7,136 research outputs found

    A computational memory and processing model for prosody

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts & Sciences, 1999.Includes bibliographical references (p. 209-226).This thesis links processing in working memory to prosody in speech, and links different working memory capacities to different prosodic styles. It provides a causal account of prosodic differences and an architecture for reproducing them in synthesized speech. The implemented system mediates text-based information through a model of attention and working memory. The main simulation parameter of the memory model quantifies recall. Changing its value changes what counts as given and new information in a text, and therefore determines the intonation with which the text is uttered. Other aspects of search and storage in the memory model are mapped to the remainder of the continuous and categorical features of pitch and timing, producing prosody in three different styles: for small recall values, the exaggerated and sing-song melodies of children's speech; for mid-range values, an adult expressive style; for the largest values, the prosody of a speaker who is familiar with the text, and at times sounds bored or irritated. In addition, because the storage procedure is stochastic, the prosody from simulation to simulation varies, even for identical control parameters. As with with human speech, no two renditions are alike. Informal feedback indicates that the stylistic differences are recognizable and that the prosody is improved over current offerings. A comparison with natural data shows clear and predictable trends although not at significance. However, a comparison within the natural data also did not produce results at significance. One practical contribution of this work is a text mark-up schema consisting of relational annotations to grammatical structures. Another is the product - varied and plausible prosody in synthesized speech. The main theoretical contribution is to show that resource-bound cognitive activity has prosodic correlates, thus providing a rationale for the individual and stylistic differences in melody and rhythm that are ubiquitous in human speech.by Janet Elizabeth Cahn.Ph.D

    Research on Architectures for Integrated Speech/Language Systems in Verbmobil

    Get PDF
    The German joint research project Verbmobil (VM) aims at the development of a speech to speech translation system. This paper reports on research done in our group which belongs to Verbmobil's subproject on system architectures (TP15). Our specific research areas are the construction of parsers for spontaneous speech, investigations in the parallelization of parsing and to contribute to the development of a flexible communication architecture with distributed control.Comment: 6 pages, 2 Postscript figure

    Recognizing Uncertainty in Speech

    Get PDF
    We address the problem of inferring a speaker's level of certainty based on prosodic information in the speech signal, which has application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases causing uncertainty, in addition to utterance-level prosodic features, improves our model's level of certainty classification. In addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between speakers' internal states and their perceived states, and highlighting the importance of this distinction.Comment: 11 page

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Exploiting Contextual Information for Prosodic Event Detection Using Auto-Context

    Get PDF
    Prosody and prosodic boundaries carry significant information regarding linguistics and paralinguistics and are important aspects of speech. In the field of prosodic event detection, many local acoustic features have been investigated; however, contextual information has not yet been thoroughly exploited. The most difficult aspect of this lies in learning the long-distance contextual dependencies effectively and efficiently. To address this problem, we introduce the use of an algorithm called auto-context. In this algorithm, a classifier is first trained based on a set of local acoustic features, after which the generated probabilities are used along with the local features as contextual information to train new classifiers. By iteratively using updated probabilities as the contextual information, the algorithm can accurately model contextual dependencies and improve classification ability. The advantages of this method include its flexible structure and the ability of capturing contextual relationships. When using the auto-context algorithm based on support vector machine, we can improve the detection accuracy by about 3% and F-score by more than 7% on both two-way and four-way pitch accent detections in combination with the acoustic context. For boundary detection, the accuracy improvement is about 1% and the F-score improvement reaches 12%. The new algorithm outperforms conditional random fields, especially on boundary detection in terms of F-score. It also outperforms an n-gram language model on the task of pitch accent detection
    • …
    corecore