2,164 research outputs found

    Efficient Synthesis of Room Acoustics via Scattering Delay Networks

    Get PDF
    An acoustic reverberator consisting of a network of delay lines connected via scattering junctions is proposed. All parameters of the reverberator are derived from physical properties of the enclosure it simulates. It allows for simulation of unequal and frequency-dependent wall absorption, as well as directional sources and microphones. The reverberator renders the first-order reflections exactly, while making progressively coarser approximations of higher-order reflections. The rate of energy decay is close to that obtained with the image method (IM) and consistent with the predictions of Sabine and Eyring equations. The time evolution of the normalized echo density, which was previously shown to be correlated with the perceived texture of reverberation, is also close to that of IM. However, its computational complexity is one to two orders of magnitude lower, comparable to the computational complexity of a feedback delay network (FDN), and its memory requirements are negligible

    Speech Transmission Index from running speech : a neural network approach

    Get PDF
    Speech Transmission Index (STI) is an important objective parameter concerning speech intelligibility for sound transmission channels. It is normally measured with specific test signals to ensure high accuracy and good repeatability. Measurement with running speech was previously proposed, but accuracy is compromised and hence applications limited. A new approach that uses artificial neural networks to accurately extract the STI from received running speech is developed in this paper. Neural networks are trained on a large set of transmitted speech examples with prior knowledge of the transmission channels' STIs. The networks perform complicated nonlinear function mappings and spectral feature memorization to enable accurate objective parameter extraction from transmitted speech. Validations via simulations demonstrate the feasibility of this new method on a one-net-one-speech extract basis. In this case, accuracy is comparable with normal measurement methods. This provides an alternative to standard measurement techniques, and it is intended that the neural network method can facilitate occupied room acoustic measurements

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    Investigations into vocal doses and parameters pertaining to primary school teachers in classrooms

    Get PDF
    Investigations into vocal doses and parameters were carried out on 40 primary school teachers (36 females and 4 males) in six schools in Italy, divided into two groups of three, A and B, on the basis of the type of building and the mid-frequency reverberation time in the classrooms, which was 1.13 s and 0.79 s, respectively. A total of 73 working-day samples were collected (66 for females and 7 for males), from which 54 traditional lessons were analyzed separately. The average value over the working days of the mean sound pressure level of the voiced speech at 1 m from the teacher's mouth was 62.1 dB for the females and 57.7 dB for the males, while the voicing time percentage was 25.9% and 25.1%, respectively. Even though the vocal doses and parameters did not differ for the two school groups, the differences in the subjective scores were significant, with enhanced scores in group B. A 0.72 dB increase in speech level per 1 dB increase in background noise level, LA90, was found during traditional lessons, as well as an increase in the mean value of the fundamental frequency with an increase in LA90, at a rate of 1.0 Hz/dB

    DESIGN AND EVALUATION OF HARMONIC SPEECH ENHANCEMENT AND BANDWIDTH EXTENSION

    Get PDF
    Improving the quality and intelligibility of speech signals continues to be an important topic in mobile communications and hearing aid applications. This thesis explored the possibilities of improving the quality of corrupted speech by cascading a log Minimum Mean Square Error (logMMSE) noise reduction system with a Harmonic Speech Enhancement (HSE) system. In HSE, an adaptive comb filter is deployed to harmonically filter the useful speech signal and suppress the noisy components to noise floor. A Bandwidth Extension (BWE) algorithm was applied to the enhanced speech for further improvements in speech quality. Performance of this algorithm combination was evaluated using objective speech quality metrics across a variety of noisy and reverberant environments. Results showed that the logMMSE and HSE combination enhanced the speech quality in any reverberant environment and in the presence of multi-talker babble. The objective improvements associated with the BWE were found to be minima
    • …
    corecore