firs t 100 harmonics using TPM (upper

plot) and LIPM (lower plot). Contour lines illustrate loci o f constant SNR.

255

Wavetable signal spectrum rdl-cff (dB'octave)

0 3 6 9 12 15 18 21 24

Wavetable signal spectrum rdl-cff (dBfoctave)

Figures (5.5.24) and (5.5.25): SNR variation with I and wavetable spectrum ro ll-o ff

slope ranging from 0 to -24 dB/octave over the firs t 100 harmonics using QIPM (upper

plot) and CIPM (lower plot). Contour lines illustrate loci o f constant SNR.

256

These results corroborate an intuitive view that the SNR of interpolated multi-harmonic

WLS is a strong function of wavetable length, wavetable signal spectrum, interpolation

order and arithmetic word size. We have simulated SNR using wavetable spectra which

approximate the average spectral characteristic of typical musical signal classes

discussed in section (5.4.4) and observe that for a given interpolation order and

wavetable length, SNR decreases as the number and amplitude of tabulated harmonics

increases. This result is not unexpected since higher harmonics are effectively stored in

shorter wavetables compared to the fundamental. In general, SNR increases with

increasing harmonic roll-off slope since upper harmonics become progressively less

significant. For a given wavetable spectral characteristic, SNR increases with both

interpolation order and wavetable length at an essentially constant rate. For an order N

interpolation, we observe that SNR improves at approximately 6(N +1) dB/bit

increment in I for all simulated spectra.

257

5.6 Conclusions

In this chapter we have investigated interpolated sinusoidal and multi-harmonic WLS

and presented a sinusoidal phase mapping technique (TIPM) which represents an

original contribution resulting from this research and is now published. Simulation

results illustrate the qualitative performance of interpolated WLS against key parameter

variations for five interpolation algorithms using the SNR metric under simulation

conditions contrived to approximate typical and worst case music synthesis scenarios.

Simulated amplitude error spectra illustrate the frequency domain distribution of noise

components caused by interpolation errors and demonstrate the effectiveness of

increasing interpolation order in reducing the amplitude of these components.

It is clear from simulation results summarised in Table (5.6.1), that LIPM and TIPM are

preferred for sinusoidal synthesis, giving SNR performance comparable to 24-bit SQNR

with wavetable lengths of 8192 samples. Indeed, we confirm the hypothesis that sample

quantisation noise defines the SNR bound for TIPM. Attaining comparable SNR

performance between TPM and LIPM requires a TPM wavetable around 256 times

larger than the LIPM wavetable and is likely to be impractical in most cases. We

conclude that the QIPM and CIPM algorithms are unsuitable for sinusoidal synthesis

since they impose an excessive computational burden compared to LIPM and TIPM

which yield acceptable SNR performance with reasonable wavetable lengths. TIPM

reduces phase truncation errors to the quantisation noise floor, but imposes greater

arithmetic and table lookup overhead compared to LIPM. TIPM memory overhead

reduces exponentially with M and so becomes favourable for smaller phase

accumulator word lengths and hence reduced frequency resolution. TIPM finds utility in

applications requiring quadrature sinusoids with optimal SNR and phase control

precision bound by M alone.

258

Property TPM RPM LIPM QIPM CIPM
TIPM h'°“ 1

M - 2 4 M = 20

Minimum multiply
operations (incl. A(n))

1(2)
Note 2

1(2)
Note 2

2(4)
Note 2

4(8)
Note 2

5(10)
Note 2

3(4)
Note 2

3(4)
Note 2

Add/subtract operations

Wavetable lookups

0

1

1
Note 3

1

1

2 Note 4

2

Note 4

3

^ Note 4

j Note 2

^ Note 4

j Note 2

^ Note 4

Coefficient table
lookups Note5

0 0 0 3 4 0 0

Total table lookups 1 1 2 6 8 4 4

Total coefficient lookup
table size A'°'“5

0 0 0 3(2 F) 4(2f) 0 0

Wavetable size for
SNR > 16-bit SQNR
Note 6

218 217 i (r)
1024

3(2 ’)
384

4(26)
256

4(212)
Note 7

16384

4(210)
Note 7

4096

TIPM wavetable size
with R> 0 Note 7 and
SNR > 16-bit SQNR

“ " 4(2 ’)
2048
R = 6

4(28)
1024
R = 2

Wavetable size for
SNR > 24-bit SQNR
Note 6

» 2 18 » 2 18 2(213)
16384

3(210)
3072

4 (2 *)
1024

4(212)
Note 7

16384

4(2 '°)
Note 7

4096

1 TIPM is only applicable to sinusoidal phase mapping.
2 Bracketed value indicates arithmetic overhead for quadrature sinusoid phase mapping.
3 Rounding the truncated phase word requires a conditional addition operation.
4 k table lookups require k accesses o f a single memory or k separate memories.
5 Interpolation coefficients computed by lookup tables indexed with phase fraction.
6 Total wavetable size assumes separate memory for each interpolation term.

7 TIPM memory utilisation is optimal when L = 2 2 with SNR always bound by SQNR.

Table (5.6.1): Summary arithmetic overhead and SNR performance fo r our six

interpolation algorithms applied to sinusoidal phase-amplitude mapping.

259

Table (5.6.2) summarises simulated SNR performance for our five interpolation

algorithms using wavetables containing signals with multi-harmonic spectra. We

conclude that wavetable lengths consistent with a 16-bit SQNR using TPM and RPM

are impractically large for all wavetable test spectra simulated here. Wavetable lengths

consistent with a 24-bit SQNR are higher still and hence we exclude TPM and RPM on

cost-effectiveness grounds. For our range of wavetable test spectra, QIPM requires

wavetable lengths (L) between 65,536 and 1024 samples for SNR comparable with a

16-bit SQNR and between 524,288 and 8192 samples for SNR comparable with a 24-bit

SQNR. Additionally, CIPM requires wavetable lengths between 32,768 and 512

samples for SNR comparable with a 16-bit SQNR and between 131,072 and 2048

samples for SNR comparable with a 24-bit SQNR.

We conclude that CIPM provides optimum SNR performance given our range of

wavetable spectra, arithmetic quantisation and interpolation orders. However, the

simulation models presented in Appendix B are readily configurable to simulate higher

order interpolation algorithms if required. CIPM requires four wavetable read

operations and four coefficient multiplication operations, assuming interpolation

coefficients are readily available for a given (j)F{n) value. When selecting a wavetable

length for a particular worst case SNR, we must also consider the inverse relationship

between wavetable length and “fill time” (i.e. the time to move new samples from a

mass storage device into the wavetable). In Chapter 6 we present an original wavetable

memory architecture that provides a data-parallel, length- N sample set supporting an

order- N interpolation without imposing (N + 1) fold memory redundancy.

260

Wavetable
Spectrum Simulation Condition

TPM
N o te 1

Wavetable Length,

LIPM QIPM

L

CIPM

-3 dB linear"°'"2 SNR > 16-bit SQNR

30A 32768 8192 4096ooIIsT SNR > 24-bit SQNR » 2 >218 32768 16384

-3 dB linear"0"'2 SNR > 16-bit SQNR » 2 18 218 65536 32768
N h =1000 SNR > 24-bit SQNR » 2 18 » 2 18 219 131072

-6 dB linear"0'02 SNR > 16-bit SQNR V oo 32768 8192 2048
Nh =100 SNR > 24-bit SQNR » 2 V 0

0

32768 8192

-6 dB linear"0'"2 SNR > 16-bit SQNR

0
0

TnA 218 65536 32768OOoHII SNR > 24-bit SQNR » 2 » 2 18 2 18 65536

-12 dB linear"""2 SNR > 16-bit SQNR 2 18 2048 1024 512

Oo11 SNR > 24-bit SQNR » 2 18 32768 8192 2048

-12 dB linear"0'"2 SNR > 16-bit SQNR 2 18 4096 2048 2048
N h =1000 SNR > 24-bit SQNR » 2 18 65536 16384 16384

-12 dB low-pass SNR > 16-bit SQNR 2 18 8192 4096 2048£ooHIISsT SNR > 24-bit SQNR » 2 18 131072 16384 8192

-12 dB low-pass SNR > 16-bit SQNR 2 18 131072 32768 16384
N t = 1000 m ‘ 4 SNR > 24-bit SQNR » 2 18 > 2 18 2 18 65536

1 RPM wavetable length results are not summarised since they are consistently around
one half o f the TPM value for all simulation conditions.

2 Linear roll-off spectral response as illustrated in Figure (5.4.4).
3 PWL low-pass spectral response as illustrated in Figure (5.4.5).
4 PWL low-pass spectral response as illustrated in Figure (5.4.6).

Table (5.6.2): Summary characteristics o f four interpolation algorithms applied to

multi-harmonic phase-amplitude mapping.

261

Chapter 6 Arithmetic Processing Architectures

6.1 Introduction

In this Chapter we investigate arithmetic processing architectures which implement two

key synthesis techniques presented earlier in this thesis - fractional wavetable

addressing investigated in Chapter 5 and phase domain processing introduced in

Chapter 4, which we define as the algorithmic processing o f a DT phase sequence prior

to phase-amplitude mapping to effect frequency or phase control o f a synthesised

partial. Phase domain processing underpins an entire synthesis subclass that efficiently

implements the HAS and PAS processing models introduced in Chapter 2.

The importance of fractional memory addressing within the WLS algorithm motivates

investigation of wavetable memory architectures which are compatible with the

interpolation processing models which effect computation of the fractional value. A

fundamental premise of the fractional memory addressing model presented in Chapter 5

is a “manifold sample set” centred about the sample addressed by the integer phase

index component. This sample set together with coefficients formed from the phase

fraction component, are used to compute the interpolated output sample which

represents an approximation to the fractionally addressed sample within an error bound

governed by the interpolation order. An order- N interpolation requires (N + 1) memory

read operations causing a processing bottleneck in time-multiplexed implementations

using multiple access of a single memory. We therefore require a wavetable memory

architecture which generates manifold sample sets with a single parallel read operation

maximising throughput through data-parallel interpolation processing. This is discussed

in section (6.2).

262

In section (6.3) we develop the concept of phase domain processing and present new

sequential processing models that result directly from this research which synthesise

manifold, independently controlled partials based on the work of Chamberlin [1976].

These architectures are readily pipelined to provide computational throughput in line

with the requirements of a multi-voice implementation of the generalised PAS model.

6.2 Memory Access and Interpolated Fractional Addressing

6.2.1 Consecutive Access Vector Memory

In this section we present an extensible, multi-port memory architecture that enables

simultaneous access to a consecutive block or vector of data from a single logical base

address and represents original work from this research. This architecture is motivated

primarily by the data requirements of interpolated WLS discussed in Chapter 5, which

requires (N + 1) wavetable samples (i.e. memory read operations) for an order- N

interpolation computation. Fast execution of this algorithm using data-parallel

arithmetic processing therefore requires that all (N + 1) wavetable samples are available

simultaneously from a single read operation of a parallel structured wavetable memory.

In the following discussion, we drop sequence time-indices for brevity and use fa and

a to represent the DT sequences fain) and a(n), respectively. For a logical address,

(jfj, indexing an arbitrary wavetable, which we denote by the vector T , this multi-port

memory architecture produces the set of k consecutive wavetable samples

{T[^], T[^; +1], T[^7 + 2],..., T[^7 + (k - 1)]} from k distinct output ports. We term this

memory architecture an order-& consecutive access vector memory (CAVM) which

arranges the physical memory into k independently addressable memory blocks with

263

respective data output ports, each providing a particular data element from the sample

set1.

The essence of the extensible CAVM technique is to arrange sample storage so that any

k consecutive samples are stored unambiguously across k memory blocks. However,

the CAVM addressing strategy causes the order of the k samples to take on k cyclic

permutations of the consecutively ordered wavetable sample set

+ (&-l)]} with respect to the k output ports

depending on the address ^7. In addition to memory configuration, two other functions

underpin the CAVM architecture - logical to physical address translation and output

data reordering.

Optimal order- N interpolation (i.e. providing minimum interpolation error bound)

requires the fractional address to lie within the middle sub-interval of the sample set for

odd-order interpolations or within either sub-interval about the middle sample of the

sample set for even order interpolation. By adding an offset, j , to the logical CAVM

address, the sample set is positioned arbitrarily with respect to T[^7] and we obtain the

sample set {T[^7 + j], T[^7 + j + 1], T[^7 + j + 2],..., T[^7 + j + (£-1)]}. By setting

N - 1
J = when k = N +1, we obtain the sample set required for an order- N

interpolation defined by Eq. (5.2.2) yielding minimum interpolation error bound. In the

following discussion we describe CAVM operation using a non offset logical base

address to simplify notation and presentation of the concept.

1 For our present discussion we are not concerned with how the CAVM is written with wavetable data. In
a physical realisation o f an order-/: CAVM, a dedicated multiplexer associated with each memory address
and data port provides a dedicated direct memory access (DMA) port for memory write operations.

264

6.2.2 The Order-2 CAVM and Linear Interpolation

We demonstrate the CAVM principle by considering the simplest order-2 architecture

that produces the sample set {T[^7], T[^7 +1]} as required for a linear interpolation of a

wavetable vector T (i.e. N = 1 and k = 2). We assume a memory vector T , o f length

V , which is exactly divisible by 2 that contains an integer number of single cycle

wavetables each of length L that we index with the parameter y/ (not to be confused

with the phase function denotation of section (4.2.3)). The order-2 CAVM comprises

j j
two distinct memory blocks denoted by the vectors B 0 and B,, each of length —

samples where block B 0 holds even address samples and block B, holds odd address

samples of the vector T . Blocks B 0 and B, comprise a vector of A:-spaced wavetable

data samples as exemplified in Figure (6.2.1) for the illustrative case with L = 8.

I F ,]
Yv

L'
L -x- L

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Y

y/ = 0
Y

y/=\

0 2 4 6 0 2 4 6 ! B l« 1 - 0 2 2 4

c—
L
2

—) Po 0 1 0 1

1 3 5 7 1 3 5 7 ! i ® i [$] ^ > > 3 3

v
Y Y Pi 1 0 1 0

y/--= 0 = 1
] First sample in consecutive samp

Figure (6.2.1): Memory allocation fo r the order-2 CAVM with L = 8 .

265

It is clear that memory blocks B0 and Bj are written with data from T according to:

B0[/w] = T[«] for n = 2m

Bj [w] = T[w] for n = 2m + l (6.2.1)

m e [0 , y - l]

Assuming radix-2 L and V values, we partition the log2(Z')-bit logical address into

two components: a phase index, f a g [0, X — 1], comprising the log2(Z) least significant

bits that address a particular wavetable sample modulo- L and a wavetable index

jj
component, y/ g [0, -----1] , comprising the log2 (L') - log2 (L) most significant bits that

L

jj
address a particular wavetable from the set of — wavetables. In terms of an abstract

memory model, the wavetable index can be considered as an integer “page address”,

with each page storing an individual wavetable. Hypothetically, we may extend this

concept to define a fractional wavetable address (i.e. a fractional y/ parameter) which

we interpret as an interpolation between consecutive wavetables in the set. This is

discussed in section (6.2.5).

The phase index, fa , is transformed into two physical block addresses, f a g [0, y -1]

and fa g [0, ~ — 1]2 which respectively address memory blocks B0 and Bj modulo- y .

The fa and fa block addresses are defined so as to index the {T[^7], T[^7 +1]} sample

set as (/)j varies over the range of permissible values (i.e. ^7 g [0, 21 -1]). For the order-

2 CAVM and arbitrary L , the block addresses are given by:

2 The reader should observe the distinction between the first block address, f a , and the truncated phase

component (j)j to avoid confusion.

266

Additionally, we define sample-type indices, p 0 and p l9 each associated with a

respective memory block output that indicate the position of a corresponding data value

within the ordered sample set (i.e. the first or second element in the order-2 CAVM

sample set). Table (6.2.1) illustrates the block address and sample-type index sequences

for an order-2 CAVM with L - 8.

0/ 00 0i3 B o[0o] Po B ,W Pi Sample Set

0 0 0 T[0] 0 T[l] 1 {T[0], T[l]}

1 1 0 T[2] 1 T[l] 0 {T[l], T[2]}

2 1 1 T[2] 0 T[3] 1 {T[2], T[3]}

3 2 1 T[4] 1 T[3] 0 {T[3], T[4]}

4 2 2 T[4] 0 T[5] 1 {T[4], T[5]}

5 3 2 T[6] 1 T[5] 0 {T[5], T[6]}

6 3 3 T[6] 0 T[7] 1 {T[6], T[7]}

7 0 3 T[0] 1 T[7] 0 {T[7], T[0]}

Table (6.2.1): Order-2 CAVM address sequences, memory block data values and

sample-type indices for L = 8. The B0[^0] and Bjf^] columns illustrate sample

ordering permutations at the memory block outputs.

3 The reader should observe the distinction between the first block address, (f)x, and the truncated phase

integer component to avoid confusion.

The logical address transformation illustrated in Table (6.2.1) causes the memory blocks

to output the sample set {T[^7],T[^7 +1]}, but with a sample order dependent on the

value of fa as reflected in the values of p 0 and p x. If ^7 is even or zero, sample-

types are output from block B0 and t[^7 +l] sample-types are output from block B x.

Conversely, if ^7 is odd, t[^7 +l] sample-types are output from block B0 and T fc]

sample-types are output from block Bx. For our order-2 CAVM example we are

therefore concerned with determining whether 07 is odd or even and so p 0 is the least

significant bit of the phase index, ^7. Conversely, p x is the inverted least significant bit

of the phase index, ^7.

In general, the quotient — must take on exact integer values to ensure that consecutive
k

samples are unambiguously allocated across memory blocks. For example, with L - l

and hence y g Z , we observe from Figure (6.2.1) that T[0] and T[6], which are

consecutive modulo-7, are both stored in memory block B0 and hence cannot be

accessed simultaneously and so preventing data parallelism within subsequent

interpolation processing. In general, constraining V , L and k to take on only radix-2

values guarantees unique allocation of waveform samples across memory blocks with

modulo-— addressing wraparound. Figure (6.2.2) illustrates the arithmetic processing
k

model for an order-2 CAVM and linear interpolation processor assuming a fractional

phase address, (^7 + a) and wavetable index, y/ .

Two 2-to-l multiplexers controlled by p 0 and p x reorder the memory block outputs

into a contiguous sequence of ordered sample pairs, {T[^7], T[^7 +1]}, which feed the

first-order difference subtractor. The first-order difference is multiplied by a and then

268

added to T[^7] to produce the interpolated sample y (n). Alternatively, one of the

multiplexers becomes superfluous if the output adder is modified to accept a control

input which reverses the sign of the input fed from the multiplier according to the sense

of p 0 or p x as illustrated in Figure (6.2.3).

W-

a

X Memory
— s Block

L2 J Bo

X Memory
Block

L2 J Bi

Figure (6.2.2): Order-2 CAVM and linear interpolation processing model.

X Memory
—* — i Block

l_2J Bo

(-l)^ +1(T[^+l]-T[^]) 5

Po = 0 / 1

Memory

Figure (6.2.3): Order-2 CAVM and linear interpolation processing with reduced

multiplexer count.

269

6.2.3 The Order-4 CAVM and Cubic Interpolation

The order-4 CAVM architecture comprises four distinct memory blocks, B 0, Bls B2

and B3, generating the data-parallel sample set { T ^] , T [^ + 1],T[^7 + 2],T [^7 +3]}

needed for a cubic interpolation of the wavetable vector T . Samples are allocated to

individual memory blocks from T in increments of four as illustrated in Figure (6.2.4)

for our L - 8 example.

T fc]

V

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

Y
y/ = 0

_ A _ Y -
y/=\

0 4 0 4

L(-------
4

1

B 0W = > 0 4 4 4 4

Po 0 3 2 1 0

B, 1 1 5 5 5

A 1 0 3 2 1

2 6 2 6 2 2 2 6 6

P i 2 1 0 3 2

3 7 3 7 \ ! b 3M ^ 3 3 3 3 7

As 3 2 1 0 3

y/ == 0 y/--= 1
(f>i 0 1 2 3 4

□ First sample in consecutive sample set ((f)j ^ 0 1 2 3 0

Figure (6.2.4): Memory allocation fo r the order-4 CAVM with L =

270

Memory blocks B0, Bp B2 and B3 are written with data from T according to:

B0 [ni\ = T[«] for n = 4m Bj [m\ = T[«] for n = 4m + \

B2[m\ = T[«] for n = 4m + 2 B3[m\ = T[«] for n = 4m + 3

m e [0,— -11, - s Z , £ > 0
4 4

(6.2.3)

and we have four sample-type indices, p t e {0,1,2,3} with i e [0,3]

The phase index, (j)j, is transformed into four physical block addresses (/>i e [0, — -1]

with i e [0,3] which respectively address memory blocks B. modulo-— and generate

the sample set {T[#7], T[^7 +1], T[^7 +2], T[^7 +3]} for ^7 e [0, 21 -1]. It is evident

that the block addresses are obtained through modular division by four. ^3 is obtained

by taking the integer part of modulo--^ (i.e. $L
4

), with (j)2, <j\ and </>0

obtained by offsetting ^7 by integer increments before the modular division operation.

Assuming L is exactly divisible by four, the block addresses for the order-4 CAVM are

given by:

4>i

(/>! + 1

A =
<j>i+ 2

4>.I

(6.2.4)

Table (6.2.2) illustrates the block address and sample-type index sequences for an order-

4 CAVM with Z = 8.

271

A </>o A $ 2 A Bo[^o] Po B ,M Pi B 2 ^] Pi ® 3 [^3] Ps

0 0 0 0 0 T[0] 0 T[l] 1 T[2] 2 T[3] 3

1 1 0 0 0 T[4] 3 T[l] 0 T[2] 1 T[3] 2

2 1 l 0 0 T[4] 2 T[5] 3 T[2] 0 T[3] 1

3 1 l 1 0 T[4] 1 T[5] 2 T[6] 3 T[3] 0

4 1 l 1 1 T[4] 0 T[5] 1 T[6] 2 T[7] 3

5 0 l 1 1 T[0] 3 T[5] 0 T[6] 1 T[7] 2

6 0 0 1 1 T[0] 2 T[l] 3 T[6] 0 T[7] 1

7 0 0 0 1 T[0] 1 T[l] 2 T[2] 3 T[7] 0

Table (6.2.2): Order-4 CAVM address sequences, memory block data values and

sample-type indices for L = 8. The B0[̂ 0], B2[^2] and B3[̂ 3] columns illustrate

sample ordering permutations at the memory block outputs.

For fa e [0, 27 -1], the order-4 sample-type indices take values that follow a cyclic

permutation of the set {0,1, 2,3}. The sample-type indices are obtained by offsetting

prior to the modulo-4 operation and then subtracting the result from three. The sample-

type indices for the order-4 CAVM are therefore given by:

A > = 3 - (^ + 3) 4 p, = 3 - (fa + 2)4

(6.2.5)

p 2 = 3 - (^ + l } 4 f t = 3 - (0 ,) 4

Figure (6.2.5) illustrates the arithmetic processing model for an order-4 CAVM and

cubic interpolation processor with a fractional phase address (fa + a) and wavetable

index y/ .

272

X Memory
) — i Block

W Bo

Po

X Memory
—) — i Block

w Bi

X Memory
— s — ^ Block

W b 2
3k,

X Memory
— ; Block

l_4J b 3

Sample Type
Processing

—>Po

— > P i

Coefficient
Processing

B,

Bo

B!

Bo

Bi

Bo

Bi

Mux

? A-»

n

Mux

Pi

> 2

> n

P;

Mux

Ps

n

>y(n)

Mux

f t

n

—)

>A

^A

Figure (6.2.5): Order 4 CAVM and cubic interpolation processing model.

The ^ and p i terms with i e [0, k - 1] are dependent on a modular division by 4

operation which is effected with two consecutive right shift operations and therefore

computationally trivial. Furthermore, this holds for all radix 2 values of k requiring

log2 (&) consecutive right shift operations.

273

6.2.4 The Generalised CAVM and Interpolation Process Model

The preceding discussion indicates a distinct pattern in the attributes of an order- k

CAVM which we now formalise. It is evident from section (6.2.3) that the CAVM

block addresses and sample-type indices are dependent on a division-by- k operation

which is problematic for all odd-ov&QX CAVM configurations. For all even order

architectures, this operation is implemented with an appropriate bit-wise right shift. For

completeness, we present the order-3 CAVM architecture in Appendix C which

includes a method for effecting the required divide-by-3 operation. However, modulo

- j arithmetic is still necessary.

A memory space, T , of length L' samples which contains an integer number of

j j
contiguous wavetables each of length L samples contains — e Z distinct wavetables.

L

An order- k CAVM partitions T into k distinct memory blocks denoted Bz with

/ g [0, k - 1] , each of length - e Z samples. We have a fractional addressing
k

representation comprising the phase component (^7 + a) and a wavetable index

component, y/ , bound according to:

^ e [0 , Z - l]

« g [0 , 1)

(6.2 .6)

¥ * [0, ^ - 1]

L -7 L ' v— G Z — G Z
k L

The contents of the i CAVM memory block are given by:

274

B, [m] = T[«] for n - k m + i

e [0, — -1], i g [0, k — X\
k

(6.2.7)

The individual CAVM memory block addresses, (j>i , are given by:

(frj + (k - i - 1)

(6.2.8)
(frj e [0 ,Z -1], / e [0, A: -1]

The sample-type indices, p t , are given by:

Pi = (* - 0 - (& + (* - 1' - 1)),

(6.2.9)
<j>, e [0 ,Z - l] , / e [0 , * - l]

An order- k CAVM is associated with an order- N = (k - 1) interpolation as described in

section (5.2). The interpolation coefficients, /?, («) i e [0, N] , are defined by Eq. (5.2.3)

and assume the CAVM is indexed with an offset integer phase component,

N - 1 , to provide a minimum interpolation error bound. The fractional phase
21

component, (j)F , determines the fractional phase value, a = ^ e [0,1), according to Eq.

(5.1.5) and ultimately the interpolation coefficients through Eq. (5.2.3). Interpolation

coefficients may be computed directly using (j)F (and hence a) as an argument,

requiring o(tV2) multiplications. However, this incurs a significant computational

imposition in real-time applications, particularly when N is large. An alternative

technique already mooted in section (5.2.4) replaces direct computation with lookup

tables indexed by (j>F. We require & = (V + l) /?-lookup tables, each tabulating a

particular interpolation coefficient according to Eq. (5.2.3) and indexed by

275

(j)p e[0, 2 f -1] which outputs the p coefficient according to the value of the a

argument. Each /?-lookup table contains 2F coefficients and imposes a memory

overhead of (N + 1)2f words. The zth coefficient lookup table, C^a] with i e [0, Ar-l]

and address a e [0 ,2F - 1], is tabulated according to:

c,w=n
> o
j* i

a N - 1
- J2 L 2 J

* - J

(6.2 .10)

i e[0 , N] a e [0 ,2F -1]

where we note that the subscript variable k used in Eq. (5.2.3) has been replaced by /

to avoid confusion with the CAVM order denotation we use in this Chapter. Each table

(A \
lookup operation therefore outputs (a) = p t —y = C i[<f>F\.

J

We extend the utility of the p -coefficient lookup table to effectively integrate the data

reordering function and thereby obviate N reordering multiplexers. For radix-2 values

of k , the k -sample set of cyclic permutations are uniquely addressed by the log2 (&)

least significant bits of the phase index, . We organise each coefficient lookup table

into k pages of interpolation coefficient values, with (f)F indexing the F least

significant bits and indexing the log2(&) most significant bits to select a particular

page. The ordering of the k interpolation coefficients, Pt(a) with i e [0, & -1], within

the paginated lookup table reflects the k sample-type permutations from the memory

blocks. Table (6.2.3) illustrates /?,(#)-page allocation across the four coefficient lookup

table pages for an order-4 CAVM example case. We denote a paginated coefficient

lookup table by the vector C, [<f>F, g] , where g e [0, k - 1] denotes the page address. The

276

total coefficient lookup table memory overhead is now 2F+4 words for the order-4

CAVM example and with F = 12 the total coefficient lookup table memory overhead is

65536 words.

8 Co &] c , k , g] C2 \$ F ’ &] C 3 \$ F > 8 \

0 A>(«) A («) A («) A («)

1 A («) A (a) A («) A (a)

2 A («) A («) A>(«) A W

3 A («) A («) A («) A («)

Table (6.2.3): Interpolation coefficient lookup table organisation for the order-4

CAVM.

Figure (6.2.6) illustrates an order-4 CAVM process model employing augmented

coefficient lookup tables to obviate the reordering multiplexers. In general, for an order-

k CAVM employing this technique, the coefficient lookup table address

is (^F + 2F(<l>i)k)e [o, (2F&)-l], imposing a total memory overhead of 2Fk 2 words

and requiring [~log2(&)] extra address bits (e.g. 2 additional bits for k = 3 and k = 4).

In a physical implementation, the k -fold coefficient memory increase must be assessed

relative to the cost of k k - to-1 multiplexers and the associated bus connectivity as

shown in Figure (6.2.5) for the k = 4 case.

Truncating the phase fraction field, (j)p, by R bits as discussed in section (5.1.2), allows

SNR performance to be exchanged for coefficient lookup table length. The total

277

memory overhead is now 2 F~Rk 2 words and decreases exponentially with R. Figure

(6.2.7) illustrates the variation in SNR with phase fraction truncation using a Mathcad

model given in Appendix B for a 4096 location wavetable tabulating a signal composed

of 100 harmonics with -3 dB/octave roll-off slope as depicted in Figure (5.4.4), with

M = 24, I = 12 and (p = 5715.

<P r

v-

X
Memory

— : Block
La Bo

x Memory
—) —$ Block

La B,

X Memory
Block

La b 2

{(f)I) is equivalent to the two least significant bits (LSBs) o f (j)I

Coefficient

Coefficient

Coefficient

Coefficient

—)

>y(ri)

i—>

Figure (6.2.6): An order-4 CAVM process model using augmented coefficient lookup

tables to eliminate reordering multiplexers.

278

120

100

L - - - - - 0

STT3
Dizon

Q O Q Full precision
- - O - - 24 bit
EH3Q 16 bit

Phase fraction truncation (bits)

Figure (6.2.7): Variation o f SNR with phase fraction truncation and three levels o f

arithmetic precision.

The simulation indicates that with 16-bit fixed-point arithmetic and M ~ 24,

approximately eight of the most significant fraction bits are required to maintain SNR

for this spectrum. Hence, the coefficient lookup table memory is reduced sixteen-fold in

this case compared to the brute force case when F = 12.

6.2.5 Linear Wavetable Combination

Hitherto we have considered fractional phase interpolation associated with phase

accumulating frequency synthesis of a tabulated signal. We can extend the fractional

addressing model to include linear combinations of multiple wavetables in line with the

SIS and MWS processing models presented in Chapter 2. If we consider the SIS model,

our wavetable indexing sequence denoted by y/ (see Figure (6.2.1) and once again

dropping the time-index for brevity) becomes a fractional quantity with integer and

fraction components denoted by y/r and y/F, , respectively where F and F ’ denote the

279

respective integer and fraction field widths in bits. Hence, we have a wavetable

fractional index, X , given by:

A = [0,1) (6.2.11)

The SIS model amounts to fractional addressing at the wavetable level (i.e. linear

interpolation between wavetables) as distinct from the phase level previously

considered. Assuming multiple consecutive wavetables stored in the vector T , we

denote an order-TV interpolated output sample by T[^, y/r]N, where $ denotes the

sample phase index and y/r denotes the wavetable index. Linear interpolation between

consecutive wavetables executing the SIS processing model is then given by:

y{n) = T[0, y/v]N + A(t[^, (y/r + 1)]„ - T[^, y/r]„)

(6.2 .12)
X e [0,1)

where yin) denotes the interpolated output sample sequence. Eq. (6.2.12) interpolates

between two consecutive wavetables from the set of 27 possible wavetables contained

in T and indexed by y/v and (y/r + l).

The order-# interpolated output sample T[^,y/v]N is implemented with an order-

(N + 1) CAVM and interpolation processing as presented in section (6.2). We extend

the CAVM paradigm to the wavetable level as illustrated in Figure (6.2.8) which

linearly interpolates between two consecutive wavetables stored within two CAVM

blocks. Even numbered wavetables are stored in the first CAVM block and odd

numbered wavetables in the other. A single data-parallel CAVM read operation

produces the T[^, y/v \N and (V'r + l)]^ data set which is fed to a linear

interpolation block in a similar manner to that of the order-2 CAVM interpolator

discussed in section (6.2.2). The sample reordering multiplexers are controlled from the

280

least significant bit of the integer wavetable index and its Boolean complement which

we denote by w (LSB, and y/ nuiB).

We generalise this concept by considering the linear combination of multiple

wavetables in line with the MWS model. However, this generalisation only has utility if

the k wavetables in any given “MWS set” comprise k consecutive wavetables held in

memory. Additionally, the MWS model requires k distinct weighting coefficients to

effect a linear combination. Polynomial interpolation of k consecutive wavetables from

a single fractional address is theoretically possible, but of less utility.

281

R
K

282

Fi
gu

re

(6
.2

.8
):

Li
ne

ar

in
te

rp
ol

at
io

n
be

tw
ee

n
two

co

ns
ec

ut
iv

e
wa

ve
ta

bl
es

ex

ec
ut

in
g

the

SIS

pr
oc

es
sin

g
m

od
el

.
Od

d
an

d
ev

en

wa
ve

ta
bl

es

ar
e

sto
re

d
in

re
sp

ec
tiv

e
CA

M
bl

oc
ks

 p
ro

vi
di

ng

ef
fic

ie
nt

 e
xe

cu
tio

n
of

the

lin
ea

r
wa

ve
ta

bl
e

in
te

rp
ol

at
io

n
ac

co
rd

in
g

to
the

 f
ra

ct
io

na
l

ad
dr

es
s,

A.

6.3 Phase Domain Processing

6.3.1 Introduction

In this section we develop the concept of phase domain processing to execute the HAS

and PAS processing models. This material builds on section (4.2.5) where we reviewed

phase control of the phase accumulating sinusoidal oscillator. We begin by reviewing

the concept of block pipelining to enhance throughput in algorithms with highly

sequential arithmetic processes such as the HAS and PAS models. Block pipelining is

readily applicable to the processing models presented in section (6.2) to compute

multiple voice WLS realisations. The block pipelined phase accumulator which we use

as an example, underpins a multi-voice PAS processing model presented in section

(6.3.7).

6.3.2 Block Pipelining and the Phase Accumulating Oscillator

The block pipelining technique is an extension of the classical single sample pipelining

model used to enhance computational performance of single sample processing systems

[Pirsch, 1996]. Single sample pipelines partition the processing chain with registers to

enable the processing function of each stage to execute in a single clock interval. Block

pipelines adopt a similar architecture, but now the registers are replaced by dual-port

memory (DPM) elements. A DPM is characterised by a single memory space accessible

via two distinct access ports, each comprising their own data and address busses. In a

block pipeline, complete blocks of data are processed en bloc as they “propagate” down

the pipeline in a systolic fashion. Memory contention4 is prevented by arranging the

MSBs of the two address ports to be mutually complementary and toggling at the block

processing rate (i.e. typically the system sample rate). This technique is known as “ping-

283

pong” or double buffering in the literature [Symons, 1995; Ackenhusen, 1999]. When

one half of the DPM space is being written with data, the other half is simultaneously

read and vice versa, thereby avoiding memory access contention at the expense of

introducing a latency of one block processing cycle. As with single sample pipelines,

block pipelines can have I/O ports introduced at any point along the pipe, observing a

reduced latency for these ports. Figure (6.3.1) shows a simple block pipeline process

model which partitions two hypothetical processes denoted by the functions F and G .

4 A memory contention occurs when one memory location is being written by one port simultaneous with
being read or written by the other port leading to the possibility o f erroneous data transfer.

284

x X
< 03R £A

J£ oo oo3. 3 3
m 'C ■su

P i

X X

i— t 03 <
r •y ■yo3 3 3
i u "Sw

s

X X
<N

ts ti
P i (2

t J Ph
£ Q

R
. X.

<N

CN

ek

(N
I

R
X
i—»>
✓---\m
I
R

.X.

.fen.

II
"S'
X

285

Fi
gu

re

(6
.3

.1
):

Ru
di

m
en

ta
ry

blo

ck
 p

ip
el

in
in

g
pr

oc
es

s
m

od
el

us
ing

“p

in
g-

po
ng

”
du

al
-p

or
t

me
mo

ry

(D
PM

)
to

pa
rti

tio
n

pr
oc

es
sin

g
el

em
en

ts
.

In addition to partitioning the pipelined execution of a particular process model, ping

pong DPM allows updating of control parameter data to be completely decoupled from

the computational process albeit at the cost of one sample latency. While the pipelined

processor is consuming parametric data, the next parameter blocks are loaded without

interrupting computation flow. This architecture therefore readily lends itself to a

memory-mapped coprocessor model within a host computer system.

We illustrate the utility of a block pipeline processing model by considering a time-

division multiplexed phase accumulator synthesising multiple sinusoidal partial

oscillators as illustrated in Figure (6.3.2). Three control parameter DPM blocks hold

partial phase increment, start phase and amplitude parameters and may be updated from

a host control computer through appropriate memory mapping of the DPM input ports

into the host memory space. Effecting DPM ping-pong switching every sample period

enables control parameter updates at the system sample rate. Three state-variable DPM

blocks (shown shaded) partition time-critical computations within the processing

pipeline and provide state-variable storage between processing elements. The first state-

variable DPM holds accumulated phase values and pipelines the phase accumulation

operation. A second DPM stores phase-mapped sine samples and pipelines the phase

offset addition and sinusoidal phase mapping operations. Finally, a third DPM stores

amplitude-weighted sine samples ahead of further processing and so pipelines the

amplitude multiply operation.

Block pipelining requires that within a particular pipeline stage, we compute N

elemental partial operations (e.g. phase accumulation) every sample period.

Accordingly, we sub-divide each sample period into N time-slots of equal duration

—-— seconds, in which elemental operations for each of N n oscillators are executed.
N f pp J s

286

We therefore envisage a time-slot address (TSA) which partitions the sample period

into N distinct, equal duration time-slots with TSA e [0, N p - 1] and addresses all but

the most significant bit (MSB) of both DPM address ports. The TSA is typically

generated by a counter clocked at N pf s whose range must span half the DPM address

space. We denote the time-multiplexed parameters and state variables with the subscript

j corresponding to a particular TSA value that uniquely identifies each partial and so

y e [0 , ^ - 1] .

It is evident that block pipelining causes increased global latency within the arithmetic

process flow and a differential latency between the three control parameters and the

oscillator output samples, y }(n) , as illustrated in Figure (6.3.3). We have:

yj(n) = Aj (n - 2)s\/>j (« - 3) + <t> y (« - 3)] (6.3.1)

where (f>j(n) = (n(pj(n-V)} M . Eq. (6.3.1) shows that there is a three sample latency for

the start phase parameter, a two sample latency for the amplitude parameter and a four

sample latency for the phase increment parameter. This latency skewing can be

corrected if necessary by inserting appropriate delays in the computation of control

parameters with least latency (i.e. by delaying the amplitude and start phase parameters

in this example).

We now proceed to investigate arithmetic processing architectures which execute the

HAS and PAS processing models in real-time using block and single-sample pipelining

to enhance throughput. To improve clarity in subsequent process model development

we do not show DPM blocks within the signal processing path. However, we show

control parameter memories as DPM blocks with implicit ping-pong functionality. DPM

blocks may be inserted at any point in the processing path to decouple process elements

and thereby block pipeline the arithmetic computations.

287

M
*

)

S

C/D

a.

288

Fi
gu

re

(6
.3

.2
):

M
ul

tip
le

xe
dp

ha
se

-a
cc

um
ul

at
or

 p
ro

ce
ss

m

od
el

sy
nt

he
sis

in
g

m
ul

tip
le

,
in

de
pe

nd
en

tly

co
nt

ro
lle

dp
ar

tia
ls

.
(S

ha
de

d
DP

M
bl

oc
ks

de

no
te

sta
te

-v
ar

ia
bl

e
sto

ra
ge

el

em
en

ts
.)

<D
Yn

)

<N

<N

(N

60

I
R'w'

r

R

m
I

R

e
+
*
cs

I
RN—✓

R
Xfl
<N
I
R

i

II
cn
I
R

e
+
/—Nm

5Sv
I

II
'r

s.

289

Fi
gu

re

(6
.3

.3
):

Bl
oc

k-
pi

pe
lin

ed

sig
na

l f
low

fo

r
the

sy

nt
he

sis

of
mu

lti
pl

e
pa

rti
al

s
ill

us
tra

tin
g

pa
ra

m
et

er

la
te

nc
y.

6.3.3 Pitch Control in the P hase Accumulating Oscillator

The phase accumulating digital oscillator executes a discrete-time integration of phase

increment, (p, using an M -bit accumulator and generates a phase sequence, 0(n),

which is phase-mapped to synthesise a corresponding amplitude sequence. For a sample

/*

rate denoted by f s , the oscillation frequency is given by p j - and is linearly

proportional to the phase increment parameter cp. In section (4.2.2) we reviewed the

frequency control resolution required for musical synthesis and the nature of pitch and

equally-tempered tuning. Building on this material, we use a lookup table as illustrated

in Figure (6.3.4) to translate between a pitch control parameter, p , which is

characterised by the number of semitones per bit change and phase increment (i.e. a

frequency control parameter) which is characterised by the number of Hertz per bit

change.

V[p]
LUTP

> tin)

Figure (6.3.4): Phase accumulator incorporating lookup table to effect pitch control.

p is a fixed-point fractional quantity whose fraction field, Fp , determines the pitch

tuning resolution in fractions of a semitone and whose integer field, I p , determines the

tuning range in semitones. A p value represented by 14 bits and partitioned equally

into 7 integer and fraction bits, provides a tuning range o f 127 semitones (or just over

10 octaves) and a tuning resolution of semitone (i.e. slightly better than 1 cent).

290

In general, for a tuning range and fraction resolution denoted by R and r semitones,

l v
respectively, we have I = |~log2(i?)~| and F = —i°g2 -

\ r j
bits.

The pitch-to-phase increment lookup table which we denote by the vector , contains

(I + F)2{ p+ p) M -bit integer values and is tabulated over a range of address values, a ,

according to:

' B ra2M
W[a] =

fs
+ 0.5

(6.3.2)

a € [0 ,2 (w , - l]

where B represents the baseline frequency5 when a = 0 (i.e. p = 0) and y represents

the minimum equally tempered tuning frequency ratio (i.e. pitch resolution)

corresponding to a single least significant bit change in the table address and hence p .

For a pitch control resolution of semitone within the equally tempered tuning

system, we have y = 212(128) (i.e. y m = - the semitone frequency ratio within the

equally tempered scale). A constant pitch offset can be imposed on the oscillation

frequency by adding a transposition parameter, p 6, to the lookup table input argument

p . Obtaining the same pitch transposition in the “phase increment” (i.e. frequency)

domain requires multiplicative scaling of (p by p to M -bit precision, with a significant

hardware cost associated with an M -bit multiplier, particularly when M is large. We

exploit this property in section (6.3.6) where we introduce a technique for synthesising

partial phase sequences with arbitrary frequency distribution. Finally, we observe that

5 The value o f B is determined by the lowest synthesised pitch required (e.g. 16.35 Hz equivalent to CO).
6 Not to be confused with the interpolation coefficient denotation used in Chapter 5.

291

Eq. (6.3.2) rounds the tabulated phase increment to the nearest integer value causing a

/
maximum frequency error of — Hz.

6.3.4 Synthesising Consecutive Harmonic P hase Sequences

We now consider arithmetic processing of the phase accumulator output sequence to

generate new phase sequences with harmonic frequency distributions. We generalise

this as phase domain processing, building on material presented in section (4.2.5) and

computational structures proposed by Chamberlin [1976, 1985]. Recalling Eq. (4.2.33),

we see that a phase sequence <f){n) multiplied modulo- 2 M by an integer k produces a

t l inew sequence <j>'{n) whose frequency is exactly the k harmonic of the (j>{n) frequency,

with <j>\ri) = (k(j){n))2u . Denoting the number of harmonics to be synthesised by N h, it

is evident that there are essentially two approaches to synthesising (f)'{ri) . One requires

multiplicative scaling of (p by k prior to phase accumulation and is undesirable for M

values consistent with the requirements of music synthesis (e.g. M = 24) since this

multiplication must be executed Nh times. An alternative technique illustrated in Figure

(6.3.5), utilises a second “phase multiplying” accumulator to provide a time-multiplexed

sequence of contiguous integer (harmonic) multiples of an input phase sequence, </>(n) ,

modulo- 2m [Chamberlin, 1976]. This technique exploits the property of a digital

accumulator initialised with x to produce the sequence x, 2x, 3x , ... Ax as the

accumulation proceeds to k iterations. The harmonic phase multiplying accumulator is

clocked at Nhf s (where f s represents the <j>(n) sample rate) and produces the time-

multiplexed phase sequence:

(j)’(rri) = </>(n-1), 2(f>(n-l% 3 ^ (« -l) , •••, N h(/>{n-1) (6.3.3)

292

where we use the time index m to reflect the higher sample rate and observe a one

sample pipeline delay. The harmonic multiplying accumulator is loaded with the

(j)(n - 1) value at the beginning of a sample cycle as depicted in the timing diagram of

Figure (6.3.6).

M
(P

f
A .

J -
M '

u

M '

Figure (6.3.5): Generating a time-multiplexed phase sequence, (f>{m), having a

contiguous harmonic frequency distribution.

f

Nhf _ _i

Load

Phase accumulator

Phase multiplier
accumulator

<t>(n~ 1) \ X ' ' X
N J (n - 2) X X 2 ^ - 1) X •- X Nh(j>(n-Y) X

Figure (6.3.6): Timing diagram illustrating initialisation o f the harmonic phase

multiplier accumulator at the beginning o f a sample cycle.

The process model of Figure (6.3.7) sub-divides the sample period into Nh time-slots

(similar to the TSA variable in the block pipelining discussion of section (6.3.2)). Each

time-slot computes a particular k<j){n - 1) harmonic value which is phase mapped and

multiplied by the corresponding amplitude value, Aj(n), according to the HAS

293

processing model of Eq. (2.3.6)7. The Nh weighted harmonic samples are accumulated

in a second amplitude accumulator as illustrated in Figure (6.3.7), where DPM blocks

supply harmonic amplitude and phase parameter values, A. (n) and O y («),

respectively. Aliasing of higher frequency harmonics is prevented by ensuring that N h

N (p 1 2m~1
is bound so that ^ an<̂ hence N h <------ . This may be implemented by

dynamically limiting the number of clock cycles applied to the harmonic phase

multiplying accumulator as a function of cp.

The phase multiplying accumulator (denoted by “harmonic phase multiplier and offset”

in Figure (6.3.7)) efficiently computes all harmonics in a consecutive sequence with

harmonic multiplier ranging over the interval [1, N h], where N h represents the highest

harmonic multiplier. This sequence must be computed to the highest required harmonic,

irrespective of some intermediate harmonics being superfluous in a typical synthesis

application. An unwanted j harmonic must be excluded by setting the corresponding

amplitude parameter to zero effectively wasting computation cycles for each harmonic

with Aj(n) = 0. In section (6.3.5) we present a modified architecture which allows

arbitrary harmonic groupings to be computed.

7 Here we use the subscript denotation j to avoid confusion with the harmonic multiplying factor k.

294

H
ar

m
on

ic

295

Fi
gu

re

(6
.3

.7
):

Im
pl

em
en

ta
tio

n
of

the

HA
S

ar
ith

m
et

ic
 p

ro
ce

ss

m
od

el
 u

sin
g

ph
as

e
do

ma
in

pr

oc
es

si
ng

.
Th

is
ar

ch
ite

ct
ur

e
de

pi
cts

a

sin
gl

e
vo

ice

sy
nt

he
sis

er

lin
ea

rly

co
mb

in
in

g
Nh

 c
on

se
cu

tiv
e

ha
rm

on
ic

s
int

o
a

sa
mp

le
str

ea
m

,
y(

n)
.

In line with the conclusions from Chapter 5 for sinusoidal WLS, the sinusoidal phase-

amplitude mapping block (which is common to all the processing models presented in

section (6.3)) executes a linearly interpolated table lookup model. The phase-mapping

block uses a first-order difference table to provide data parallelism and ensure the

interpolated sample is computed with a single parallel table lookup operation as

illustrated in Figure (6.3.8).

(j>(n) — 7
M

cos

Cosme
LUT

First-Order
Difference

LUT
~ COS 2 n

(») + !)’ -cos
2 ' 2

/
cos r2 f e w + i)] -cos U J ' W 1

V 27 J

Figure (6.3.8): The linearly interpolated phase-mapping process model using a first-

order difference table to eliminate consecutive table lookup operations.

The first-order difference is given by / (n) = coscos -co s 1
2; 2

for

(j)j (n) e [0, 27 -1] and hence the lookup table which we denote by the vector F is

tabulated according to:

(a + l)'
F[tf]= cos 2 jc-

21
-co s

(6.3.4)

a e [0, 21 -1]

It is evident that the interpolation multiplier requires asymmetrical operand word sizes

which may realise cost savings in VLSI implementations. The phase fraction operand,

296

(j)F (n) , requires F bits, yet the first-order difference operand will require less than the

b bits which represent the individual sinusoid samples. We assess the word size

required to represent the first-order difference samples by observing that

/ \ ̂ 9.7T
max(|/(«)|)« sin — « —7 - for 27 » 1 . Since b - 1 bits represent the sample

\ 2) 2

magnitude in a fixed-point 2 ’s complement representation, the required word size for

+ 1 bits for 2 1 » 1 .the first-order difference samples is therefore log,
f r 2 n ^sb-1

27V JJ

For example, with 7 = 10 and 7 = 16 (i.e. 16-bit fixed point number representation) we

require only 9 bits to represent the first-order difference samples.

6.3.5 Synthesising Non-Consecutive Harmonic P hase Sequences

In harmonic (or indeed partial) additive synthesis it is rarely necessary to synthesise a

large consecutive harmonic set. Typically, groups of harmonics are required with

arbitrary (i.e. non-consecutive) frequency distributions [Sandell, 1994]. Extending the

harmonic phase multiplying accumulator concept, we introduce an integer multiplier

block which computes the integer “&-tuple”, </>'. (n) , of a phase sequence, </>j(ri),

according to an arbitrary harmonic multiplier variable, k j , thus:

f j (») = (m («))2„ = (nkj ̂ ("))2«

*y e[l,jV4] <j>{n) e [0 ,2M -1] (6.3.5)

7S[0,JV ,-1]

This approach requires us to discriminate between the maximum harmonic multiplier,

max{kj) = N h, and the number of harmonics computed per sample period, N c, with

N c < N h. For example, with N c = 4 we can compute the k sequence {l, 3, 7 ,11},

297

whereas with the contiguous processing model of section (6.3.4) we are constrained to

the k sequence {l, 2 ,3,4}.

Figure (6.3.9) illustrates a modified HAS processing architecture where the phase

multiplying accumulator is replaced by an integer multiplier block which effects

multiplication of the phase sequence and an additional DPM block which supplies the

kj integer multiplier operand. The sample period is now partitioned into N c contiguous

computation time-slots by the TSA variable (as outlined in section (6.3.2)) wherein each

slot has an arbitrary harmonic multiplier kj with j = TSA e [0, N c - 1] denoting the

particular time-slot. There is no longer an explicit association between TSA value and

harmonic multiplier, instead the TSA indirectly specifies the arbitrary multiplier (kj) by

addressing the harmonic multiplier DPM. The integer multiplier clearly requires

asymmetrical operand word sizes as evident from Eq. (6.3.5) wherein we typically

observe N h <256 and M = 24. Hence, an 8 by 24-bit integer multiplier is a reasonable

expectation for this arithmetic function. Since we are concerned with integer operands

and a product which is always constrained to modulo- 2 M, it is evident that a simple

multiplier architecture is feasible motivated by modular arithmetic rules from number

theory [Weisstein, 1999a]. Specifically, we consider the modular arithmetic reducibility

and distributivity rules, defined thus:

Eqs. (6.3.6) allow us to express Eq. (6.3.5) in a form which may be implemented with a

series of shift and add operations which are simple to realise in hardware, thus:

(6.3.6)

298

= (*<0)< (̂”))2̂ +*(,)(2^(n))2„ +km (m n))2U .. ,k ^ (T <j>(ri)) 2U ^

= (l i (.)(2 '>(")}2J (63.7)
\ /= o / 2"

*,o e{0,l}

where £(/) denotes the /th bit of the w = |"log2(^)] bit harmonic multiplier word k and

we observe that kj e [0,2W -1] using this expression. Eq. (6.3.7) may be readily

implemented in hardware using only left-shift, multiplexer and addition operations as

illustrated in Figure (6.3.10) for the specific case when w = 8. We see that this

processing model may be readily pipelined with registers partitioning the time

consuming addition stages. The modulo- 2M left-shift operations may be hardwired and

incur no hardware overhead as such. In a pipelined implementation, the computation

time is limited only by the speed of the individual adder elements with a latency of two

clock cycles.

299

300

Fi
gu

re

(6
.3.

9)
:

Im
pl

em
en

ta
tio

n
of

the

HA
S

ar
ith

me
tic

 p
ro

ce
ss

 m
od

el
usi

ng

ph
as

e
do

ma
in

pr
oc

es
sin

g.
 T

his
 a

rc
hi

tec
tu

re

de
pic

ts
a

si
ng

le

vo
ice

sy

nt
he

sis
er

 l
ine

ar
ly

co
mb

in
in

g
Nh

 h
ar

m
on

ic
s,

wi
th

ar
bit

ra
ry

ha

rm
on

ic
mu

lti
ple

ac

co
rd

in
g

to
kj.

R

fN
CO

00

cs

•o

00

□ f—H

301

Fi
gu

re

(6
.3.

10
):

Pi
pe

lin
ed

int

eg
er

 p
ha

se

mu
lti

pl
ier

 c
om

pu
tin

g
the

k-t

up
le

of
a p

ha
se

 s
eq

ue
nc

e,
(jfr

i),
mo

du
lo

2M
.

6.3.6 Synthesising Partial Phase Sequences

In this section we present an enhancement to the HAS processing architectures

illustrated in Figures (6.3.7) and (6.3.9), which generate partials that take on fractional

multiples of the fundamental frequency. Moreover, partial frequency is now

continuously time-variable at the sample rate according to a distinct control parameter

and baselined to an harmonic multiple of the fundamental. We may now implement the

PAS processing model where partials are not constrained to follow an harmonic

distribution and where we assume that the partial start-phase parameter is constant (i.e.

time invariant) and denoted by .

We begin by considering a phase accumulator whose phase increment is obtained from

a pitch-to-phase increment translation table as illustrated in Figure (6.3.4). Hence, we

have / 0 = = By p and so we obtain (p = ~^~JL— E 2M_1 “ 1] • We now define

(p\ri) as the time-varying phase increment corresponding to a time-varying pitch offset,

gyP{n)+P(n) 2 M
p in) , applied to p{ri), thus (p'{n) = — --------------e [0 ,2M~l -1]. It is evident that as

fs

defined by Eq. (6.3.2), (pin) and (p\n) are strictly integer quantities and we observe

that the rounding quantiser function z -» [z + 0.5 J, z e SB as applied in Eq. (6.3.2) is

non-linear. Hence, for two arbitrary real numbers x and y we have

|_(jc ± .y) + 0.5j ^ |_x + 0.5J ± + 0.5J and observe that the error magnitude is bound

according to ||_(x ± y) + 0.5 J - d_x + 0.5J ±_y + 0.5 J)| e [0,1] and strictly only takes on

values of 0 or 1. In the development of Eqs. (6.3.8) and (6.3.9) we reason that using

rounded (pin) and (p\n) values (as required for a fixed-point hardware

implementation) instead of full-precision fractional values, introduces an error

302

magnitude of no more than unity and so the resulting frequency error magnitude is

f
bound by — » 0 (i.e. one part in 2M). Hence, as written here <p(n) and (p\ri) are

fractional quantities and we assume for our present discussion that they are full-

precision fractional quantities. We define the phase sequences which correspond to

these phase increments, thus:

(j>(n) = lTB2MY j y p{m)
m =\

= /TB2 MY j y p(m)+Mm))
\ m= 1 / '

(6.3.8)

m n) = lkTB2MYj y pim)
\ m= 1 i

and a new phase sequence, jn{n) , thus:

ju{n) = (^'(w) - ^(w) +

= (*'(») + (*■-!>(«))

= (TB2 M f n

2>
\ m =1

p { m) + P (m) p (m)

m =\

(6.3.9)

m=i y/ 2

= (7 2 2 " J] y p(m) (yfim) + k - l j
m=1

The idealised (i.e. L = 2M) sinusoidal phase-amplitude mapping lookup table is defined

by S[a] = cos

we obtain

r\M
V * J

and so with y{ri) = S[//(«)] and ignoring any start-phase offset,

y(n) = cos (6.3.10)
V m=1

303

Comparing Eq. (6.3.10) with the DT sinusoid y(n) = cos 2? r T ^ f 0 (m) (see Eq.
V «=1 y

(2.3.4)) where f 0 (n) denotes the instantaneous frequency, we deduce by comparing

terms that:

/„(») = B y ^ i r ^ + k - i) (6.3.11)

Eq. (6.3.9) therefore describes a phase sequence whose frequency is controlled by p(n)

with a multiplying factor, (yp{n) + k - 1), allowing independent control of integer

harmonic multiplier, k , and fractional component, (yp{n) - l) .

The advantage of this representation is evident when we apply it to the PAS model over

t l i •N partials where the ft and k terms take on j subscripts denoting the j partial

parameter. We now have independent time-varying control of fundamental frequency

(pitch) through p{n) , / h partial harmonic multiplier through k} , / h partial “fine tuning”

tbthrough Pj{n), in addition to the j partial start-phase and amplitude parameters O y

and Aj(n), respectively. This model enables application of fine-grained partial

t l ifrequency envelopes via the /?y (n) parameter in line with the PAS model. The j partial

frequency is specified as a fractional multiple of the fundamental comprising an integer

“harmonic multiplier” component kj and a “fractional multiplier” component

[ypj{n) - l j . For example, we may now specify the “3.275th harmonic” independently of

the fundamental frequency. Moreover, since P} (n) is time-varying, we may specify a

given partial as an arbitrary time-varying fractional multiple of the fundamental through

piecewise-linear variation of pj (n) . Figure (6.3.11) illustrates the hardware architecture

for this processing model, where we depict the fine-tuning (i.e. /?. (n)) signal path in

304

dashed lines. This model computes the weighted sum of N partials with time-varying

parameterisation in N p = Nc time-slots, thus:

three time-varying parameters Aj (ri) , p(ri) and pj (n) within the arithmetic model of

Figure (6.3.11).

The PAS processing architecture of Figure (6.3.11) enables the amplitude, frequency

and start-phase of individual partials to be independently controlled in real-time. Partial

frequency control is effected with only addition and table-lookup operations performed

to M -bit precision. The hardware imposition compared to the HAS processing

architecture of Figure (6.3.9) comprises an M -bit phase accumulator, (p lookup table,

four adders and two DPM blocks to store the pf r i) parameters and state-variables. It is

evident from Eq. (6.3.9) that the phase subtractor is unnecessary if (k} - l) rather than

kj values are stored in the partial k DPM. Metaparameterisation of partial frequency

relative to the fundamental as outlined in section (2.6.5) is now imposed by an additive

offset to the Pj(ri) parameter and incurs less computation burden than multiplicative

scaling of the phase increment for each partial in the metaparameter set.

Finally, we consider a modification to the partial fractional multiplier model which

provides a frequency offset to each partial according to the absolute frequency offset

parameter p fr i) . We first redefine the <j)'(ri) term in Eqs. (6.3.8) so that

(6.3.12)

tj>j (n) = 2x T B 'Y fpim-1) (/ ' (""3) + kj - 1))+ <Dy

Sample index terms within Eq. (6.3.12) reflect the respective pipeline delays for the

305

(/>\n) = {TB2m Z K ' <") + P(m))\ where J3(n) represents a time-varying frequency
m= 1

offset in Hz. Following similar reasoning to that applied in the development of Eq.

(6.3.9) we obtain:

M(n) = (kTB2M^ (y p{m)+P(m))) (6.3.13)
\ m=1 / 2m

The idealised (i.e. L = 2M) sinusoidal phase-amplitude mapping lookup table is defined

\

v ^)
(^ iby S[a] = cos 2tz—tt and so with y(ri) = S[//(«)], we obtain:

y(f?) = cos I iTfcTBY; (yp(m) + } (6.3.14)
m=\

(n \
Comparing Eq. (6.3.14) with the DT sinusoid y(n) = cos 2nT^ / 0 (m) , we obtain:

V m= 1 >

f 0 (n) = k B y ^) + m (6.3.15)

Eq. (6.3.13) therefore describes a phase sequence whose fundamental frequency is

controlled by p(n) with independent control of integer harmonic multiplier k , and

frequency offset /3(n), in Hz. Figure (6.3.16) illustrates the modified section of the

pipelined multiple-voice processing model depicted in Figure (6.3.13a) to effect partial

frequency offset according to the pj (n) parameter which now denotes an absolute

frequency offset to the / h partial. This modified model computes the weighted sum of

N partials in N p = Nc time-slots executing the PAS model, thus:

y(n) = £ Aj (n - 2) c o s ^ . («))
j =0

(6.3.16)

jtj(ri) = 2 + Pjim - 3))+ <D,.
m= 1

306

> Q \
<N60

»C>\
CM

CM

CM a Q

■£2
.o
5 ,-sT
<u

t-u
0
-Is
^R

1
s
fCOCo
OOik
R

R

"Q
RQ
-̂ T

&
o
8
o

■§
<4>
§

*R

§

-Si
O

o
R CU
S

2i
.o
R
0

1
ex, -§. Ibo o.R
~ R cu

J?

b

fc 1
C? -R3 bO *3 ob ;5

50 ^
R -S3Q> Q
S •■§

"R ^3s O
b ^

Co <
^ *0
^ -S
Q> .R

'S -R
^ B o* o
R «
•2 -£>
1

-3> &
& -S3

= * l■''i
p*"i ;5
£/S
S AI ^0

•SP R
fe, *5?

307

6.3.7 A Multiple Voice PAS Processing Architecture

The PAS processing architecture of Figure (6.3.11) can be extended to synthesise

multiple voices by block pipelining the fundamental phase accumulator computations.

Denoting the number of voices to be generated by v where each voice comprises N

partials, we observe that DPM blocks of length v are now required for each of the pin)

and (j){n) variables. All other parameter and state-variable DPMs now require vN

locations reflecting the uN partials computed across u voices. It is conceivable that

within a completely generic architecture, partial allocation across voices is non-

homogeneous and dynamically reconfigurable enabling optimal allocation of partials to

those voices that require a rich partial composition. For a given arithmetic architecture

and processing speed, we require the uN product to be constant since this determines

the total number of arithmetic operations required within each sample period.

Assuming a homogeneous allocation of partials to voices, the sample period is sub

divided into v distinct voice computation time slots by the most significant bits (MSBs)

of the TSA variable. Each of the voice computation slots is further sub-divided into N

partial computation time slots by the least significant bits (LSBs) of the TSA variable.

Hence, the TSA now addresses v sets of N p partials - one unique set for each voice.

The MSBs of the TSA address the fundamental phase accumulator DPMs (i.e. over v

locations) with the LSBs addressing the partial parameter and state variable DPMs (i.e.

over N p locations). We now have three distinct processing levels defined by processing

clock speed. At the control level we have sample rate processing of the time-varying

PAS parameters, p fr i) , P f n) and Ay(n) which are fed into their respective DPMs. At

the voice level we compute the fundamental phase sequences for each voice at vfs

308

operations per second. Finally, at the partial level we compute the individual partials for

each voice and sum the results into a composite value at v N pf s operations per second.

Figure (6.3.12) illustrates the multiple-voice PAS processing model where the new

DPM blocks are shown shaded. It is evident that this architecture may be pipelined at

both the block and elemental processing levels to increase throughput. Figure (6.3.13a)

illustrates the pipelined form of the architecture presented in Figure (6.3.12) where sub

sample pipeline registers separate each processing stage and form a twelve stage

pipelined processor. Figure (6.3.13b) illustrates the pipelined arithmetic processing

model for the sinusoidal phase-amplitude mapping block shown in Figure (6.3.13a).

PAS parameters excluding p t{n) are delayed through a cascade of pipeline registers to

compensate for time-skew inherent in the multi-parameter pipeline. Figure (6.3.14)

illustrates the two DPM addressing models corresponding to Figures (6.3.12) and

(6.3.13a). Figure (6.3.15) illustrates a hierarchical timing diagram of the pipelined

arithmetic processing taking place in the processing model of Figure (6.3.13a). The

timing diagram illustrates staggered computation of the first partial within the first voice

as it propagates along the twelve-stage pipeline. Key computation points are denoted by

circled numerical references which correspond with those shown in Figure (6.3.13a).

The twelve-clock latency of this fast pipeline stage must be accounted for by a

corresponding delay in the final y{n) register clock. Overall latency is three sample

periods comprising the two consecutive DPM elements and the final output register.

309

TJ

-C>\CN

310

Pj
(n

)
Fi

gu
re

(6

.3.
12

):
Im

pl
em

en
ta

tio
n

of
the

 P
AS

ar

ith
me

tic
 p

ro
ce

ss
 m

od
el

usi
ng

 p
ha

se
 d

om
ain

 p
ro

ce
ss

in
g.

 T
his

 a
rc

hi
tec

tu
re

 d
ep

ict
s

a
m

ul
tip

le
-

vo
ice

 s
yn

th
es

ise
r,

eac
h

vo
ice

 l
ine

ar
ly

co
mb

ini
ng

Np

pa
rti

al
s

wit
h

ar
bi

tra
ry

, p
se

ud
o-

ha
rm

on
ic

fre
qu

en
cie

s
ac

co
rd

ing

to
kj

and

fif
ri)

.

5Q C

\

-5 S
S CL
£ Q

CL

\ /

5*cs03

a.
o
o

/* \
a >

T3
13
c

3
CL

<Sl
CL

C u

E a
<

\ J

e c
sc

s:

311

Fi
gu

re

(6
.3

.1
3a

):

Pi
pe

lin
ed

pr

oc
es

si
ng

m

od
el

 o
f

the

m
ul

tip
le

-v
oi

ce

PA
S

al
go

ri
th

m
.

Th
is

pr
oc

es
so

r
co

m
pu

te
s

v
vo

ic
es

ea

ch

co
m

pr
is

in
g

N
p

pa
rt

ia
ls

wi

th

tim
e-

va
ry

in
g

fr
eq

ue
nc

ie
s

ac
co

rd
in

g
to

k,
an

d
f3r

C
ol

ou
r

co
de

s
de

pi
ct

 t
he

th

re
e

le
ve

ls
of

pr
oc

es
si

ng

ra
te

.

Sinusoidal Phase Mapping

Cosine
LUT

First-Order
Difference

LUT

J

COS 2 TV0 0)

Figure (6.3.13b): Pipelined processing model o f the sinusoidal phase-amplitude

mapping block used in Figure (6.3.13a). This model represents the pipelined form o f

Figure (6.3.8).

312

"ISA (hGBj.)'

(LSBs)

Xj(n)

A2(

Figure (6.3.14): Dual port memory (DPM) addressing for the multiple-voice pipelined

PAS processing models o f Figures (6.3.12) and (6.3.13 a).

313

X

X X

X

x
x

x

x
O'*

x
oo

X
x

x
CJ

x

xx

x

x
<NX (Nx

x

X

© ©

©
+
(N x

CN

CN

<N

cs

xO'}

^ X /X

<N
K

J
I

X .

© © © © © © ©

314

Fi
gu

re

(6
.3.

15
):

Sim
pli

fie
d

tim
ing

dia

gra
m

of
the

 p
ipe

lin
ed

 p
ro

ce
ss

ing

mo
de

l
sh

ow
n

in
Fi

gu
re

(6

.3.
13

).
Co

mp
uta

tio
n

of
the

 f
irs

t
pa

rti
al

 o
f

the
 f

irs
t

vo
ice

is

see
n

pr
op

ag
ati

ng

do
wn

the

 p
ipe

 a
t k

ey
co

mp
uta

tio
n

sta
ge

s
de

pic
ted

by

the
 n

um
be

re
d

re
fer

en
ce

s
sh

ow
n

in
Fi

gu
re

(6

.3
.1

3)
.

Partial p
DPM

DPM

Partial /?
DPM DPM

Figure (6.3.16): Modification to the processing model o f Figure (6.3.13a) to effect

partial frequency offset according to the p .(«) parameter. (Note the residual pipeline

registers to ensure correct timing skew correction.)

315

6.3.8 Simulation Results

In this section we present simulation results for the partial fractional multiplier and

frequency offset phase domain PAS processing models presented in section (6.3.6) using

the corresponding Mathcad PAS models presented in Appendix B. Figure (6.3.17)

illustrates an example waveform sequence whose constituent partials have an

inharmonic frequency distribution causing a characteristic time-varying waveshape.

Partial fractional multiplier values vary pseudo-randomly with a maximum value of

«1.059 (1 semitone) over four partials whose amplitudes follow a -3 dB/octave roll-off

slope. Figure (6.3.18) illustrates SNR behaviour over 200 pseudo-random partial

fractional multiplier distributions for three values of spectrum roll-off slope with

N = 64, N = 1 and I = 10. Each point corresponds to a distinct set of N p pseudo

random f k values with a maximum fractional multiplier value of 1.25. We observe

essentially invariant SNR with partial fractional multiplier distribution whose average

value is consistent with the linearly interpolated phase-amplitude mapping used.

2

1

0

1

■2
,4.4 .4 .46000 8000 1-10 1.4-10 1.6-102000 4000 1.2-100

Figure (6.3.17): Example waveform synthesised using the PAS processing model.

Notice the evolving waveshape as the inharmonic partials beat in frequency.

316

120

119

118OD
T3

117

116 OOO 0 dB/octave
OOO -3 dB/octave
OOO -6 dB/octave

115
100 200150

Run number

Figure (6.3.18): SNR variation over 200 pseudo-random partial fractional multiplier

distributions with three spectrum roll-off slopes and full-precision arithmetic.

Figures (6.3.19) and (6.3.20) illustrate time-varying spectra for the partial fractional

multiplier and frequency offset models using Mathcad models given in Appendix B.

The Pj(n) parameters for the second, third, fifth and eighth partials are arranged to take

on triangular PWL envelopes. Fundamental frequency is set at 55 Hz (Al) and partials

have a spectral envelope of -6 dB/octave in both cases. Figure (6.3.19) sets the partial

fractional multiplier envelope amplitudes to 0.2, 0.3, 0.5 and 0.8 for the second, third,
Q

fifth and eighth partials, respectively . Figure (6.3.20) sets the partial frequency offset

envelope amplitudes to 20, 30, 50 and -80 Hz for the second, third, fifth and eighth

partials, respectively. Both simulations show 64 spectra visualised as contour and

surface plots where the time-varying partial frequency envelopes are clearly visible,

precisely in line with the underlying PWL pfrn) envelope.

8 For example, the third partial varies from the harmonic multiple o f 3 to 3.3 times the fundamental
frequency over the PWL envelope.

317

0 10 20 30 40 50 60
Sample index

Frequency (Hz)

1 °

--20

- -60

- -80

Figure (6.3.19): Spectrograms fo r the partial fractional multiplier model.

Fr
eq

ue
nc

y
(H

z)

Sample index

Frequency (Hz)

Figure (6.3.20): Spectrograms fo r the partial frequency offset model.

319

6.4 Conclusions

In this chapter we have presented arithmetic processing architectures which underpin

both the WLS and PAS paradigms. The consecutive access wavetable memory appears

unique in computer music applications and represents an original contribution from this

research that enables significant throughput enhancement in multi-voice interpolated

WLS compared to multiple accesses of a single wavetable memory. This data-parallel

vector memory architecture and the interpolation processing which proceeds it, are

inherently “pipeline friendly” and may be readily extended to effect wavetable

interpolation which implements the SIS model as presented in section (6.2.5). We have

investigated the application of lookup tables to reduce interpolation coefficient

arithmetic overhead and extended this to include the sample reordering function.

However, utility of the WLS model is fundamentally constrained by the inherently fixed

(i.e. pre-computed) wavetable spectral characteristics which limit the highest

synthesised frequency according to the onset of upper harmonic aliasing. Assigning

multiple wavetables to each voice with progressively reducing upper harmonic content

and selected according to fundamental frequency circumvents the aliasing problem.

This method increases memory overhead in accordance with the multiplicity of

wavetables, although the falling cost-to-capacity ratio of semiconductor memory at this

point in history affords compensation. However, wavetable “fill time” increases in

direct proportion to the number of wavetables with this approach.

Building on the concept of phase domain processing introduced in Chapter 4 and the

arithmetic structure first proposed by Chamberlin [1976], we have investigated an

arithmetic processing architecture which executes the HAS model in real-time. We have

proceeded to show how this architecture is extendable to include the generic PAS model

providing independent, time-varying control of partial amplitude, frequency and start-

320

phase. A refinement to the PAS model has been presented which provides time-varying

partial frequency offset.

Having control granularity at the individual partial level allows upper harmonic aliasing

to be efficiently circumvented by truncating the linearly combined partial series as a

function of fundamental frequency (i.e. partial frequencies which would lie above the

Nyquist limit have amplitude set to zero). The control parameter interface to this

architecture appears as memory and may therefore be mapped into a host computer

memory space. Parametric data control is supported at the system sample rate as

required for optimal PAS control as discussed in Chapter 2. However, in a real

embodiment the partial amplitude and frequency parameter DPM blocks will be fed by

a dedicated PWL envelope processor whose segment slope and breakpoint data sets are

supplied from the host computer. The PWL envelope processor architecture is

envisaged as a block pipeline which presents a DPM interface “image” to the host

processor. This architecture may be implemented with current FPGA and multi-port

memory technologies. Pipelined multiplier, logic and memory speeds above 200 MHz

are currently reported for the Xilinx Virtex II FPGAs [Xilinx, 2004] and Integrated

Device Technology synchronous DPMs [Smith, 2000]. As an indication, a sample rate

of 48 kHz and a 5 ns computation cycle time enables a 64 voice synthesiser with each

voice linearly combining up to 64 partials or a total of 4096 partials.

We have presented simulated SNR behaviour for the phase domain PAS processing

model which confirms expected performance given the linearly interpolated sinusoidal

phase mapping over a range of pseudo-random, inharmonic partial frequency multiples.

We conclude by presenting simulated time-varying spectra for the partial fractional

multiplier and frequency offset models, which clearly illustrate the time-varying partial

frequency envelope according to an underlying PWL control function.

321

Chapter 7 Conclusions

7.1 Introduction

This thesis has presented a structured investigation of the two underpinning hypotheses

given in section (1.3.2). A critical review of prevalent synthesis techniques reported in

the literature and presented in Chapter 2 has set additive synthesis in context ahead of

further investigation and development in later chapters. Moreover, this review has

substantiated the motivating assumption that sinusoidal additive synthesis provides

complete accessibility to the elemental parts of timbral composition, in line with models

of human timbral perception.

Our review of the HAS and PAS mathematical foundations in sections (2.3.2) and

(2.6.2) reveals the inherent concordance with phase-accumulating frequency synthesis

and distinct phase-amplitude mapping. The difference equation definition of an

oscillatory phase sequence given by Eq. (2.6.2) encapsulates this view. We have shown

that the phase-accumulating model provides flexibility, supporting time-invariant

implementation of the HAS model with fixed phase-amplitude mapping wavetables

computed “off-line” according to Eq. (4.1.3), or direct implementation with time-

varying parameters according to Eq. (2.3.6) and developed in section (6.3). Extending

the phase-accumulating model to include the PAS model given by Eq. (2.3.5) and

developed in section (6.3.6), enables the SMS model presented in section (2.3.3) and

expressed by Eq. (2.3.7) to be effected. Software implementations of hitherto IFFT

based SMS models require a “spectrally shaped” noise model whose implementation

we have not considered due to the computational simplicity of filtered noise synthesis

according to the subtractive synthesis model discussed in section (2.3.4).

322

7.2 Research Objectives

Our critical review of the two principal sinusoidal oscillator techniques presented in

Chapter 3 confirms the efficacy of phase-accumulated over recursive algorithms. A

detailed development of initial condition values in the second-order direct-form

recursive oscillator that provides phase-continuous, amplitude-invariant frequency

transition, reveals significant computational imposition compared to the phase-

accumulating case which is inherently phase-continuous. The compelling arguments for

the phase-accumulating oscillator may be summarised thus:

• Linear time-varying frequency control which can be updated at the sample rate,

with no initial condition imposition;

• Constant frequency control resolution which is a simple function of accumulator

width and sample rate alone;

• Inherently phase-continuous frequency transition and time-invariant oscillation

amplitude;

• Simple arithmetic architecture requiring only one state-variable;

• Distinct phase-amplitude mapping using interpolated wavetable lookup is

conducive to a pipelined arithmetic architecture;

• Supports phase-domain processing prior to phase-amplitude mapping and

thereby the generation of consecutive and non-consecutive harmonic sinusoid

sequences.

The distinct phase-amplitude mapping operation is an advantage since it enables

synthesis of non-sinusoidal waveforms via appropriate phase-mapping wavetable

definition. Linearly interpolated sinusoidal phase-amplitude mapping is effected with

pipelined lookup tables and interpolation arithmetic having optimised word sizes and

does not detract from computational throughput.

323

Chapter 3 introduced the wavetable as a fundamental element in the phase-amplitude

mapping process, proceeding to review the concept of “sampling a tabulated signal”

which we generalise as wavetable lookup synthesis (WLS) in Chapter 4. We have

investigated frequency control in the phase accumulating oscillator and defined the

design parameters for frequency control resolution compatible with computer music

synthesis requirements based on reported pitch perception thresholds. Section (4.2.3)

develops the inherent phase-continuous nature of the phase-accumulation process in

contrast to the direct-form recursive algorithm presented in Chapter 3. For

completeness, section (4.3) discusses the “sample rate conversion” view of WLS which

is pertinent to the sampling synthesis subclass reviewed in Chapter 2 and can be

considered as a special case of the WLS model. Furthermore, section (4.3.5) reviews the

relationship between pitch shift and phase fraction field width peculiar to the phase-

accumulating sampling synthesis model.

Chapter 5 introduces the amplitude error mechanism consequential to phase truncation

or rounding and proceeds to investigate interpolated WLS as a means of reducing the

magnitude of these errors. Interpolation of tabulated data according to a fractional

address is reviewed and arithmetic overhead for various interpolation orders is

discussed. To objectively assess interpolation effectiveness we introduce the SNR and

error spectrum metrics and present a comparative assessment of different interpolated

WLS scenarios in section (5.5) based on numerical models presented in Appendix B

with sinusoidal and multi-harmonic wavetables. A range of multi-harmonic “test”

wavetables have been used in these simulations whose tabulated waveform spectra are

based upon piecewise-linear approximations of the long term average spectra of various

music types reported in the literature. We assume that these “test spectra” represent a

reasonable approximation to worst case instrument spectra in a synthesis environment.

324

The results confirm that linear interpolation provides SNR performance comparable

with 16-bit SQNR for sinusoidal wavetables of length 512 words. TIPM is shown to

provide SNR bound by quantisation noise as predicted and offers maximum utility when

2 71
quadrature signals with optimal (i.e. —̂ radian) phase control resolution is required.

Furthermore, it is evident that quadrature oscillators with ultra-precise phase and

frequency control as afforded by the TIPM model, have utility in the implementation of

advanced lock-in amplifiers within the field of instrumentation and signal recovery

[Meade, 1982].

Cubic interpolation provides SNR performance comparable with 16-bit SQNR using

wavetables of length 32k words which tabulate the worst case (i.e. richest) multi

harmonic spectrum of those simulated. We present simulated contour plots which

illustrate the two-dimensional behaviour of SNR as a function of wavetable length and

spectrum roll-off slope for the four interpolation orders investigated. These plots

provide a concise summary of SNR performance against variation of two principal

parameters in multi-harmonic WLS and are of utility in estimating wavetable length and

interpolation order for a given synthesis application.

WLS implements the HAS model but is always constrained to have partials which are

harmonic multiples of the fundamental. Dynamic timbral evolution is effected by

sequencing manifold wavetables whose pre-computed fixed spectral content represent

distinct points in “timbre space” analogous to frames of a film. The SIS model provides

linear interpolation between fixed wavetables in a sequence and thereby finer timbral

granularity with no increase in wavetable memory imposition. MWS is an alternative

additive synthesis model which linearly combines non-sinusoidal basis components

stored in distinct wavetables. Despite the performance of cubically interpolated WLS,

three problems remain for all embodiments of the WLS model - aliasing of upper

325

harmonics when N h<p > 2 M \ wavetable computation according to Eq. (4.1.3) which

must be executed for each wavetable in the set and wavetable loading time from a mass-

storage device.

Chapter 6 considers arithmetic processing architectures for the WLS, HAS and PAS

models. Section (6.2) presents the consecutive access vector memory (CAVM) which

provides a data-parallel WLS memory architecture without duplicated data storage that

imposes simple memory management computation for certain interpolation orders. We

have investigated corresponding data-parallel interpolation processing for the linear and

cubic cases which incorporates interpolation coefficient generation by table lookup,

justified on the basis of an acceptable table memory imposition for typical phase word

partitioning. We have shown how the CAVM technique is extensible to support

wavetable interpolation, as distinct from phase interpolation, where indexing a set of

wavetables is now performed with a fractional address in line with the SIS model.

Section (6.3) develops phase domain processing and presents a technique for generating

contiguous harmonic phase sequences enabling real-time execution of the HAS model

that builds on the structure introduced by Chamberlin [1976]. This architecture is

germane as it allows controlled restriction of the highest harmonic according to

fundamental frequency thereby eliminating the alias problem seen with WLS. We

extend this architecture to synthesise non-contiguous harmonic sequences according an

arbitrary integer harmonic multiplier parameter in addition to the usual amplitude and

phase parameters. This enhancement prevents wastage of harmonic computation

resource when harmonic amplitude is zero in the synthesised spectrum as seen with the

contiguous harmonic form.

We extend the HAS model to support PWL partial frequency envelopes according a

PAS model where partial frequencies are a fractional multiple of the fundamental

326

frequency. This architecture is attractive since partial frequency envelopes are applied

from a “harmonic baseline” relative to the fundamental frequency using a fractional

multiplier component to effect “fine tuning” of partial frequency. For completeness, we

present a modified arithmetic model and processing architecture which specifies partial

frequency envelopes according to a frequency offset model. Pipelined arithmetic

architectures are presented whose performance is limited by parameter access time from

the dual-port memory elements which separates host parameter update from the

synthesis processing. However, reported FPGA logic and pipelined dual-port memory

speeds indicate that a 5 ns elemental computation time is achievable and corresponds to

over 4000 partials using a pipelined processor at 48 kHz sample rate.

7.3 Limitations and Areas for Further investigation

Aliasing within the WLS model remains a fundamental problem worthy of further

investigation. Limiting N h so that N h(p > 2M_1 combined with oversampling the phase-

accumulation process appears the only means of restricting this problem with the

present model architecture. Applying the MWS model with manifold distinct

wavetables containing progressively reduced upper harmonics across the frequency

range is one possible line of attack. The reducing cost of high density memory offsets

the large number of wavetables required in the MWS set. However, wavetable

computation and update time must be considered.

Interpolation coefficient generation within the interpolated WLS model as presented in

section (6.2.4), incurs a lookup table memory size which is linearly proportional to

interpolation order and exponentially related to phase fraction field width. This area is

worthy of further investigation to identify redundancies in the coefficient definition

expressions which could be exploited to reduce lookup table length. Furthermore, it is

evident that for a given interpolation order, some coefficient ranges are significantly

327

less than unity which motivates optimisation of multiplier input word length to reduce

gate count in FPGA or VLSI implementations.

Further work is needed to establish the efficacy of a fractional multiplier or frequency

offset PAS processing model as presented in section (6.3). The suitability of a particular

technique is largely dependent on whether partial frequency deviations from a harmonic

baseline are optimally specified by a frequency multiple or frequency offset envelope

and suggests further detailed investigation of natural instrument spectrum behaviour at

various pitches across their musical range.

The length of the pitch to phase-increment translation table is reducible by observing

that for equally tempered tuning there is an exact ratio of two between corresponding

values in adjacent octave data blocks within the table. This suggests that table length

can be significantly reduced by storing only the lowest octave of data and adding

arithmetic shifting logic to generate higher octave values which can be incorporated into

the pipelined architecture presented to offset increased computation time. PWL

envelope generation has not been investigated in the architectural models presented in

section (6.3) and may be implemented as an additional pipeline “processing layer”

between the host interface and the sample computation partitioned by DPM blocks.

328

Bibliography

[Ackenhusen, 1999] Ackenhusen, J. G. Real-Time Signal Processing - Design and

Implementation o f Signal Processing Systems. Prentice Hall PTR, 1999.

[Borin et al, 1997] Borin, G., De Ploi, G. and Sarti, A. Musical Signal Synthesis.

Musical Signal Processing, Swets and Zeitlinger B. V., 1997.

[Chamberlin, 1985] Chamberlin, H. Musical Applications o f Microprocessors. Hayden

Books, Howard W. Sams & Co., 2nd edition, 1985.

[Crochiere and Rabiner, 1983] Crochiere, R. E. and Rabiner, L. R. Multirate Digital

Signal Processing. Prentice-Hall, Englewood Cliffs, NJ.

[Eargle and Foreman, 2002] Eargle, J. and Foreman, C. JBL Audio Engineering for

Sound Reinforcement. Music Sales Ltd, ISBN 0634043552.

[Grey, 1975] Grey, J. M. An Exploration o f Musical Timbre. Ph.D. dissertation,

Department of Psychology, Stanford University, 1975.

[Helmholtz, 1863] Helmholtz. H. L. F. v. On the Sensations o f Tone as a Physiological

Basis for the Theory o f Music. Dover, New York, NY, 1954.

[Ifeachor and Jervis, 2002] Ifeachor, E. C. and Jervis, B. W. Digital Signal Processing-

A Practical Approach. 2nd edition, Prentice-Hall Inc., 2002.

[Jensen, 1999] Jensen, K. Timbre Models o f Musical Sounds. Ph.D. dissertation, DDCU

Report 99/7, 1999.

[Lyons, 2004]: Lyons, R. G. Understanding Digital Signal Processing. 2nd edition,

Prentice Hall, 2004.

[Massie, 1998] Massie, D. C. Wavetable Sampling Synthesis. Applications of Digital

Signal Processing to Audio and Acoustics, Kluwer Academic Publishers, 1998.

[Mathews, 1969] Mathews, M. V. The Technology o f Computer Music. Cambridge,

MA: MIT Press, 1969.

[Moore, 1990] Moore, F. R. Elements o f Computer Music, Prentice-Hall Inc., 1990.

[Nakamura, 1996] Nakamura, S. Numerical Analysis and Graphic Visualisation with

MATLAB. Prentice Hall PTR, 1996.

[Oppenheim & Schafer, 1975] Oppenheim, A. V. and Schafer, R. W. Digital Signal

Processing. Prentice-Hall, 1975.

[Orfanidis, 1996] Orfanidis, S. J. Introduction to Signal Processing. Prentice-Hall Inc.,

1996.

329

[Parhami, 2000] Parhami, B. Computer Arithmetic -Algorithms and Hardware

Designs. Oxford University Press, Inc., 2000.

[Phillips, 1997] Phillips, D. K. Algorithms and Architectures for the Multirate Additive

Synthesis o f Musical Tones. PhD thesis, School of Engineering, Durham University,

UK.

[Pirsch, 1996] Pirsch, P. Architectures for Digital Signal Processing. John Wiley and

Sons, 1996.

[Proakis and Manolakis, 1996] Proakis, J. G. and Manolakis, D. G. Digital Signal

Processing Principles, Algorithms and Applications. 3rd Edition, Prentice-Hall, Inc.,

1996.

[Quatieri and McAuley, 1998] Quatieri, T. F. and McAuley, R. J. Audio Signal

Processing Based on Sinusoidal Analysis/Resynthesis. Applications of Digital Signal

Processing to Audio and Acoustics, Kluwer Academic Publishers, 1998.

[Rabiner and Gold, 1975] Rabiner, L. R., and Gold, B. Theory and Application o f

Digital Signal Processing. Prentice-Hall Inc.

[Risset and Wessel, 1982] Risset, J.-C. and Wessel, D. Exploration o f Timbre by

Analysis and Synthesis. Psychology of Music, Orlando: Academic Press, 1982.

[Risset, 1969] Risset, J.-C. Catalog o f Computer-synthesized Sound. Murray Hill: Bell

Telephone Laboratories.

[Roederer, 1973] Roederer, J. Introduction to the Physics and Psychoacoustics o f

Music. The English Universities Press, London, 1973.

[Rossing, 1990] Rossing, T. D. The Science o f Sound. 2nd Edition, Addison-Wesley,

1990.

[Serra, 1997] Serra, M.-H. Introducing the Phase Vocoder. Musical Signal Processing,

Swets and Zeitlinger B. V., 1997.

[Symons, 1995] Symons, P. R. A System Architecture Supporting the Concurrent

Operation and Programmable Interconnection o f Multiple DSP Modules fo r Digital

Music Synthesis. M4046831 95/01/02 Open University T401 project dissertation, 1995.

[Vaseghi, 1996] Vaseghi, S. V. Advanced Signal Processing and Digital Noise

Reduction. John Wiley and Sons Ltd. And B. G. Teubner, 1996.

[Winckel, 1967] Winckel, F. Music, Sound and Sensation. Dover Publications Inc., New

York.

[Zolzer, 1997] Zolzer, U. Digital Audio Signal Processing. Wiley, 1997.

330

References

[Abu-El-Haija et al, 1986] Abu-El-Haija, A. I. and Al-Ibrahim, M. M. Improving

Performance o f Digital Sinusoidal Oscillators by Means o f Error Feedback. IEEE

Transactions on Circuits and Systems, Vol. CAS-33, No. 4, April 1986.

[Alles, 1980] Alles, H. Musical Synthesis using Real-time Digital Techniques.

Proceedings of the IEEE, 68(4).

[Alonso et al, 1977] Alonso, S, Appleton, J. and Jones, C. A Computer System for every

University: the Dartmouth College Example. Creative Computing, 3(2), 1977.

[Anderson and Jensen, 2001] Anderson, T. and Jensen, K. Phase modelling o f

instrument sounds based on psycho acoustic experiments. Workshop on current research

directions in computer music, Barcelona, Spain, 2001.

[Arfib, 1979] Arfib, D. Digital Synthesis o f Complex Spectra by means o f Multiplication

o f Non-linear Distorted Sine Waves. Journal of the Audio Engineering Society, 27(10),

1979.

[Asanovic et al, 1995] Asanovic, K., Kingsbury, B., Irrisou, B., Beck, J., Wawrzynek, J.

TO: A Single-Chip Vector Microprocessor with Reconfigurable Pipelines. Proceedings

of the 22nd European Solid-State Circuits Conference, September, 1996.

[Borch & Sundberg, 2002] Borch, D. Z. and Sundberg, J. Spectral Distribution o f Solo

Voice and Accompaniment in Pop Music. Speech, Music and Hearing, KTH,

Stockholm, Sweden, TMH-QPSR Vol. 43, 2002.

[Chamberlin, 1976] Chamberlin, H. A. Experimental Fourier Series Tone Generator.

Journal of the Audio Engineering Society, Vol. 24, No. 4, May 1976.

[Chowning, 1973] Chowning, J. The Synthesis o f Complex Audio Spectra by means o f

Frequency Modulation. Journal of the Audio Engineering Society, 21(7), 1973.

[Comerford, 1993] Comerford, P. J. Simulating an Organ with Additive Synthesis.

Computer Music Journal 17(2).

[Curticapean et al, 2000] Curticapean, F., Palomaki, K. and Niittylahti, J. Hardware

Implementation o f a Quadrature Digital Oscillator. Proceedings ofNORSIG,

Kolmarden, Sweden June 2000.

[Dannenberg, 1998] Dannenberg, R. B. Interpolation Error in Waveform Table Lookup.

Proceedings of the 1998 International Computer Music Conference.

331

[De Poli, 1983] De Poli, G. A Tutorial on Digital Sound Synthesis Techniques.

Computer Music Journal, 7(4), 1983.

[Freed et al, 1993] Freed, A., Rodet, X. and Depalle, P. Performance, Synthesis and

Control o f Additive Synthesis on a Desktop Computer using FFT 1. Proceedings of the

19th International Computer Music Conference, Waseda University Centre for Scholarly

Information, 1993.

[Furuno et al, 1975] Furuno, K., Mitra, S. K., Hirano, K. and Ito, Y. Design o f Digital

Sinusoidal Oscillators with Absolute Periodicity. IEEE Transactions on Aerospace and

Electronic Systems, Vol. AES-11, November 1975.

[Goodwin and Kogon, 1995] Goodwin, M. and Kogon, A. Overlap-Add Synthesis o f

Nonstationary Sinusoids. Proceedings of the 1995 International Computer Music

Conference, Canada.

[Goodwin and Rodet, 1994] Goodwin, M. and Rodet, X. Efficient Fourier Synthesis o f

Nonstationary Sinusoids. Proceedings of the 1994 International Computer Music

Conference, Aarhus, Denmark.

[Gordon and Smith, 1985] Gordon, J. W. and Smith, J. O. A Sine Generation Algorithm

fo r VLSI Applications. Proceedings of the 1985 International Computer Music

Conference, Vancouver.

[Grey and Moorer, 1977] Grey, J. M. and Moorer, J. A. Perceptual Evaluations o f

Synthesized Musical Instrument Tones. Journal of the Acoustic Society of America, 63,

pp. 454-462, 1977.

[Haken, 1991] Haken, L. Computational Methods for Real-time Fourier Synthesis.

IEEE Transactions on Signal Processing, Vol. 40, No. 2,1991.

[Harris, 1978] Harris, F. J. On the Use o f Windows for Harmonic Analysis with the

Discrete Fourier Transform. Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

[Hodes and Freed, 1999] Hodes, T. and Freed, A. Second-order Recursive Oscillator for

Musical Additive Synthesis. Proceedings of the 1999 International Computer Music

Conference, Beijing, China.

Available on-line at: http://www.cnmat.berkeley.edu/~adrian/.

[Hodes et al, 1999] Hodes, T., Hauser, J., Freed, A., Wawrzynek, J. and Wessel, D. A

Fixed-Point Recursive Digital Oscillator for Additive Synthesis o f Audio. Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing,

March 15-19, 1999.

332

http://www.cnmat.berkeley.edu/~adrian/

[Homer et al, 1993] Homer, A., Beauchamp, J., Haken, L. Methods fo r Multiple

Wavetable Synthesis o f Musical Instrument Tones. Journal of the Audio Engineering

Society, 41(5), pp. 336-356,1993.

[Jaffe and Smith, 1983] Jaffe, D. and Smith, J. O. Extensions o f the Karplus-Strong

Plucked String Algorithm. Computer Music Journal, 7(2).

[Jaffe, 1995] Jaffe, D. A. Ten Criteria for Evaluating Synthesis Techniques. Computer

Music Journal, 19(1), pp. 76-87.

[Jansson & Sundberg, 1976] Jansson, E. V. and Sunberg, J. Long Time Average Spectra

Applied to Analysis o f Music - Method and Application. Acustica 34, 1976.

[Karplus and Strong, 1983] Karplus, R. and Strong, A. Digital Synthesis o f Plucked

String and Drum Timbres. Computer Music Journal, 7(2), 1983.

[Kleczowski, 1989] Kleczowski, P. Group Additive Synthesis. Computer Music Journal

13(1).

[Lane et al, 1997] Lane, J., Hoory, D., Martinez, E. and Wang, P. Modeling Analog

Synthesis with DSPs. Computer Music Journal, 21(4), 1997.

[Loy, 1981] Loy, D. G. Notes on the implementation ofMUSBOX: A compiler fo r the

Systems Concepts digital synthesizer. In The Music Machine, pp. 333-349, Cambridge

MA: MIT Press, 1981.

[Madisetti et al, 1999] Madisetti, A., Kwentus, A. Y. and Willson, A. N. A 100-MHz,

16-b, Direct Digital Frequency Synthesiser with a 100-dBc Spurious-Free Dynamic

Range. IEEE Journal of Solid-State Circuits, Vol. 34, No. 8, August, 1999.

[Marentakis and Jensen, 2002] Marentakis, G. and Jensen, K. Sinusoidal Synthesis

Optimization. Proceedings of the 2002 International Computer Music Conference,

Gsteborg, Sweden.

[Massie, 1985] Massie, D. The Emulator II Computer Music Environment. Proceedings

of the 1985 International Computer Music Conference.

[Mathews, 1963] Mathews, M. V. The Digital Computer as a Musical Instrument.

Science, Vol. 142, No. 11, pp 553-557, 1963.

[Meade, 1982] Meade, M. L. Advances in Lock-in Amplifiers. Journal of Physics,

Instrument Science and Technology, Vol. 15,1982.

[Moog, 1965] Moog, R. A. Voltage Controlled Electronic Music Modules. Journal of

the Audio Engineering Society, Vol. 13, No. 3, July 1965.

333

[Moore, 1977] Moore, F. R. Table Lookup Noise for Sinusoidal Digital Oscillators.

Computer Music Journal, 1(2), 1977.

[Moorer, 1976] Moorer, J. A. The Synthesis o f Complex Audio Spectra by Means o f

Discrete Summation Formulas. Journal of the Audio Engineering Society, Vol. 24, No.

9, November 1976.

[Moorer, 1978] Moorer, J. A. The Use o f the Phase Vocoder in Computer Music

Applications. Journal of the Audio Engineering Society, Vol. 26, Nos. 1/2,

January/February 1978.

[Nicholas and Samueli, 1987] Nicholas, H. and Samueli, H. An Analysis o f the Output

Spectrum ofDDFS in the Presence o f Phase-Accumulator Truncation. 41st Annual

Frequency Control Symposium, 1987.

[Nicholas et al, 1988] Nicholas, H., Samueli, H. and Kim, B. The Optimization ofDDFS

Performance in the Presence o f Finite Word Length Effects. 42nd Annual Frequency

Control Symposium, 1988.

[Rakowski, 1971] Rakowski, A. Pitch Discrimination at the Threshold o f Hearing.

Proceedings of the 7 International Congress on Acoustics, Vol. 3, Budapest.

[Risset and Mathews, 1969] Risset, J.-C. and Mathews, M. Analysis o f Musical

Instrument Tones. Physics Today, Vol. 22, No. 2.

[Risset, 1969] Risset, J.-C. Catalog o f Computer-synthesized Sound. Murray Hill: Bell

Telephone Laboratories.

[Risset, 1985] Risset, J.-C. Computer Music Experiments: 1964 - . Computer Music

Journal, 9(1).

[Roads, 1996] Roads, C. The Computer Music Tutorial. The MIT Press, 1996.

[Rodet and Depalle, 1992] Rodet, X. and Depalle, P. A New Additive Synthesis Method

using Inverse Fourier Transform and Spectral Envelopes. Proceedings of the 1992

International Computer Music Conference, San Francisco.

[Samson, 1980] Samson, P. A General Purpose Synthesizer. Journal of the Audio

Engineering Society, 28(3).

[Sandell and Martens, 1992] Sandell, G. and Martens, W. Prototyping and Interpolation

o f Multiple Musical Timbres using Principal Components-based Analysis. Proceedings

of the 1992 International Computer Music Conference, San Francisco.

[Sandell, 1994] Sandell, G. J. SHARC Timbre Database. Beta release 0.921, November

1994. Sussex University, U.K.

334

[Serra and Smith, 1990] Serra, X. and Smith, J. O. Spectral Modelling Synthesis: A

Sound Analysis/Synthesis System based on a Deterministic Plus Stochastic

Decomposition. Computer Music Journal, 14(4).

[Serra et al, 1990] Serra, M.-H., Rubine, D., Dannenberg, R. Analysis and Synthesis o f

Tones by Spectral Interpolation. Journal of the Audio Engineering Society, 38(3), 1990.

[Smith and Cook, 1992] Smith, J. O. and Cook, P. R. The Second-Order Digital

Waveguide Oscillator. Proceedings of the 1992 International Computer Music

Conference, San Jose. Available on-line at http://www-ccrma.stanford.edu/~ios/.

[Smith and Cook, 1992] Smith, J. O. and Cook, P. R. The Second-Order Digital

Waveguide Oscillator. Proceedings of the 1992 International Computer Music

Conference, San Jose. 1992. Available online at http://ccrma.stanford.edu/~ios/wgo/.

[Smith and Gossett, 1984] Smith, J. O. and Gossett, P. A Flexible Sampling-Rate

Conversion Method. Proceedings of the 1984 International Conference on Acoustics,

Speech and Signal Processing, San Diego, Vol. 2.

[Smith and Serra, 1987] Smith, J. O. and Serra, X. PARSHL: An Analysis/Synthesis

Program for Non-harmonic Sounds based on a Sinusoidal Representation. Proceedings

of the 1987 International Computer Music Conference, Illinois USA.

[Smith, 1987] Smith, J. O. Waveguide Filter Tutorial. Proceedings of the 1987

International Computer Music Conference, Champaign-Urbana.

[Smith, 1991] Smith, J. O. Viewpoints on the History o f Digital Synthesis. Proceedings

of the 1991 International Computer Music Conference (ICMC-91), Montreal, pp. 1-10,

October 1991. Available on-line at http://www-ccrma.stanford.edu/~ios/.

[Smith, 1992] Smith, J. O. Physical Modelling using Digital Waveguides. Computer

Music Journal, 16(4).

[Smith, 2004] Smith, J. O. Physical Audio Signal Processing: Digital Waveguide

Modeling o f Musical Instruments and Audio Effects. Center for Computer Research in

Music and Acoustics (CCRMA), Stanford University, 2004. Available on-line at

http ://ccrma. stanford.edu/~j os/pasp/.

[Snell, 1977] Snell, J. Design o f a Digital Oscillator that will Generate up to 256 Low-

distortion Sine Waves in Real-time. Computer Music Journal 1(2).

[Stapleton and Bass, 1988] Stapleton, J. C. and Bass, S. C. Synthesis o f Musical Tones

based on the Karhunen-Loeve Transform. IEEE Transactions on Acoustics, Speech and

Signal Processing. Vol. ASSP-36, pp. 305-319, March 1988.

335

http://www-ccrma.stanford.edu/~ios/
http://ccrma.stanford.edu/~ios/wgo/
http://www-ccrma.stanford.edu/~ios/

[Symons, 2002] Symons P. R. DDFSphase mapping technique. IEE Electronics Letters,

10,h October 2002, Vol. 38, No. 21.

[Symons, 2004] Symons, P. R. Phase-Continuous Frequency Change in the Direct-

Form, Second-Order Recursive Oscillator. Computer Music Journal, 28(4), 2004.

[Tierney et al, 1971] Tierney, J., Rader, C. M. and Gold, B. A Digital Frequency

Synthesizer. IEEE Transactions on Audio and Electroacoustics, Vol. AU-19, No. 1,

March 1971.

[Voider, 1959] Voider, J. The CORDIC Trigonometric Computing Technique. IRE

Transactions on Electronic Computing, Vol. EC-8, September 1959.

[Walther, 1971] Walther, J. A Unified Algorithm for Elementary Functions. Joint

Computer Conference Proceedings, Vol. 38, Spring 1971.

[Weisstein, 1999a] Weisstein, E. W. Congruence. MathWorld A Wolfram Web

Resource. Available on line at http://mathworld.wolfram.com/Congruence.html.

[Weisstein, 1999b] Weisstein, E. W. Divided Difference. MathWorld A Wolfram Web

Resource. Available on line at http://mathworld.wolfram.com/DividedDifference.html

[Wessel, 1979] Wessel, D. L. Timbre Space as a Musical Control Structure. Computer

Music Journal, 3(2), 1979.

[Winckel, 1967] Winckel, F. Music, Sound and Sensation. Dover Publications Inc., New

York.

[Zolzer, 1997] Zolzer, U. Digital Audio Signal Processing. Wiley, 1997.

[Smith, 2000] Smith, J. C. Synchronous Dual-Port Static RAMs for DSP and

Communication Application -Application Note AN-144. Integrated Device Technology,

March 2000. Available online at: http://www.idt.com/.

[Xilinx, 2004] Virtex-4 Family Overview DS112 (vl.2). December, 2004. Available

online at: http://www.xilinx.com/.

336

http://mathworld.wolfram.com/Congruence.html
http://mathworld.wolfram.com/DividedDifference.html
http://www.idt.com/
http://www.xilinx.com/

Appendix A Polynomial Interpolation

A-1 Introduction

This appendix reviews the mathematical foundations of polynomial interpolation,

considering the Lagrange interpolation polynomial and Newton’s divided difference

representation. We begin by considering an arbitrary, well-behaved function, y - / (x) ,

which is given only at (N +1) discrete ordered points (x0, y 0), (xx,) ,,

(x^_i, y N_i) , (xN, y N), or in general, the set of points (xn /(x ,)) , i = 0 , . . . ,N . The

problem is to find the unique IVth order polynomial which passes through (i.e.

interpolates) the (N + 1) points and allows a value of y to be computed to a particular

accuracy at any value of x e [x0, x ^] . (If x lies outside the interval on which the data is

given, the process of computing / (x) is known as extrapolation.)

The order interpolating polynomial which approximates / (x) on some interval may

be expressed in power series form as:

PN(x) = +axx + a2x 2 + a3x 3 +... + aNx N (A-1)

where p N(x) is a polynomial of order N and the ak terms with k e [0, vV] are the

corresponding polynomial coefficients. Eq. (A-1) and the set of known samples can be

used to establish a system of (N + 1) linear equations with (N + 1) unknowns, expressed

as:

f (x 0) = a0 + axx 0 + a2x] + a3x\ + ... + aNx

/(X j) = a0 + ape j + a2xx + a3xf +... + aNxx
(A-2)

f (xN) = a0 +axxN +a2x 2N +a3x 3N + ... + aNx%

From Eqs. (A-2) the polynomial coefficients are given by:

337

where the matrix element is known as the Vandermonde matrix. For large N the

Vandermonde matrix becomes ill-conditioned and therefore sensitive to small

computational rounding errors (e.g. quantisation errors) and can easily produce

inaccurate results. The Lagrange method provides higher computational efficiency

compared to the power series form and is generally less susceptible to small

computational errors.

A-2 The Lagrange Interpolating Polynomial

The Lagrange polynomial, PN (x) , represents the polynomial approximation to / (x) on

the interval x e [x0, xN] and can be expressed as a linear combination of Vth order basis

polynomials, p k (x) , thus [Vaseghi, 1996]:

(Pk(xk) = 1) and zero at every other given data point (p k(Xj) = 0, k & j) . Hence,

PN(xk) = p k{xk) f { x k) = f (x k) = y k and so the polynomial passes through the given

N

(A-4)

where p k (x) =

Hence, from Eq. (A-4) we obtain:

(A-5)

The kth Lagrange polynomial coefficient, p k (x) , is unity at the kth given data point

data points as required. For example, with N = 3 (as pertinent to the discussion of

section (5.2)) we have:

(* -* i) (* -* 2) (* -* 3) y , (x - x Q) (x - x 2) (x - x 3) ^
(X0- X1)(XQ- X2)(XQ- X3) 0 (x 1- x 0)(x1- x 2)(x1- x 3) 1

(A-6)
[(x -X q X x -^ X x -^) ^ | (x - x 0X x - x l) (x - x 2) y

(x2 - x 0)(x2 - x l)(x2 - x 3>) 2 f e - X o) ^ - ^) ^ - ^) 3

An important question arises at this point - f o r a given order polynomial, how does the

error vary with the independent variable, x? The error is defined by [Nakamura, 1996]:

s(x) = f (x) - P N(x) (A-1)

where f (x) represents the exact function being interpolated by the polynomial, PN(x) ,

on the interval r e [r 0,%]. A generalised analytic expression of the error is given by

[Nakamura, 1996]:

s{x) = LK{ x) f N*'\4) (A-8)

where f (N+l) (x) denotes the (TV-t-l)* derivative of f (x) , t; depends on x with

%e[x0 , x N] and:

r /..x _ (* - *b)(* - x j — j x - xN_,)(x - xN)
N } (TV+ 1)!

We define an upper bound on the magnitude of s (x) , thus: [Nakamura, 1996]

|£(x)|<|l„(V)| max \ f N* ' \ d (A-10)'x0̂ <xN I

The second term in the right hand side of Eq. (A-10) is constant on the whole domain

and so the behaviour of the upper bound on \s(x)\ is determined by LN(x) . Figures (A-

la) thru (A-le) illustrate the behaviour of the |Z^(x)| and LN(x) polynomials for

N e [1, 5] and unit-spaced tabulation points.

339

We observe that |Z^(x)| exhibits minimum oscillation amplitude on the middle sub

interval of the range [x0, x^] for odd N (i.e. X N

ii
I

<N
i

5

2
for unit x increments) and

on the two middle intervals centred about the middle sample for even N . In general,

this condition is true for all Lagrangian interpolation polynomials [Nakamura, 1996].

0.2

o.i

o

-o . i

" 0.2 0 0.5 1

0.08

0.04

“0.04

-0.08

0.06

0.03

-0.03

-0.06

0.04

0.02

" 0.02

“0.04

0.03

0.015

-0.015

"0.03

Figures (A-1 a) through (A-le): Behaviour o f the LN(x) (dashed line) and |^ (x) | (solid

line) polynomials for N e [1, 5] corresponding with Figures (a) thru (e), respectively.

340

For odd N , the fractional address should therefore be placed in the middle interval of

the interpolation data set for minimum error bound. For even N , either of the two

central sub-intervals gives minimum error magnitude bound.

Returning to our example cubic interpolation polynomial and assuming unit-spaced x

values, Eq. (A-5) places x in the first sub-interval, [x0, x j , of the data set

{/(x0), /(x ,) , / (x 2), / (x 3)}, leading to non-optimal error bound. Introducing an offset

to the x subscripts in Eq. (A-5) so that the 7th subscript becomes x, , N_x , places x in
rrrJJ

the middle sub-interval, [x0,Xj], of the data set { / (x_}), / (x0), / (Xj), / (x 2)} as

illustrated in Figure (A-2) and realises minimum interpolation error bound.

x

Figure (A-2): Optimum data set and sub-interval for the cubic interpolating polynomial

assuming unit-spaced x values.

341

A-3 The Newton Interpolating Polynomial

Lagrange interpolation polynomials can be reformulated in Newton form which have a

recursive structure allowing an order N polynomial to be constructed by extension of

an order (N - 1) polynomial, which we illustrate with the examples:

zero-order polynomial: P0(x) = a0 = f (x 0)

linear polynomial:
Pfx) = a0 + tf1(x - x 0)

= P0(x) + <2, (x -x 0)

quadratic polynomial:
P2 (x) = a0 + a fx - x0) + a2(x - x0)(x - xx)

= ij (x) + a2 (x - x0)(x - Xj)

P3(x) = a0 +tf1(x -x 0) + a2(x -x 0) (x -x 1).
cubic polynomial: +<23(x -x 0)(x - xl)(x - x2)

= P2(x) + a3(x -x 0) (x -x 1) (x -x 2)

In general, we express the Newton interpolation polynomial with the recursion

[Vaseghi, 1996]:

PN (*) = PN-\ W + a m (X - X0 X * - *1) •''' 0 - * A M)

(A-ll)
N-t

= Pn J X) + an , [\ \ X- XJ)
j =0

th j .where am represents the m divided difference of the tabulated function points given by

[Weisstein, 1999b]:

= Z
k=0 j =0

V J*k

(A-12)
m g [0,N]

342

A-4 Horner’s Algorithm

Homer’s algorithm [Orfanidis, 1996] expresses the generalised Â h order polynomial

given by:

P(x) = c0 + cxx + c2x 2 + ... + cN_ jX^"1 + c n x n (A-13)

in a reduced-multiplier form that requires only N multiplication and addition

operations, thus:

P(x) = c0 + (cj + (c2 + ... (cN_x + c^x)x)x)x (A-14)

where the c terms denote the (N + l) polynomial coefficients. Homer’s algorithm may

be generalised by an iterative program whose pseudo-code is given by:

Initialise v<^cN
For £ = (A - l) , •••,()

V ' (A-15)
v<-ck +vx

Return v

Homer’s algorithm is of interest here since the Homer-factorised Newton interpolation

polynomial imposes a reduced multiplication overhead compared to the Lagrange

polynomial. However, the (N + 1) divided difference terms require linear combination

of (N + 1) samples in the interpolation set with constant weighting terms.

343

Appendix B Performance Simulation

B-1 Introduction

This appendix presents numerical models that have been developed within this research

to simulate performance metrics specific to the WLS, TIPM, HAS and PAS processing

models. The models are written as Mathcad 11.2a function scripts1 using the Mathcad

programming syntax and use three particular sub-functions:

The rounding quantisation function QR(x, q) := q • roundV) quantises .
\<l)

variable x with quantisation interval q and simulates fixed-point arithmetic

behaviour in the otherwise full-precision floating-point Mathcad environment.

• The unit-amplitude, piecewise-linear (PWL) amplitude envelope function

(l Y1 f l f l Y2
A(h,rl9r2 ,b) := if h < b ,

\ h j
returns the amplitude of a

partial, h, assuming a two segment PWL response given by Eq. (5.4.11).

Segment slopes are controlled by parameters rx and r2, with slope given by

- 6 rx or - 6 r2 dB/octave and PWL slope breakpoint at partial b.

The function modn(x, y) := if(x < 0, ,y + x, mod(x, y)) returns the modulo y

value of a negative x argument as (y + x) , with positive arguments handled as

normal. Interpolated WLS often requires indexing a negative wavetable location

which we interpret as a modulo “wrap-around” assuming the wavetable end

points are exactly phase-continuous.

1 Mathcad program listings use non-italicised variables. However, in this appendix we denote Mathcad
variables using italicised mathematical notation to avoid confusion with general discussion text.

344

B-2 The SNR_interp_R Function

The Mathcad function SNR_interp_R listed in Figure B-1 computes SNR according

to Eq. (5.4.3) for the interpolated WLS processing model and is called with the function

expression: SNR_inteip_R(JV, PR, M , / , y/, R, bits, N s, Nh, rx, r2, b) .

Parameter denotations follow their normal definition as given in the Glossary, with the

phase rounding parameter PR selecting full phase truncation when PR = 0 and rounded

phase truncation when PR = 1. Phase increment (and hence frequency) is denoted by y/

with bits denoting the amplitude sample word size in bits. Parameters rx, r2 and b

specify the spectrum envelope response used to determine the wavetable harmonic

amplitude values. This function may be partitioned into distinct stages which are

functionally similar across all of the scripts presented in this Appendix.

We first initialise quantisation variables, qx and q2, which represent single and double

precision quantisation intervals, respectively. We also define e as the smallest number

that can be represented within the Mathcad floating-point environment,

result <- 0

1
q2 < r------------------

2(2- bits)— 1

1
s <— —

oo

Offsetting potentially zero denominator and log arguments by s prevents divide-by-

zero and log(O) errors. We next compute the harmonic amplitude vector, a , according

to a PWL spectrum response and a reference waveform vector, w a v _ re f , using N h

harmonics over N s samples.

345

for h € 1.. Nh

<- A (h ,r l,r2 ,b)

for n 6 0.. Ns - 1

Nh

'-ref „ <- zwav a, -sink

wav ref <-

k = 1

wav ref

2-k-7t
mod

max(wav_ref)

The vector w a v _ re f is computed to full floating-point precision and normalised to

unit-amplitude. We then compute the wavetable vector w a v _ lu t of length 27 samples,

normalise to unit-amplitude and quantise to qx fixed-point precision.

Afor n e 0.. 2 - 1

Nh
wav lut <— N - n Z-i a^-sin

wav lut <—

k = 1 V

wav lut

2-k-7t—
21 , , V 1 J J

max(wav_lut)

Afor n e O . , 2 - 1

wav_lut n < - QR^ wav_lut n , q 1 j

In the program kernel we compute the order N interpolated wavetable lookup vector

w a v _ in te r p of length Ns using results from Chapter 5 . If PR = 1 rounded phase

truncation is applied and the value of N ignored, otherwise full phase truncation is

applied when PR = 0.

fo r n e 0 .. N s - 1

P R = m °d round
od|~(n-v/),2MJ

,<(tn < - flooi
od[(n -v |/).2M]

P R = l , c t n < - l , a n < - •

o d [(n -v) ,2 M] - (2 M O-dtn

w av_ in te rpn <— Q R |w a v _ in te rp n , q l j

N N
/

w av_ in te rpn < - Z * . w a v ju t r / / N _ j \ \
modn f <(<n—floo ij------- J + k j . iT QR n * j = k , l f

k = 0 '] j = 0
\

a n + floo:

k-j .q2

346

Interpolation computations are performed using Eq. (5.4.5) with multiply-accumulate

operations computed to q2 fixed-point precision, quantising back to qx precision upon

completion. Finally, we normalise w a v _ in te r p and compute the error vector

i n t e r p _ e r r o r relative to the full precision vector w a v _ re f .

wavinterp
wav_mterp <----------------------------

max(wav_interp)

interp_error < - (wav interp - wav_ref)

 (stdev (wav ref) ^
SNR <- 20-log ------------- ------ =— -----

V stdev (interp_error) + s j

result < - round (SNR)

The returned SNR result is computed by taking the rounded log of the ratio between the

w a v _ re f and i n t e r p _ e r r o r RMS values. Returned SNR values are therefore

rounded to the nearest dB.

B-3 The errspec_interp_R Function

The Mathcad function e r r s p e c _ in t e r p _ R listed in Figure (B-2) computes the error

spectrum for the interpolated WLS processing model and is called with the function

expression: errspec_interp_R(vV,PR,M ,/ , yj,R,bits,Ns,N h,rx,r2 , b) . This program is

identical to the SN R _in terp_R function program, except for the variable initiation

and final spectrum computation stages. Program initiation includes computation o f a

Hamming window vector of length N, samples and definition o f the y variable which

denotes the gain of the Hamming window function and is used to normalise the output

spectrum. The program kernel is identical to that of Figure (B-1) except the final stage

now computes the error spectrum from the i n t e r p _ e r r o r variable. The error vector

is scaled with the window vector and then transformed by complex FFT yielding the

2 The Mathcad variable denoted (j)tn corresponds with (f>iri), the integer component o f the phase
accumulator output sequence.

347

e r r o r _ s p e c frequency domain vector. This vector is returned after complex to real

conversion, window scaling correction and logarithmic conversion.

B-4 The SNR_trig_R Function

The Mathcad function SNR_trig_R listed in Figure (B-3) computes SNR according to

Eq. (5.4.3) for the trigonometric identity phase mapping (TIPM) processing model

presented in section (5.3) and is called with the function expression:

SNR_trig_R(M, / , y/, bits, N s, R) which has identical argument definition to the

SNR_interp_R function discussed in section (B-2).

Following variable initialisation and computation of a full precision reference sinusoid

vector, the four lookup tables are computed using Eqs. (5.3.6) and (5.3.7). In the

program kernel, integer and fraction phase sequences are computed and used to index

the four lookup tables as illustrated in Figure (5.3.2), with the phase fraction truncated

by R bits3. Finally, SNR is computed, rounded and returned in an analogous manner to

the SNR_interp_R function.

B-5 The errspec_trig_R Function

The Mathcad function e r r s p e c _ t r i g _ R listed in Figure (B-4) computes the error

spectrum for the trigonometric identity phase mapping (TIPM) processing model and is

called with the function expression: errspec_trig_R(M, / , y/,bits, N S,R) . This program

is identical to the SN R _in terp_R function program, except for the variable initiation

and final spectrum computation stages.

3 The Mathcad variables denoted (J)̂ and <J)fn correspond with <f>̂ n) and (j)p{n), respectively.

348

B-6 The SNR_interp_HAS Function

The Mathcad function SNR_interp_HAS listed in Figure (B-5) computes SNR

according to Eq. (5.4.3) for the harmonic additive synthesis (HAS) processing model

presented in section (2.3) and is called with the function expression:

SNR_interp_HAS(A,M , / , \jj,bits, N s,N h,rx,r2 ib) . This function has identical

argument definition to the S N R _in terp _R function discussed in section (B-2) and

requires three specific support functions which compute harmonic multiples o f the

phase accumulator output value partitioning the result into integer and fraction

components:

The function: p_I(</>, M , F, k) := floor
^mo d 2 M

F
V

returns the I-bit integer
2

field of the k multiple of the phase value ^ , where F denotes the phase fraction

field width in bits.

The function: \i_F(<f>,M,F,k) :=
f
mod(& • (j), 2m) - floor

\
2F

returns the F-bit fraction field of the k multiple of the phase value, $.

The function: p_a(^, M , F, k) :=

r mod(i • t , 2“) - floorf ^ '
)

returns the normalised fraction value.

For N > 0 , this function effects an order N polynomial phase mapping interpolation

and for N < 0 this function effects TIPM. Otherwise, this function follows a similar

structure and argument interpretation to the WLS SNR_interp_R function.

349

B-7 The errspec_interp_HAS Function

The Mathcad function errspec_interp_HAS listed in Figure (B-6) computes the

error spectrum as discussed in section (5.4.3) for the HAS processing model and is

called with the expression: errspec_interp_HAS(A,M , I,y/,bits, N s,N h,rl,r2 ,b) .

The function is essentially identical to the SNR_interp_HAS function program

except for the variable initiation and error spectrum computation stages which follow

the same format as the errspec_interp_R function.

B-8 The SNR_interp_PAS Function

The Mathcad function SNR_interp_PAS listed in Figure (B-7) computes SNR

according to Eq. (5.4.3) for the PAS processing model presented in section (2.3) and is

called with the expression: SNR_interp_PA S (fs,B ,N ,M ,I ,p ,b its ,N s,N p,r},r2 ,b ,v) .

This function has five new parameters unique to the PAS model4:

• f s specifies the sample rate in Hz;

• B specifies the equally tempered tuning base frequency in Hz;

• p specifies fundamental pitch in of a semitone;

• N specifies the number of partials summated;

• v specifies the maximum pseudo-random value of J3k(ri).

The remaining function arguments are identical to the SNR_interp_R case presented

in section (B-2). The function comprises two kernel Mathcad sub-programs which

simulate the phase domain processing model of Figure (6.3.11). The first sub-program

begins by computing the pitch-to-phase increment translation table according to Eq.

(6.3.2) and the partial piecewise-linear amplitude vector, a. Tuning resolution is set at

4 In this and subsequent PAS models we use y to denote the minimum equally tempered tuning frequency
ratio as distinct from the window gain factor in earlier models.

350

of a semitone. Next, we compute two vectors, k and /?, which set the individual

partial frequencies according the processing model presented in section (6.3.6). The

program sets the kh terms as a contiguous harmonic sequence (although they may be

arbitrary integers provided kh < 27-1 to prevent aliasing) and the fih partial fractional

multiplier terms as pseudo-random values with maximum value v . The fundamental J3

term is set to zero and hence the fundamental pitch is exact. Finally, this sub-program

computes the normalised reference waveform vector, w a v _ re f .

.14
for n e 0.. 2 - 1

V . 2 MNT n <-
V fs

for h e 1.. Np

<r- A (h,rl,r2,b)

for h e 1.. Np

kh ,Hh
if(h > 2,Ph <- round(m d(v)),ph o)

for n e 0.. Ns - 1

wav

wav ref <—

Np

- r e fn ^ S

j = l
wav ref

” "" —

mod n-
a.-sin 2-n-
J

_ _

B-yP-2M (P i , ,
“ +kj _1 ,2M

ma^ wav_ref)

Since the difference between w a v _ re f and the simulated waveform sequence,

w a v _ in te rp , determines the amplitude error signal, it is critical that phase coherence

is preserved between these two vectors over the length o f the simulation. To ensure

phase coherence, we use full-precision pitch to phase increment translation table values

and do not round to the nearest integer value as given by Eq. (6.3.2). Rounding the

tabulated values causes finite frequency errors and hence a steady increase in the error

351

sequence magnitude over the simulation due to reference and simulated signals beating

in frequency. (See section (6.3.6)).

The next sub-program computes five phase sequences for each partial at each sample

point in accordance with the processing model depicted in Figure (6.3.11). The final

phase sequence is partitioned into integer and fraction fields, before phase mapping

using an order N interpolation model as before. The SNR is computed and the rounded

value returned.

for n € 0.. Ns - 1

K < - m od [(n -T p),2M]

for h e 1 . .Np

<Ph < - mod(<|2h - cj)ln ,2M)

<(4h <- mod̂ kh*<j)ln,2M̂

((Sh 4- mod^h + ())4j1,2M)
(<t>5h

1 7

cth <-

F (t i
d)5h - 2 -floor —

u .

Np N
wav_interpn ^ V I s in lu t

modnh = 1 m = 0

wav_interpn < - QR^wav_interpn’ql)

/ N - f . , , <f>th—floor! —-— |+m (,2

(a 7
“

N <xh + floo r j

•QR n " j = m , l ,
V 2)

I m - j /
,q 2

j = o -

B-9 The spec_interp_PAS_pitch Function

The Mathcad function s p e c _ in te rp _ P A S _ p i tc h listed in Figure (B-8) computes

the amplitude spectrum for the PAS processing model with partial fractional multiplier

control as described in section (6.3.6). The function is called with the expression:

spec_interp_PAS_pitch(/s, B ,N ,M , / , p ,bits,Ns,N p,rx,r2 ,b, f$) where the vector /? of

length N determines the respective partial fractional multipliers - 1).

352

B-10 The spec_interp_PAS_freq Function

The Mathcad function spec_interp_PAS_f req listed in Figure (B-9) computes the

amplitude spectrum for the PAS processing model with partial frequency offset control

as described in section (6.3.7). The function is called with the expression:

spec_interp_P AS_freq(/v, B ,N ,M , / , p,bits,NsiN p,rx,r2 ,b ,p) where the vector f of

length N P contains the respective partial frequency offsets in Hz.

353

SN R_interp_R(N, PR , M , I, V | / , R , b its, N s , N h , r l , r2, b)

result < - 0

1

q2<
(2- bits)—1

1

for h e 1.. Nh

a^ < - A (h ,r l,r 2 ,b)

for n € 0.. N s - 1

Nh
w av ref <— >

- n Z -i

wav ref •

for n 6 0.. 2 - 1

Nh

k = 1
w av_ref

ma)<wav_ref)

J

od[(n-v|/),2M]

J u t < - ^ f a. • sinf 2-k-n-—

n kr , l k I 21
ma>< wav J u t)

.1
for n e 0 .. 2 - 1

w a v j u tn <— Q R^wavJutn ,q lj

for n e 0.. N s - 1

PR = l,<(tn *— mod

PR = l , a n < - l , a n < - ■

od[(n -\)/),2Ml
,i(tn < - floor

od[(n-M /),2M]

N

T.
k = 0

PR = 1, w avjn terp n < - wav J u t ̂ wav_interpn * - ^T1

w a v jn terp n < - Q r | w avJnt erp ̂ , q 1 ̂

w av interp
wav_mterp <-----------------------------

ma>< wav_interp)

interp_error <— (wav_interp - wav_ref)

SN R 4 - 2 0 lo g f — stdev(w av_ref) \
L stdev (interp_error) + e J

result * - round (SNR)

modnj^rft n-floor^ —̂ * j + k j , 2Jj
QR r H

Li = °

j = k , l ,
k - j

• q2

Figure (B-l): The Mathcadfunction SNR_interp_R.

354

errspec_interp_R (n , P R , M , I , \ |/ , R , b its , N s , N h , r 1, r2, b)

result * - 0

win <— hamming(Ns)

y < - 0.54

1
ql

q 2-

.b its-1

1
,(2 - bits)—1

V s

1£ <-----
00

for h s 1.. Nh

< - A (h ,r l,r 2 ,b)

for n e 0.. N s - 1

Nh

w av_refn * - ^

k = 1 -

w av_ref
wav_ref <-------------------------

ma>f w av_ref)

for n e 0.. 2* - 1

Nh
wav— n

k = 1

w av lut

- utn Z (ak'Sm(2'k'7ti7

wav lut
ma)<wav_lut)

J
for n 6 0.. 2 - 1

wav_lutn <r- QR^wav_lutn>q lj

for n e 0.. N s - 1

PR = l,c(tn < - mod^round
od[(n-H>),2M]

PR = l , a n < - l , a n < - ■

2m - i

floor

1 "
,<|tn *r- floor

J .

PR = 1, wav_interpn * - w a v j u t ^ ^, wav_interp ̂ <— ^
N

y
k = 0

N f « / N ~ 0“ n + flood — — - j

wav J u t |y % -i-QR
modn f <])tn-floor(—— j+ k J , 2 | n J

j = 0

j = k , l ,
V 2 J

k - j /
,q 2

wav_interpn <— Qr | wav_interpn>q 1 j

wav_interp
wav_interp <-----------------------------

m anfw avjnterp)

interp_error < - (wav_interp - wav_ref)

error_spec <— mag(cFFT((win-interp_error)) + e)

for n € 0.. Ns - 1

error_specn * - 20-log^2 —■error_spec|

result < - error_spec

Figure (B-2): The Mathcad function e r r s p e c _ in te r p _ R .

355

SNR_trig_R.(M, I,v|/, b its, N s , r) := result 0

1
ql

q2

*bits-l

1
(2-bits)—1

1£ 4— —
00

for n e 0.. Ns - 1

sin ref < - sin— n 2*71*'
3d[(n*v|/),2M]

for n e 0 ..2 - 1

Isin_lutn < - QR| sin| 2*7t—

2*y
.qi

Icos lut < - QR cos

' " I
2*71—

. 2',
r n oM_I 1 for n e 0.. 2 - 1

F sin ju t < - QRf s in f 2*7t*—

>qi

.qi

Fcos lut < - QR cos

_ n I
for n e 0.. Ns - 1

>d[(n*y),2M]

2*71 L ql

V 2M

<jjtn <- floor
„M-I

<(fn < - mod[(n*\j/),2M] - (2M O-cjtn

.R2^* modi floor

2*1 ,
sin_trign < - [Q R j ls m J u t^ j - F c o s J u t ^ J ,q 2] + Q R p c o s J u t^ j - F s i n J u t j ^ j .q i j j

sin_trign < - QR^sin trig^ .qlj

trig_error < - (sin_trig - sin_ref)

, . stdev(sin ref)
SNR <-20* log1

stdev (trig_error) + s

result < - round (SNR)

Figure (B-3): The Mathcad function SNR_trig_R.

356

errspec _trig_R .bits, N s , r) := result <- 0

win <— hamming(Ns)

y <- 0.54

1
qi

q2 <-

, b i t s - l

1
.(2 - b it s)—1

18 <- —
oo

for n e 0.. Ns - 1

sin ref <- sin - n 2-71
mod

for n e 0 .. 2 - 1

Isin lut <- QR! sinf 2-7T-—• |,q l

' * 1 1 aF
Icos_lutn <- QR^cos[2-7T-—7 ,q l

f n oM _I ifor n e 0 .. 2 - 1

Fsin_lut n <- QR^sinf 2-7I-— ,,qi

Fcos lut <- QR cos

" n I
for n e 0„ Ns - 1

id[(n-n/),2M]

2*71 Lql2m

<(tn <- floor
-M -I

<lfn «-m od[(n-v|/),2M] - (2M

<]f n <- 2 -mod
(̂XT ^•Pn

floor
-.RV 1 2 J

sin_trign <- [Q R p s i n J u t ^ - F c o s J u t ^ ^ + Q R p c o s J u t ^ j - F s in J u t ^ .q f]]

sin_trign <— QR^sin_trign,q lj

trig_error <- (sin_trig - sin_ref)

5)+Jerror_spec <- mag(cFFl((win-trig_error)

for n e 0.. Ns - 1

error_spec <- 20-logf 2-—-error_spec n ̂ y i
result <— error_spec

Figure (B-4): The Mathcad function errspec_trig_R.

357

S N R JnterpJfA S (N , M , I , vp, bi t s , N s , N h , r 1, r2, b)

result < - 0

F < - M - 1

1
ql ■

q2 <

.b its-1

1
(2- bits)—1

for n 6 0.. 2 - 1

Isin lut < - QRJ sin 2n— ,q l

Ic o s ju t * - QR| cosf 2n—],q l

for n e O . ,2 - 1

F s in ju t * - QR| sinj 2it ,q l

2M

sfzji-rAF c o s ju t * - QRl cosl 2ti-—— |,q l

L 2M
for h s 1.. Nh

^ « - A (h ,r l,r 2 ,b)

for n 6 0.. Ns - 1

Nh

wav_refn <— ^

wav ref ■

k = 1

wav_ref

m a j wav_ref)

,1

o J (n -v |/) ,2 M]

for n e 0.. 2 - 1

sin lut <r- QRl sinf 2-ji-— L q l

“ D “ I 21
for n e 0.. Ns - 1

<!>„ < - m o d [(n -v) ,2 M]

Nh

wav_interpn < - ^

h = 1

Nh

w avjnterp n <—

k = 1

N H_a(<|)n,M,F,h) + flooij - 1 - j |
sin Jut r/ f N-l'l A "|‘Q®

modd f pj((|>n,M,F,h)-floorl —- — j+kj.211 r p
j = 0

j = k,l, \ 2)

I k -j
.q2

f Q R f Isin J u t / a -F c o sju t / F\ ,q 2 V . . '
^ mod\n_l(<t>n,M ,F ,k) ,2 J mod f̂i_F(<j>n,M ,F ,k) ,2 j J

Q R f I c o s ju t / , .vF sinJu t (p\,q 2 '\
\ modfnj(<|>n,M,F,k),2j modfn_F(<|>n,M>F,k),2‘j J)_

i f N < 0

w avjnterp n < - QR^wavJnterpn,q l^

w avjnterp
wav_interp < - -------------------------

maj< w avjnterp)

interp_error < - (w avjnterp - wav_ref)

 . . . f stdev(w av_ref)
SNR « - 20-log ----------------------------------

V, stdev(interp_error) + z

result < - round(SNR)

Figure (B-5): The Mathcad function SNR_interp_HAS.

i f N > 0

358

errspec_interp_HAS (N ,M ,!,>(/, b its , N s , N h , r l , r2, b)

result < - 0

win < - hamming(Ns)

y < - 0.54

F < - M - I

1
ql

q 2 .

„bits-l

1
, (2 - b its)-1

for n e 0.. 2* - 1

Isin lut « - QRl sinf 271-— I, q l

11 " I 2'J
J u t < - QRf cosf 2«-— | ,q l

\ \ 2
for n € 0.. 2 - 1

Fsin ju t^ < - QR| sin| 2k—— |,q l

F c o s ju t < - QRf cosf 271-——— I,
V V 2

for h e 1.. Nh

< - A (h ,r l,r 2 ,b)

for n s 0.. Ns - 1

Nh

wav_ref n <— ^ Vs

wav ref •

k = 1
wav_ref

ma>(wav_ref)

.1

oJ~(n-M/),2M]

for n e 0 . . 2 - 1

s in j u tn *- Q R ^ s in ^ -it-^ |,q l

for n s 0.. Ns - 1

« - m o d [(n -v) ,2 M]

Nh N
■

N R_cl(lKi>M,F>h) + floorf —— -'j - j

w avjnterp n <—

h = 1

w
! s in j u t r

modn pj(<t>n,M , F, h)-floor |— j+ k j , 2’j n “
j = 0

j = k , l .
V 2 J

k" J) .
.q2

w avjnterp n <— ^

k = 1

Q R / Isin J u t I ,y-F cosju t / f V ^
\ modfpj(<J>n,M ,F ,k) ,2 j mod(|x_F(<|.n,M ,F ,k) ,2 j J

Q R f I c o s ju t j / _ x _ ,yF sinJu t J ^ . . „ , \ ,F V q2^
mod(uj(<|)n,M ,F ,k) ,2) mod(p_F(i))n,M , F,k) ,2

w avjn terp n < - QRf w avjnterp n, q 1̂

w avjnterp
wav_interp

wav_interp)

interp_error <— (w avjnterp - wav_ref)

error_spec * - m ag(cFF'l((win interp_error)) + e)

for n s 0.. Ns - 1

error_specn * - 20-log^2-— error_specn^

result <— error_spec

Figure (B-6): The Mathcadfunction e r r s p e c _ in te rp _ H A S .

i f N > 0

359

SNR_interp_PAS (f s , B , N ,M , I , p , b its , N s , N p , r l , r2, b , v)

result < - 0

F < - M - 1

1

q 2 .

(12)-128

1
(2 -bits)— 1

for n e 0.. 2 - 1

fs

for h e 1.. Np

a, < - A (h ,r l,r 2 ,b)
n

for h e 1.. Np

kh<- h
if(h > 2 ,P h < - round(rnd(v)),P h * - °)

for n e 0.. Ns - 1

Np

v_ref n j)
j = l

r r r

a.-sin
J

mod n-

2- ji*

.

w av ref •
wav ref

max(mag(w av_ref))

J
for n e 0 . .2 - 1

sin lut < - QR| sinf 2-n— | ,q l

" “ " I 2*J
for n e 0.. N s - 1

ij>ln < - mod[^(n-'f'p),2M]

for h e 1.. Np

<t2h<-mod[[n.'VPh)],2M]
<Ph < - m od((|2h - 4>ln ,2 M)

<t>4h mod^kh-i}.ln ,2M ^

(jSh <- mod(<Ph +
ijt), < - floor]

(

(#h
17

<|>5h - 2 -floor

S '

Np

wav_interp n « - ^

h = 1

w avjnterp n < - Q Rf w avjnterp n . q 1)

w avjnterp
wav_mterp <-------------------------- ;--------—

max(mag(wav_m terp))

interp_error <— (w avjn terp - wav_ref)

stdev(w av_ref)

- - "
N N

v S sinjut r / / N_ , \ N ,tQR IT* j = m , 1,

m = 0
modn 1 <j«h-floorl—- — l+ m l,2 o

1 V

a h + floorm
m -j .q2

SN R < - 2 0 log1
stdev(interp_error) + £

result « - (SN R)

Figure (B-7): The Mathcad function SNR_interp_PAS.

360

spec_in terp_P A S_pitch (f s ,B , N , M , I , p ,b it s , N s ,N p ,r l , r 2 ,b ,p)

result < - 0

w in < - h am m ing(N s)

1

q 2 .

(12)-128

-bits-1

1
(2- bits)—1

,1 4
for n e 0 .. 2 - 1

r, n
B-y -2

fs

for h e 1.. N p

a^ < - A (h ,r l ,r 2 ,b)

for h e 1.. N p

kh*-h
for n e O . ,2 1 - 1

sin lut < - QRl sinf 2-tt— | , q l

■ n U i)
for n e 0 .. N s - 1

* ln < - m o d [(n - ^ p) ,2 M]

for h e 1.. N p

,)2h ^ m o d [[n . ' f ' (p + P h)] , 2 M]

43h m od(^2h - <t>ln .2 M)

(|4h <-mod̂ -itiln̂ 1̂̂
(j)5h < - mod((j)3h + <|4h,2M)

. .
<fctk <— floor] —VJ
a h ■

I „F

Np
w av_in terpn < -

h = 1
v l sin lut

- " (* f N - n
~

N a h + floor — — - jn » j = m, 1,
V 2 J

, m - j y
,q 2

oII3 -
w a v jn te r p n < - Q R ^w av_interp^, q 1 j

sp ec « - m a g (c F F l((w in -w a v jn te r p)) + t

for n e 0 .. N s - 1

s p e c n < - 2 0 log

result < - spec

result

(2-j74-sp“n)

Figure (B-8): The Mathcad function spec_interp_PAS_pitch.

361

spec_in terp_P A S_freq (f s , B , N , M , I , p , b it s , N s , N p ,r l , r 2 ,b ,p)

result * - 0

F < - M - I

w in <r- h am m ing(N s)

2M-P

1
y < - 2

q l < -

(12)-128

.b its—1

q2 ■
2(2- b its)—1

,1 4
for n e 0 .. 2 - 1

„ n B-y -2

fs

for h e 1.. N p

a^ < - A (h ,r l ,r 2 ,b)

for h e 1.. N p

* -h
for n e O . , 2 1 - !

sin J u t n < - QR| sinf 2-tt—- | , q l

for n e 0 .. N s - 1

4>ln < - mod|^(n-^, p) ,2 MJ

for h e l .. N p

<j2h <- mod[jn-(<F p + Yh)]>2M]

(j)3h < - mod(<t2h “ <t>ln.2M)

(j4h <r- m o d ^ k ^ l n ^)

(fs5h mod(((i3h + <i>4h,2M)

4th < - floor

ah «-
45h - 2 -floor

<t̂h

Np

w a v jn te r p n *— ^

h = 1
v Z sin lut

w a v jn te r p n * - Q R (w a v J n te rp n>q l)

sp ec < - m a g (c F F l((w in -w a v jn te r p)) + a)

for n e 0 .. N s - 1

[7 / n - A ,Tqr
odrJ I 4th-f lo o il —- — J + m l ,2

- - (7 n - A A '
'

N «h + flo°r — T “ ” J

r i " j = m, 1,
V 2 J

K m - J /
.q2

j = 0 -

s p e c n < - 201og|

result < - sp ec

result

(2'054'SP“ ")

Figure (B-9): The Mathcad function spec_interp_PAS_f req.

362

Appendix C The Order-3 Consecutive Access Vector Memory

This appendix considers the order-3 CAVM architecture which requires three distinct

memory blocks, B0, B, and B2, generating the data-parallel sample set

{T[^7], T[^7 +1], T[^7 + 2]} needed for a quadratic interpolation of the wavetable vector

T (i.e. N = 2 and k = 3). Samples are allocated to individual memory blocks from the

wavetable vector, T , in increments of three as illustrated in Figure (C-4) for the

example case when L = 9. We also have three sample-type indices, pQ, px and p2,

which take on values from the set {0,1, 2}.

Tfo]

L'
<— L ----- 7%

__

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

A
Y Y

y/ = 0 y/ = 1

0 3 6 0 3 6

T
 ̂

| ro

_
i

.....

1 4 7 1 4 7

2 5 8 2 5 8

if/ = 0 if/ = 1

] First sam ple in consecutive sam ple set

Figure (C-4): Memory allocation fo r the order-3 CA VM with L = 9.

B ofe>]= > 0 3 3 3 6

Po 0 2 1 0 2

B i f c] => i 1 4 4 4

P\ i 0 2 1 0

B 2f e] ^ 2 2 2 5 5

P i 2 1 0 2 1

h 0 1 2 3 4

0 1 2 0 1

Memory blocks B0, B, and B2 are therefore written with data from T according to:

363

B0[w] = T[«] for n = 3m

Bj [m] = T[«] for n = 3m + l
(C-3)

B 2 M = T[w] for n = 3m + 2

W l g [0 , —— 1], — g Z
3 3

ZThe phase index, , is partitioned into three physical block addresses, (j>i e [0, — -1],

with i e [0,2] which respectively address memory blocks B, modulo--^ and generate

the sample-set {T[^], T[^; +1], T[^; + 2]} for fa e [0 ,27 -1].

Since we have three memory blocks, there is no longer a simple allocation of samples

and corresponding definition of sample-type indices, p0, px and p 2 according to

whether (j)j is odd or even. Instead, the block addresses are obtained from fa through

modular division by 3. fa is obtained by taking the integer part of — , modulo-— (i.e.

), with $ and fa obtained by offsetting (j>j by 1 and 2, respectively, before the

modular division by 3. Hence, for the order-3 CAVM and L exactly divisible by 3,

these mappings are defined by the expressions:

Table (C-2) illustrates the block address and sample-type index sequences for an order-3

CAVM with L = 9.

3 3

(C-4)

364

fa, faa fa fa B0[f*0] Po BiW Pi ^ilfai] Pi Sample Set

0 0 0 0 T[0] 0 T[l] 1 T[2] 2 {T[0], T[l], T[2]}

1 1 0 0 T[3] 2 T[l] 0 T[2] 1 {T[1]s T[2], T[3]}

2 1 1 0 T[3] 1 T[4] 2 T[2] 0 {T[2], T[3], T[4]}

3 1 1 1 T[3] 0 T[4] 1 T[5] 2 {T[3], T[4], T[5]}

4 2 1 1 T[6] 2 T[4] 0 T[5] 1 {T[4], T[5], T[6]}

5 2 2 1 T[6] 1 T[7] 2 T[5] 0 {T[5], T[6], T[8]}

6 2 2 2 T[6] 0 T[7] 1 T[8] 2 {T[6], T[7], T[8]}

7 0 2 2 T[0] 2 T[7] 0 T[8] 1 {T[7]j T[8], T[0]}

8 0 0 2 T[0] 1 T[l] 2 T[8] 0 {T[8], T[0], T[l]}

Table (C-2): Order-3 CAVM address sequences, memory block data values and

sample-type indices for L = 9. The B0[̂ 0], Bj [$] and B2[̂ 2] columns illustrate sample

ordering permutations at the memory block outputs.

For (/)j e [0, 27 -1], the order-3 sample-type indices take values that follow a cyclic

permutation of the set {0,1,2} obtained from the modulo operation

(^/)3 -<fri 3 {0,1,2} for all fa g [0, 27 -1]. The permuted sets and hence the
3

sample-type indices are obtained by offsetting prior to the modulo-3 operation and

then subtracting the result from 2. The sample-type indices for the order-3 CAVM are

therefore given by:

p 0 = 2 - { fa + 2 \ P l= 2 -(fa ,+ l) 3 p 2 = 2-(fa1\ (C-5)

365

Figure (C-5) illustrates the arithmetic processing model for an order-3 CAVM and

linear interpolation processor assuming a fractional phase address, (<f>1 + a) and

wavetable index, y/ . This model requires three interpolation coefficients which are

dependent on the fractional address, a , and the three sample-type indices, pQ, px and

p 2, to reorder the memory outputs.

—*/ X \
3 / 1

3

Memory
Block

Bo

Po

/ X \
3 l L

3

Memory
Block

B,

/ X \
3 / L

3

Memory
Block

B2

Mux

Pi
n

Mux

Pi A
n

Sample Type
Processing

Po
Pi
Pi

Mux

> n - ^

<t>F

>y(n)

Coefficient
Processing

Figure (C-5): Order-3 CAVM and quadratic interpolation processing model.

The (/)i and p t terms with i g [0, k - 1] are dependent on a modular division-by-3

operation which is not effectible with a single shift operation. Parhami [2000] reports

that modular division by constant integer dividends can be reduced to a sequence of

shift and add operations by using the mathematical property that for every odd integer,

366

a , there exists an odd integer, b , such that ab = 2" - 1 , where n is a positive integer.

Hence, we have:

1 _ b b
a ~ 2 " -1 ~ 2”(l-2~")

= f n (i + 2 - 2'")
z ;=o

(C-6)

/e[0 , P]

where P denotes the number of product terms required to achieve a particular quotient

accuracy and is proportional to the logarithm of the dividend word width in bits

[Parhami, 2000]. Eq. (C-6) indicates that to divide x by a , we first multiply x by — ,

which is computable by a combination of left and right shift operations followed by P

factors of the form (l + 2~7), where j = n, 2n, 4n, ..., 2pn . Each of these factors is

computed by a right shift followed by an addition. Since we are concerned with division

of x by 3, we have a = 3, b - 5 and n - 4 which gives:

~ = “T (j + 2 ~4)(l + 2 ~8)(l + 2"16)... (C-7)
3 io

In general, the number of (l + 2~J) factors is bound by the number of bits required to

address a particular CAVM memory block. For a 12 bit x value (i.e. CAVM address),

Eq. (C-7) reduces to (l -t- 2-4)(l H- 2-8) since subsequent product terms do not

contribute any further precision to a 12 bit result.

Eq. (C-6) yields an approximation to the quotient which is always lower than the true

result necessitating care when truncating the fraction field to effect the correct modulo

367

4095
division. For example, ------ is precisely 1365 but applying Eq. (C-6) estimates this

quotient as «1364.979... yielding the incorrect modular division result of 1364 when

the fraction field is truncated. This error is prevented for positive dividends if we

increment the dividend by 1 prior to applying Eq. (C-6).

We now define an algorithm for modular division by 3 to 12 bit precision comprising

only shift and add operations, thus:

q <- x +1 compute x +1

q <- q + 2(q) compute 5(x + 1)

q <r- q + 4(#) compute 5(x + l)(l + 2~4)
(C-8)

q <- q + 8 (q) compute 5(x + l)(l + 2-4)(l + 2~8)

\ * 5(x + l)(l + 2-4 Yl + 2-8)q <— 4yqj compute — A A L

remove fraction field

where ^(x) denotes an S bit left shift applied to x and S(x) denotes an S bit right

shift applied to x . The algorithm defined by Eq. (C-8) requires three additions, four

shift operations and a final truncation operation to effect modular division by 3 to 12 bit

precision and may be implemented by the serial data-flow processing model illustrated

in Figure (C-6), where the carry-in to the first adder is set to 1 to effect the dividend unit

increment. Further precision is readily achieved by adding further shift and add

(l + 2 ~J) terms as required for larger address word sizes.

368

K+j)

4(*)-)
> 2

1 4(x)

* w

—*4(X) w y>i+ j)

Figure (C-6): Arithmetic processing model for modular division-by-3 to 12-bit

precision.

369

