6,781 research outputs found

    A Parametric Simplex Algorithm for Linear Vector Optimization Problems

    Get PDF
    In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (Evans-Steuer) algorithm [12]. Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Loehne [16], that is, it finds a subset of efficient solutions that allows to generate the whole frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczynski and Vanderbei [21]. The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm (Benson algorithm in [13]), that also provides a solution in the sense of [16], and with Evans-Steuer algorithm [12]. The results show that for non-degenerate problems the proposed algorithm outperforms Benson algorithm and is on par with Evan-Steuer algorithm. For highly degenerate problems Benson's algorithm [13] excels the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than Evans-Steuer algorithm.Comment: 27 pages, 4 figures, 5 table

    Testing for Stochastic Dominance with Diversification Possibilities

    Get PDF
    We derive empirical tests for stochastic dominance that allow for diversification betweenchoice alternatives. The tests can be computed using straightforward linearprogramming. Bootstrapping techniques and asymptotic distribution theory canapproximate the sampling properties of the test results and allow for statistical inference.Our results could provide a stimulus to the further proliferation of stochastic dominancefor the problem of portfolio selection and evaluation (as well as other choice problemsunder uncertainty that involve diversification possibilities). An empirical application forUS stock market data illustrates our approach.stochastic dominance;portfolio selection;linear programming;portfolio diversification;portfolio evaluation

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201

    Combinatorial auctions for electronic business

    Get PDF
    Combinatorial auctions (CAs) have recently generated significant interest as an automated mechanism for buying and selling bundles of goods. They are proving to be extremely useful in numerous e-business applications such as e-selling, e-procurement, e-logistics, and B2B exchanges. In this article, we introduce combinatorial auctions and bring out important issues in the design of combinatorial auctions. We also highlight important contributions in current research in this area. This survey emphasizes combinatorial auctions as applied to electronic business situations

    Scheduling for a Processor Sharing System with Linear Slowdown

    Get PDF
    We consider the problem of scheduling arrivals to a congestion system with a finite number of users having identical deterministic demand sizes. The congestion is of the processor sharing type in the sense that all users in the system at any given time are served simultaneously. However, in contrast to classical processor sharing congestion models, the processing slowdown is proportional to the number of users in the system at any time. That is, the rate of service experienced by all users is linearly decreasing with the number of users. For each user there is an ideal departure time (due date). A centralized scheduling goal is then to select arrival times so as to minimize the total penalty due to deviations from ideal times weighted with sojourn times. Each deviation is assumed quadratic, or more generally convex. But due to the dynamics of the system, the scheduling objective function is non-convex. Specifically, the system objective function is a non-smooth piecewise convex function. Nevertheless, we are able to leverage the structure of the problem to derive an algorithm that finds the global optimum in a (large but) finite number of steps, each involving the solution of a constrained convex program. Further, we put forward several heuristics. The first is the traversal of neighbouring constrained convex programming problems, that is guaranteed to reach a local minimum of the centralized problem. This is a form of a "local search", where we use the problem structure in a novel manner. The second is a one-coordinate "global search", used in coordinate pivot iteration. We then merge these two heuristics into a unified "local-global" heuristic, and numerically illustrate the effectiveness of this heuristic
    corecore