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Abstract—This paper presents an accelerated version of a
dense stereo-correspondence algorithm for two different par-
allelism enabled architectures, multi-core CPU and GPU. The
algorithm is part of the vision system developed for a binocular
robot-head in the context of the CloPeMa 1 research project.
This research project focuses on the conception of a new clothes
folding robot with real-time and high resolution requirements
for the vision system. The performance analysis shows that
the parallelised stereo-matching algorithm has been significantly
accelerated, maintaining 12× and 176× speed-up respectively
for multi-core CPU and GPU, compared with non-SIMD single-
thread CPU. To analyse the origin of the speed-up and gain
deeper understanding about the choice of the optimal hardware,
the algorithm was broken into key sub-tasks and the performance
was tested for four different hardware architectures.

Keywords—GPU; Multi-core CPU; Acceleration; Stereo match-
ing; Robotic vision; Dense-correspondences;

I. INTRODUCTION

Dense-correspondence stereo-matching algorithms are an
essential element in computer vision, widely used in image
and video processing, as well as for robotic vision. Stereo
matching uses two images from two slightly different view-
points of a scene, here referred to as left and right images.
The stereo-matching algorithm then maps each pixel in the
left image to the corresponding pixel in the right image, using
correlation or sum of squared differences to determine the
optimal match. The disparity for each pixel in the left image
to its corresponding pixel in the right image are recorded
in form of a dense-correspondence map. When the intrinsic
and extrinsic camera parameters are known, a depth map or
3D reconstruction of the scene can be computed. Depth data
derived from stereo-systems have been used previously for
applications in a variety of domain, such as passive navigation,
cartography, surveillance. More specifically, with respect to the
scenario of robotic cloth manipulation, image stereo matching
has been proven to be effective for cloth classification [21] and
cloth grasp point detection [11].

When evaluating stereo-matching algorithm for high-
resolution images, two aspects are often of interest, accuracy
and computational costs. In the literature, improvement of
image matching algorithms accuracy is a common subject,
for instance, reducing match failures in real-world data with
image noise reduction and detection of false minima are widely
discussed [14]. Different approaches are in use as how to

1Clothes Perception and Manipulation project: www.clopema.eu

accurately locate the best corresponding pixel in the right
image [16][23], however stereo-matching algorithms remain
inherently computationally expensive. With large high resolu-
tion images, this becomes an increasing problem, especially in
systems with real-time requirements. In the robotics CloPeMa
project, an image size of 4928 × 3264 pixels is used. This
means that the matching algorithm needs to cope with millions
of pixels in a very short amount of time, in order to ensure
adequate response time of the robotic system. This paper is
therefore focused only on the improvement of the execution
time using parallel programming versus trying to reduce the
computational costs. Also the accuracy to which the dense-
correspondence algorithm performs is considered as sufficient
for the tasks of the binocular robot head used in the project.

With recent advances in parallelism, the performance of
CPUs and GPUs has rapidly increased. As a step towards
a real-time vision system, we decided to implement a paral-
lel dense stereo-correspondence algorithm. However, different
hardware architectures have different performance character-
istics and can require different code optimisation to take full
advantage of them. Hence, in this paper, two different imple-
mentations of the same dense stereo-correspondence algorithm
are presented, one implemented in Vector Pascal using a SIMD
computation model for multi-core CPU architectures and one
in CUDA for Nvidia GPUs.

The aim is to significantly improve the execution time using
parallel programming, to bring the response time of robot-
vision system closer to real-time. Assessing the performance of
the algorithm for two specific parallel environments (i.e. multi-
core CPU and GPU), the contributions of the paper are two-
fold:

• The demonstration of a successful parallelisation of
the dense-correspondence algorithm, achieving ac-
ceptable execution times over high resolution images
on both CPU and GPU for the binocular robot-head.

• An in-depth analysis of the acceleration impact of the
individual key sub-parts of the algorithm in relation
to the type of hardware used. This permitted us to
highlight the parts with the greatest impact on the
overall performance of the algorithm as well as to
demonstrate their potential speed-up limits.

In an industrial context, a faster vision system would make
clothes manipulation robots more viable.

The paper is organized as follows: We first review various



existing related work, i.e. image matching algorithms, as well
as existing attempts to parallelize image matching in different
system architectures in Section II. Section III reviews our
stereo matching algorithm, applied to CPU and GPU parallel
architectures. In Section IV, we report preliminary findings for
the accelerating image matching algorithms under two parallel
system architectures (multi-core CPU and GPU) and discuss
the implications of our findings. Finally, we conclude the paper
in Section V.

II. RELATED WORK

We start by introducing various matching algorithms in
prior art (Sec. II.A). Next, we review various approaches using
multi-core CPUs and GPUs to accelerate matching algorithms
(Sec. II.B).

A. Image Matching Algorithms

Stereo image matching entails discovering the most likely
matches between pixels in two images. Typically these are
captured simultaneously from cameras in different spatial loca-
tions, but a similar algorithmic problem exists with sequential
image capture from aircraft or from orbiting cameras. The
technique is widely used in computer vision and robotics,
including: data visualization, three dimensional map building
and robot pick and place. It has been studied over several
decades in computer vision and many researchers have worked
at solving it [14].

There are two main classes of stereo matching algorithms:
local methods and global methods. Local algorithms are statis-
tical methods and are usually based on correlation. For global
algorithms, the task of computing disparities is cast in terms
of energy minimization, and is solved by various optimization
techniques [9][10]. Compared with local algorithms, global al-
gorithms are normally computationally much more expensive.

Local algorithms can be subdivided into two categories:
feature-based algorithms and area-based algorithms. Feature-
based matching algorithms [1][19] attempt to establish a
correspondence by matching a sparse sets of image features
(usually edges). The number of points used is related to
the number of image features identified. Although, feature-
based algorithms work very fast, they can only generate sparse
disparity maps. So they are not suitable for many applications
(e.g. reconstructing surfaces) that require dense disparity maps.

Area-based algorithms [5][24] are also called correlation-
based algorithms. These methods merge the feature detection
step with the matching part, which means it deal with the
images without attempting to detect salient objects in the
images. Correlation-based stereo methods match neighbouring
pixel values, within a window, between images.

The Multiple Scale Signal Matching (MSSM) [18] algo-
rithm, which is a local correlation-based algorithm, is extended
in our paper. Most of previous matching algorithms are applied
on rectified stereo images with small image sizes (e.g. 640 ×
480, 320 × 240), but our parallel algorithm can be applied
to large un-rectified images (e.g. 4928 × 3264). The serial
MSSM algorithm provided accurate disparity maps [15], but
for the current application, it was no longer adequate due to its
slow processing time. For the original Java version on a single

core CPU, it takes around 20 minutes to process a single pair
of 16MegaPixel images [2].

B. Multi-core CPU and GPU acceleration

Recent applications (e.g. mobile robots and autonomous
vehicles) require fast stereo capture. A single core scalar CPU
is too slow to give high resolution stereo with modern cameras.
This has motivated research into parallelising the problem.
Zhang et. al [26] proposed two parallel SIFT (Scale Invariant
Feature Transform) algorithms with optimization techniques to
improve the application’s performance on multi-core systems.
Jang et. al [8] implemented neural networks-based text de-
tection system on both GPU and multi-core CPU processors.
The paper of Yang et al. [22] was the first one to explore
the potential of GPUs to accelerate depth estimation. They
effectively used the capability of graphics hardware to warp
and process images. Zhang et. al [25] applied a parallel Motion
Estimation algorithm on a heterogeneous computing system,
and compared its performance on a CPU and a GPU.

Researchers in stereo matching area also improved the
algorithm’s efficiency in recent years. Wang [20] achieved high
quality results while maintaining real-time performance, using
an adaptive aggregation step in a dynamic-programming stereo
framework on GPU. Mei [13] also presented a GPU-based
matching system that could effectively handle various errors in
a multi-step refinement process, which gave good performance
in both accuracy and speed. Mattoccia [12] took advantage
of coarse-grained thread-level parallelism on multi-core CPU,
which dramatically reduced the execution time.

In this paper, we discuss the Parallel Pyramid Matcher
(PPM) [2] with various optimizations for multi-core CPU
and GPU architectures, which improve the speed of MSSM
algorithm dramatically. To the best of our knowledge, no one
has shown how matching algorithm performances scale with
different number of CPU cores, so we analyse the performance
trend on several multi-core CPUs and then compare it with
GPU performance. We also break down the stereo matching
algorithm into several atomic sub-algorithms to further under-
stand its performance acceleration.

III. PARALLEL PYRAMID MATCHER

In this section, we first introduce the stereo matching
algorithm which we implemented (Sec. III.A), followed by
brief explanations of fundamentals behind our method of
acceleration of the algorithm on both CPUs (Sec. III.B) and
GPUs (Sec. III.C).

A. Pyramidal Stereo Matching Algorithm

The initial idea of this matcher comes from the Multiple
Scale Signal Matching (MSSM) algorithm [18], a correlation-
based matching algorithm.

The aim of the Stereo Matching algorithm is to compute a
disparity map for a stereo-pair of images. The disparity map
refers a two dimensional array of displacement vectors which
map the pixels in one image onto their corresponding pixel
in the other. In the case of un-rectified images, i.e. images
without lens distortion correction, there are two disparity maps,



one for horizontal displacements and one for vertical displace-
ments, specifying orthogonal components of the disparities.
The algorithm also produces a confidence map, which assigns
a confidence to each disparity vector. The confidence map is
a measure of the likelihood that the found correspondence is
the best match for the pixel. In general, only pixels with high
confidences lead to reliable results.

1) Pyramid Creation: The matching algorithm employs a
pyramid representation (Figure 1), which is applied to the
input images and then serves to facilitate signal matching
at multiple scales [17]. In this scheme, an initial estimate
for the disparity is computed at a low resolution and the
initial disparity estimate from this scale is refined at higher
resolutions until the target resolution is achieved.

Fig. 1: Pyramid representation of stereo input image to perform
matching at multiple scales

2) Pixel Correlation: In order to refine the disparities at
each level of the input pyramids, the algorithm attempts to
maximize the correlation between pixels in windowed regions
of the left and right images. The windowed correlation is
weighted by doing a convolution with a Gaussian kernel, which
is computed as follows

corl,r =
covl,r(x, y)√

varl(x, y)
√

varr(x, y)
(1)

where the covariance is computed as

covl,r(x, y) =
∑
u

∑
v

fl(x+u, y + v)fr(x+u, y + v)w(u, v)

(2)
and the variance is computed as

vari(x, y) =
∑
u

∑
v

fi(x + u, y + v)fi(x + u, y + v)w(u, v)

(3)
In the above equations, u and v define the size of the window
and w(u, v) define the Gaussian weight. The window in the
left image is named as reference window and the window
in the right image is called search window. By moving the
search window, a local correlation surface is created for each
pixel position. The search window is moved in four directions
(up, down, left and right) using a one pixel search step. If we
include the null move, there are in total five local correlation
maps.

3) Polynomial Maximization: Having obtained five correla-
tion coefficient matrices, 2nd order polynomial maximization
is applied to the corresponding elements of the matrices. The
task is to find, for each pixel, the local maximum of the curve.
If the local maximum is found to be more than one pixel
away from the current position the relative displacement is
clipped to ±1. The confidence map, is computed from the
local correlations after the move has been done.

4) Inter-Scale Disparity Refinement: At each scale-level,
the disparities are anisotropically diffused using the confidence
map. The effect is that disparities found in areas of high
confidence tend to diffuse into adjacent areas of low confi-
dence. Suppose InitConf is the confidence before search.
InitDispxy is the disparity and ConfHV is the confidence
after search. Then

InitConf = ConfHV +0.75∗(InitConf−ConfHV ) (4)

The disparity matrices are then weighted by the confidence
matrix as the equation below.

Dispxy =
∑
I∈∆

InitDisp(xy+I) × InitConf(xy+I)

∆ = {[0, 0], [0, 1], [0,−1], [1, 0], [−1, 0]}
(5)

In the above equation, Dispxy is the output disparity. This
smoothing process is iterated for a certain number of times to
refine disparity map.

5) Rescale: From current scale to higher resolution scale,
interpolation is necessary for each pixel in the disparity map.
An interpolated pixel is derived from its four neighbours. If

x0 = floor(x) y0 = floor(y) (6)

a = x− x0 b = y − y0 (7)

then
finterpo(x, y) = (1− a)(1− b)f(x0, y0) + (1− a)bf(x0, y0 + 1)

+ a(1− b)f(x0 + 1, y0) + a · b · f(x0 + 1, y0 + 1)
(8)

The interpolated result is the initial disparity map for the next
higher scale resolution.

Iteratively implementing the same matching algorithm
on each scale until the highest resolution scale, the final and
more accurate disparity map is produced.

Although the algorithm is O(n log n) of the number of
pixels in the image, the constant of proportionality is relatively
large. For a pair of very high resolution color images (e.g.
4928 × 3264), we find that it takes of the order of 20 minutes
when implemented in sequential Java. In order to accelerate
the processing time of the algorithm, parallel programming
(Multi-core CPU and GPU programming) was tried.

B. Vector Pascal Multi-core CPU Parallel Theory

The matching algorithm is first implemented on multi-
core CPU by Vector Pascal. Vector Pascal [3][4], an open
source compiler for Pascal, is designed to support efficient
expression of algorithms using the SIMD (Single Instruction,
Multiple Data) model of computation. It is a dialect of Pascal
designed to make efficient use of the multi-media instruction



sets of recent processors. It supports data parallel operations
and saturated arithmetic.

In Vector Pascal, all operators are overloaded, so that they
can operate on arrays and vectors as well as scalars. Using
compiler flags, a single program can be compiled, with differ-
ing levels of parallelism, to target a range of microprocessors.
The Vector Pascal compiler uses pthreads to support multi-
core parallelism over matrices. The default setting of task
scheduling is using pthread semaphores, but another option,
spin-locks (busy waiting), can be used to for machines with
very large numbers of cores. In our experiments, all runs were
done using spin-locks.

A semaphore is a variable or abstract data type that is used
for controlling access, by multiple processes, to a common re-
source in a parallel programming or a multi user environment.
It has a counter and will allow itself being acquired by one
or several threads, depending on what value being posted and
what its maximum allowable value is. If a semaphore cannot
be acquired, it blocks, giving up CPU time to a different thread
that is ready to run. This means that a few milliseconds pass
before the thread is scheduled again.

Unlike semaphores, a spin-lock is a lock which causes a
thread trying to acquire it to simply wait in a loop while re-
peatedly checking if the lock is available. Once acquired, spin-
locks will usually be held until they are explicitly released.
Although they avoid overhead from operating system process
re-scheduling or context switching, spin-locks are efficient if
threads are only likely to be blocked for a short period, since
they prevent the core in question from being used by any other
process.

C. GPU Parallel Strategies

Besides the implementation of the matching algorithm on
multi-core CPUs, the algorithm was also implemented on a
GPU to exploit its facilities for parallel computation. One of
the most popular GPU Architectures is CUDA (Compute Uni-
fied Device Architecture), which is the software architecture of
NVIDIA GPGPUs (General-Purpose Computing on Graphics
Processing Units).

As can be seen in Figure 2, a thread is the fundamental unit
of parallel programming. A thread block is a batch of threads
that can cooperate with each other by synchronizing their
execution, efficiently sharing data through shared memory,
with the restriction that two threads from different blocks
cannot cooperate. Each Grid contains several thread blocks
and a kernel is executed as a grid of thread blocks. All threads
in a block execute the same thread program. They have thread
ID numbers within their block and the thread program uses its
thread ID to select work and address shared data.

In this work, parallelisation consists of distributing the
above-described stereo matching algorithm over three types
of memories on a GPU (shared memory, global memory and
texture memory) and pinned memory on CPU. Each type of
memory and its subsequent parallelisation is discussed in the
following sections.

1) Shared Memory: GPU Shared memory is fast and is
shared between all streaming processors in a multiprocessor. A
streaming processor is a fully pipelined, single-issue, in-order

Fig. 2: CUDA Structure

microprocessor, and several streaming processors make up a
streaming multiprocessor. To use shared memory, the data is
first copied from host memory to global memory on the GPU
device, and then indexed by block and thread ID. Threads can
access data in shared memory loaded from global memory by
other threads within the same thread block. A single streaming
processor only executes one thread program at a time, but all
streaming processors in all multiprocessor work simultaneous,
which results in a time effective execution. Finally, the data
will be copied back to the host after execution on the GPU.

To accelerate our matching algorithm, for example, con-
volution procedures are implemented using shared memory.
Convolution is used several times in the algorithm. It is used
in step pyramid creation, pixel correlation and inter-scale
disparity refinement. It is an important part for parallelisation
optimisation and it demonstrates significant performance im-
provement.

2) Texture Memory: GPU Texture memory is available for
reading by all multiprocessors. Data is fetched by texture units
in a GPU. Textures are accessed through a dedicated read-only
cache which is optimized for spatial locality, so the data can
be interpolated linearly without extra overheads (see figure 3).

Fig. 3: Floating Point Interpolation

Suppose the four points N1, N2, N3 and N4 are known. In
order to determine U, normally the equation below is needed,



which is a cost expensive calculation.

F (x, y) = (1− u)(1− v)F (i, j) + u(1− v)F (i + 1, j)

+ (1− u)vF (i, j + 1) + uvF (i + 1, j + 1)
(9)

On a GPU, this is implemented in hardware. The execution
time cost for texture memory to perform linear floating point
interpolation is negligible. Floating point interpolation is an
important element in the matching algorithm. Polynomial
maximization and rescaling image size both benefit from the
fast access provided by the texture memory.

3) Global Memory: GPU Global memory is the largest
volume of memory available to all multiprocessors in a GPU,
but the latency is higher than shared memory. Global memory
is mainly used to keep intermediate results for later use either
by shared memory or by texture memory, so that reduces time
spent on data exchange between CPU and GPU. Every step of
our matching algorithm requires support from global memory.

4) Pinned Memory: CPU data is allocated on pageable host
memory by default, where GPU cannot access data directly.
When the data transfer from pageable host memory to device
memory, the CUDA driver must first allocate a temporary
pinned buffer, copy the host data to the pinned buffer, and then
transfer the data from the pinned buffer to device memory [7].
This consumes precious host time, but the cost of the transfer
between pageable and pinned host arrays can be avoided by
directly allocating host arrays in pinned memory in CUDA
C/C++.

IV. EXPERIMENTS

In this section, we first describe the experimental setups
(Sec. IV.A), i.e. the systems and data used in our experiments.
Then we discuss our findings on accelerating the matching
algorithm on CPUs and on the GPU (Sec. IV.B). We finally
analyze the acceleration impact on CPU and GPU (Sec. IV.C).

A. Experimental Setup

The experiments have been conducted on three different
multi-core CPU systems and one GPU. The CPU systems
are: a four chip AMD Opteron processor 6366HE system, a
two chip Intel Xeon processor E5-2440 system and a single
chip system using an Intel Xeon processor E5-2620. The GPU
model was a Nvidia GeForce GTX 770 (See Table I for
details).

The test data for the matching algorithm originates from
a stereo-pair of cameras of the binocular robot-head used for
CloPeMa. The head is fitted with Nikon DSLR D5100 cameras
that are capable of capturing images at 16 mega pixels [2]. The
dataset consists of a set of stereo-pairs of images, covering a
range of different cloth textures. These images were taken as
full high resolution colour images with 4928 by 3264 pixels.
In the system, the images are represented as arrays of 32 bit
floating point numbers to maintain accuracy.

B. Parallel Stereo Matching Performance

Figure 4 shows the overall performance of the parallelised
pyramid matching algorithm on three multi-core CPUs speci-
fied in Table I, with the number of threads varied from the
minimum to the maximum of a given system. The x-axis

TABLE I: Specification of different processors (S for per
socket, C for per core) used in this work

Parameter AMD
Opteron
6366HE

Intel Xeon
E5-2440

Intel Xeon
E5-2620

Nvidia
GeForce
GTX 770

Chips 4 2 1 1
Cores and Threads 16 and 16 (S) 6 and 12 (S) 6 and 12 1536
Clock Speed 1.8GHz 2.4 GHz 2 GHz 1046 MHz
Memory Capacity 504GB 24GB 16 GB 4 GB
Memory Technology DDR3 DDR3 DDR3 GDDR5
Memory Speed 1333 MHz 1333 MHz 1333 MHz 1753 MHz
Memory Data Width 4 × 64 bits

(S)
2 × 64 bits
(S)

64 bits 256 bits

Peak Memory Band-
width

51.2GB/s (S) 32 GB/s (S) 42.6 GB/s 224.3 GB/s

Data Caches 16 x 16 KB
L1 (S)

384 KB L1
(C)

32 KB L1
(C)

64 KB L1
per SMX

8 x 2 MB L2
(S)

1.50 MB L2
(C)

256 KB L2
(C)

512 KB L2

2 x 8 MB L3
(S)

15 MB L3
(S)

15 MB L3

corresponds to the number of threads, while the y-axis is
the execution time in seconds. The axes are shown in log
scale in order to present the figure more concisely. Note that
all the CPUs support AVX instructions and the code was
compiled to use these instructions. Since these instructions
allow 8 fold SIMD parallelisation of vector operations, the
single core performance is already substantially faster than
the scalar Java performance. For fare comparison, single core
performance without SIMD is shown in figure 4, which uses
X87 instructions.

Fig. 4: Log/Log plot of matching performance on different
CPU based machines

The performance of three machines show a similar trend.
Not surprisingly, as the number of threads increased, execution
time decreased. In the initial range, up to 10 threads the
performance follows an approximately linear trend in log log
space, which is equivalent to a power-law functional form.
However, one interesting finding for the 64 cores AMD is, that
after around 30 threads, the running time stopped decreasing,
and increased slightly. This trend could not be verified on the
other two machines, since the lower number of cores did not
allow us to detect whether a similar turning point exists.



This scenario can not simply be explained by Amdahl’s
Law [6]. Amdahl’s law states that if P is the proportion of a
program that can be parallelised, and (1−P ) is the proportion
that cannot be parallelised, the maximum speed-up that can be
achieved using N processors is

S(N) =
1

(1− P ) + P
N

(10)

In the limit, as N tends to be infinity, the maximum speed-up
tends to be 1/(1− P ).

Theoretically, if there are enough cores (threads) to run
an algorithm, the execution time of the part that can be paral-
lelised will tend to zero. So in theory, the optimal performance
is predictable, because it only depends on the serial part. But
in practice, in the multi-core environment, the CPU takes time
to assign different tasks to different cores. As the number of
used cores grows, the allocation time increases, eventually the
extra thread scheduling time can be expected to outweigh the
speed-up due to parallelisation.

However, it is not clear that this is necessarily the cause of
the bottoming out of run time at the 30 threads point. Another
possible cause relates to memory bandwidth. Depending on
how the mapping of physical to virtual memory is carried
out, the images being processed may have been spread over
the memory channels of all 4 processor chips on the Opteron
system, or may have been entirely allocated within the memory
controlled by one of the chips. In the latter case the bottoming
out of performance after 30 threads could represent the satu-
ration of the memory bandwidth of that chip. The input and
output pyramids occupy around 2.5 GB in total. In addition,
there are in the CPU version, various temporary buffers of
comparable sizes that have to be manipulated repeatedly as
the algorithm iterates. It thus places considerable demands on
the memory channels.

Since similar results were observed for up to 30 threads
across all three machines and only the 64-core AMD machine
showed a performance bottleneck, the tests for the key sub-
parts of the algorithm were only performed on the 64-core
system.

As mentioned in Section 3, the matching algorithm can
be separated into several parts: pyramid creation, pixel corre-
lation, polynomial maximization, inter-scale disparity refine-
ment, rescale and others. Execution time for each of the six
parts over different number of cores (threads) is shown in
Figure 5. The figure illustrates that as the number of cores
varies, different parts show different performance changes.
The two outstanding parts in Figure 5 are pixel correlation
and polynomial maximization. Those two parts have similar
execution times for single thread execution. However, when
executed with multiple-threads, there are two major differences
that can be observed: (1). the acceleration rate of polynomial
maximization continues to improve until about 40 cores while
the speed-up of pixel correlation reaches a peak and remains
stable after around 12 cores; (2). the acceleration rate of
polynomial maximization is much faster than pixel correlation.
These findings are discussed in more details in the coming sub-
section on acceleration impact analysis.

The same matching algorithm and key sub-parts were also
implemented for, and run on, the GPU. The GPU performances

Fig. 5: Performance of matching algorithm breakdown on
AMD 6366HE CPU and GPU

are shown in Figure 5, for comparison with the CPU results.
Table II gives in detail, single-thread AMD CPU performance
(using both AVX and x87 instructions), best AMD CPU
performance (using 44 threads with AVX instructions) and
GPU performance for each of the six key sub-parts. Besides
the execution time for each sub-part, the table provides the
corresponding speed-up of the AMD single-thread SIMD, best
AMD CPU and GPU performance over the single-thread AMD
CPU performance with X87 instructions. In this experiment,
single-thread CPU means single-thread AMD CPU, and 44-
thread represents best AMD CPU performance. It should be
noted that single threaded AVX timing benefits from SIMD
parallelisation - which is potentially a factor of 8 compared
with using X87 code.

TABLE II: Single-thread AMD CPU with X87 and AVX
instructions, 44-thread AMD CPU and GPU Performance

CPU
GPUSingle-thread 44-threadX87 AVX

Time(s) Time(s) Speedup Time(s) Speedup Time(s) Speedup
Pyramids 19.94 8.61 2.32 1.68 11.87 0.43 45.88
Correlation 486.56 167.69 2.90 42.34 11.49 2.90 167.89
Polynomial 192.19 178.51 1.08 8.18 23.50 0.26 731.12
Refinement 174.93 49.93 3.50 16.80 10.41 1.04 168.65
Rescale 5.57 3.91 1.42 0.39 14.28 0.19 29.89
Other tasks 7.95 4.46 1.78 1.16 6.85 0.20 39.86
Total 887.14 413.11 2.15 70.55 12.57 5.02 176.77

Overall, CPU gives about 12× and GPU gives 176×
acceleration. Among the sub-tasks, polynomial maximization
gives the best parallel performance with 23 times and 731
times speed-up on CPU and GPU respectively. This process
is full of array calculations, and every single step can be
parallelised. This type of process suits well for parallelisation
with a multi-core architecture. Simple linear interpolation,
which is an important and basic step in the matching algorithm,
also has this characteristic.

On the other hand, the most time consuming part of the
algorithm is pixel correlation. The best CPU performance
reaches a 11 times speed-up, but gives only 4-fold speed-
up compared with single thread AVX. This section contains



many iterations of image convolution, another basic image
algorithm. Hence, the behaviour of convolution is the key to
understanding that of pixel correlation.

From the performance table, we notice that the speed-
up for polynomial maximization on a GPU is much higher
than for other components. This is due to the polynomial
maximization being the only part which runs entirely on the
GPU without any data transfer to CPU. In the next sub-section,
it is demonstrated how much data transfer between the CPU
and GPU can influence the overall performance.

C. Acceleration Impact Analysis

In Figure 5, it has been shown that polynomial maxi-
mization and pixel correlation exhibit different acceleration
rates. Linear interpolation and image convolution are used
in different proportions in these two parts of the algorithm.
Since we want to understand the underlying reasons for the
differences in acceleration, linear interpolation and image
convolution were examined in more detail. These operations
are much simpler, allowing for a more refined performance
analysis.

1) Acceleration on CPU: Figure 6 shows the linear in-
terpolation and image convolution performance on different
number of cores. Y axis is scaled by Log function. As the
number of cores increases, both execution times decrease.
The acceleration of interpolation demonstrates a good, power

Fig. 6: Interpolation and convolution performance on different
number of CPU (AMD 6366HE) cores using AVX instructions

law like, curve with a performance improvement of 36 times.
Linear interpolation only contains one step of array access and
is easily parallelised on a multi-core architecture. Polynomial
maximization and rescale, which rely on linear interpolation,
follow therefore a similar speed-up trend.

The performance trend for convolution, on the other hand,
is similar to the trends for overall matching performance and
pixel correlation performance. Execution time decreases as the
number of cores increases, until about 10 cores are reached.
After that, the execution time decreases very slowly. It only
gives about 3 times speed-up on CPU, which is close to pixel
correlation performance. Note that all these tests are using
AVX instructions.

A possible explanation is that to perform image convolu-
tion, a one dimensional convolution is first applied horizontally
and then vertically to the image. Although this method allows
straight forward parallelisation, the creation of an intermediate
result array will limit the speed-up gain since the image data
size is typically larger than the CPU cache. Writing to the
intermediate array will tend to flush the original data buffer
from the caches.

We can observe that although the interpolation is slower
than convolution on a single-core CPU, as the number of
cores increases, interpolation overtakes convolution. From the
previously described experiment, it is understood that different
algorithms impose different loads on the memory subsystems.
This appears to be the reason as to why the different algorithms
show different trends. To conclude, compared to interpolation,
although two pass convolution still benefits from multi-core
parallelisation, this type of convolution algorithm is not well
suited to effective parallel acceleration.

2) Acceleration on GPU: Interpolation and image convo-
lution performance on GPU is presented in Figure 7. On the

Fig. 7: Interpolation performance on GPU

GPU, interpolation gives about 39 times speed-up compared
to a single-core CPU using AVX instructions. It is not as big
of an improvement as on polynomial maximization, but after
breaking down the interpolation process on GPU, it can be
seen that almost all the time is consumed on data transfer
between the CPU and GPU. Although, using pinned memory,
rather than paged memory, to reduce the transfer time it is
still the most time consuming part. Comparatively speaking,
the execution time on the GPU is minimal. This is due to
one of the main advantages of the GPU. The GPU has texture
memory facilitating the interpolation. As the size of image
increases, there is no significant execution time increment
shown on the GPU, which demonstrates that doing floating
point interpolation on texture memory is almost cost-free, as
long as the image data can fit into texture memory.

With convolution, the GPU gives about a 7 times speed-up
over a single-core CPU using AVX. Compared to interpolation,
this is only a marginal improvement. Breaking down the
convolution process, the most time consuming part is again the
transfer time. However, for convolution, execution time on the



GPU is short but nonnegligible. The main function of the con-
volution, executes on the shared memory, which is extremely
fast. But similar to the CPU implementation, the algorithm
generates intermediate variables in global memory. Therefore,
data transfer within the GPU memories is inevitable. This
accounts for most of the execution time on the GPU.

Both GPU versions of interpolation and convolution give
significant acceleration improvements compared to CPU per-
formance. Although as an isolated algorithm, convolution’s
performance is bounded by CPU to GPU transfers, when op-
erating as a component of the matcher it is invoked repeatedly
using data that has already been transferred to the GPU. This
would explain why GPU gives 176 times speed-up on the
complete matching algorithm.

This scenario suggests, when implementing algorithms on
GPU, one should let GPU do parallel computing as much as
possible, and try the best to keep intermediate variables on
GPU only, because the data transfer within GPU is much faster
than transfer to CPU (see Table I).

V. CONCLUSION

We demonstrated the successful implementation of a par-
allel pyramid matcher, i.e. the dense-correspondence matching
algorithm for multi-core CPUs and GPU. The experimental
results showed for both platforms significant performance
accelerations with multi-core CPUs giving 12× speedup and
GPU giving 176× speedup, compared to non-SIMD single-
core CPU performance. In addition, we found that the opti-
mised acceleration of interpolation has a greater impact on
the overall speed-up than convolution as it is more suited for
parallel execution, but convolution currently has a speed-up
limitation due to it requiring storage of intermediate results.

In the future, we plan to accelerate a variety of stereo-
matching algorithms on different parallel architectures, includ-
ing other multi-core CPU, graphic processor and coprocessors
(i.e Xeon Phi). By analysing the performance over different
number of cores, we shall investigate which type of matching
algorithm is more suitable for parallel computing to obtain
better accelerations. Moreover, we intend to propose approxi-
mated stereo matching approaches for further accelerating the
binocular robot-head. This may involve trading off accuracy
for execution speed.
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