1,870 research outputs found

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    High-performance computing for vision

    Get PDF
    Vision is a challenging application for high-performance computing (HPC). Many vision tasks have stringent latency and throughput requirements. Further, the vision process has a heterogeneous computational profile. Low-level vision consists of structured computations, with regular data dependencies. The subsequent, higher level operations consist of symbolic computations with irregular data dependencies. Over the years, many approaches to high-speed vision have been pursued. VLSI hardware solutions such as ASIC's and digital signal processors (DSP's) have provided good processing speeds on structured low-level vision tasks. Special purpose systems for vision have also been designed. Currently, there is growing interest in using general purpose parallel systems for vision problems. These systems offer advantages of higher performance, sofavare programmability, generality, and architectural flexibility over the earlier approaches. The choice of low-cost commercial-off-theshelf (COTS) components as building blocks for these systems leads to easy upgradability and increased system life. The main focus of the paper is on effectively using the COTSbased general purpose parallel computing platforms to realize high-speed implementations of vision tasks. Due to the successful use of the COTS-based systems in a variety of high performance applications, it is attractive to consider their use for vision applications as well. However, the irregular data dependencies in vision tasks lead to large communication overheads in the HPC systems. At the University of Southern California, our research efforts have been directed toward designing scalable parallel algorithms for vision tasks on the HPC systems. In our approach, we use the message passing programming model to develop portable code. Our algorithms are specified using C and MPI. In this paper, we summarize our efforts, and illustrate our approach using several example vision tasks. To facilitate the analysis and development of scalable algorithms, a realistic computational model of the parallel system must be used. Several such models have been proposed in the literature. We use the General-purpose Distributed Memory (GDM) model which is a simple but realistic model of state-of-theart parallel machines. Using the GDM model, generic algorithmic techniques such as data remapping, overlapping of communication with computation, message packing, asynchronous execution, and communication scheduling are developed. Using these techniques, we have developed scalable algorithms for many vision tasks. For instance, a scalable algorithm for linear approximation has been developed using the asynchronous execution technique. Using this algorithm, linear feature extraction can be performed in 0.065 s on a 64 node SP-2 for a 512 × 512 image. A serial implementation takes 3.45 s for the same task. Similarly, the communication scheduling and decomposition techniques lead to a scalable algorithm for the line grouping task. We believe that such an algorithmic approach can result in the development of scalable and portable solutions for vision tasks. © 1996 IEEE Publisher Item Identifier S 0018-9219(96)04992-4.published_or_final_versio

    Array languages and the N-body problem

    Get PDF
    This paper is a description of the contributions to the SICSA multicore challenge on many body planetary simulation made by a compiler group at the University of Glasgow. Our group is part of the Computer Vision and Graphics research group and we have for some years been developing array compilers because we think these are a good tool both for expressing graphics algorithms and for exploiting the parallelism that computer vision applications require. We shall describe experiments using two languages on two different platforms and we shall compare the performance of these with reference C implementations running on the same platforms. Finally we shall draw conclusions both about the viability of the array language approach as compared to other approaches used in the challenge and also about the strengths and weaknesses of the two, very different, processor architectures we used

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)
    • …
    corecore