3,182 research outputs found

    The Meaning of Action:a review on action recognition and mapping

    Get PDF
    In this paper, we analyze the different approaches taken to date within the computer vision, robotics and artificial intelligence communities for the representation, recognition, synthesis and understanding of action. We deal with action at different levels of complexity and provide the reader with the necessary related literature references. We put the literature references further into context and outline a possible interpretation of action by taking into account the different aspects of action recognition, action synthesis and task-level planning

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    Action in Mind: Neural Models for Action and Intention Perception

    Get PDF
    To notice, recognize, and ultimately perceive the others’ actions and to discern the intention behind those observed actions is an essential skill for social communications and improves markedly the chances of survival. Encountering dangerous behavior, for instance, from a person or an animal requires an immediate and suitable reaction. In addition, as social creatures, we need to perceive, interpret, and judge correctly the other individual’s actions as a fundamental skill for our social life. In other words, our survival and success in adaptive social behavior and nonverbal communication depends heavily on our ability to thrive in complex social situations. However, it has been shown that humans spontaneously can decode animacy and social interactions even from strongly impoverished stimuli and this is a fundamental part of human experience that develops early in infancy and is shared with other primates. In addition, it is well established that perceptual and motor representations of actions are tightly coupled and both share common mechanisms. This coupling between action perception and action execution plays a critical role in action understanding as postulated in various studies and they are potentially important for our social cognition. This interaction likely is mediated by action-selective neurons in the superior temporal sulcus (STS), premotor and parietal cortex. STS and TPJ have been identified also as coarse neural substrate for the processing of social interactions stimuli. Despite this localization, the underlying exact neural circuits of this processing remain unclear. The aim of this thesis is to understand the neural mechanisms behind the action perception coupling and to investigate further how human brain perceive different classes of social interactions. To achieve this goal, first we introduce a neural model that provides a unifying account for multiple experiments on the interaction between action execution and action perception. The model reproduces correctly the interactions between action observation and execution in several experiments and provides a link towards electrophysiological detailed models of relevant circuits. This model might thus provide a starting point for the detailed quantitative investigation how motor plans interact with perceptual action representations at the level of single-cell mechanisms. Second we present a simple neural model that reproduces some of the key observations in psychophysical experiments about the perception of animacy and social interactions from stimuli. Even in its simple form the model proves that animacy and social interaction judgments partly might be derived by very elementary operations in hierarchical neural vision systems, without a need of sophisticated or accurate probabilistic inference

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102
    corecore