16,016 research outputs found

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    Stabilizing Stochastic Predictive Control under Bernoulli Dropouts

    Full text link
    This article presents tractable and recursively feasible optimization-based controllers for stochastic linear systems with bounded controls. The stochastic noise in the plant is assumed to be additive, zero mean and fourth moment bounded, and the control values transmitted over an erasure channel. Three different transmission protocols are proposed having different requirements on the storage and computational facilities available at the actuator. We optimize a suitable stochastic cost function accounting for the effects of both the stochastic noise and the packet dropouts over affine saturated disturbance feedback policies. The proposed controllers ensure mean square boundedness of the states in closed-loop for all positive values of control bounds and any non-zero probability of successful transmission over a noisy control channel

    Sparse and Constrained Stochastic Predictive Control for Networked Systems

    Full text link
    This article presents a novel class of control policies for networked control of Lyapunov-stable linear systems with bounded inputs. The control channel is assumed to have i.i.d. Bernoulli packet dropouts and the system is assumed to be affected by additive stochastic noise. Our proposed class of policies is affine in the past dropouts and saturated values of the past disturbances. We further consider a regularization term in a quadratic performance index to promote sparsity in control. We demonstrate how to augment the underlying optimization problem with a constant negative drift constraint to ensure mean-square boundedness of the closed-loop states, yielding a convex quadratic program to be solved periodically online. The states of the closed-loop plant under the receding horizon implementation of the proposed class of policies are mean square bounded for any positive bound on the control and any non-zero probability of successful transmission
    corecore