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Abstract

Improving the quality and intelligibility of speech signals continues to be an important topic in 

mobile communications and hearing aid applications. This thesis explored the possibilities of 

improving the quality of corrupted speech by cascading a log Minimum Mean Square Error 

(logMMSE) noise reduction system with a Harmonic Speech Enhancement (HSE) system. In 

HSE, an adaptive comb filter is deployed to harmonically filter the useful speech signal and 

suppress the noisy components to noise floor. A Bandwidth Extension (BWE) algorithm was 

applied to the enhanced speech for further improvements in speech quality. Performance of this 

algorithm combination was evaluated using objective speech quality metrics across a variety of 

noisy and reverberant environments. Results showed that the logMMSE and HSE combination 

enhanced the speech quality in any reverberant environment and in the presence of multi-talker 

babble. The objective improvements associated with the BWE were found to be minimal.

Keywords: speech enhancement; signal processing; harmonic; noise reduction; bandwidth 

extension, wide band; narrow band; spectral band replication, linear prediction coding; 

measurements
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Chapter 1: Introduction

1.1 Need for Speech Enhancement

In all electronic speech communication applications that require at least one microphone, the 

signal of interest is usually contaminated by background noise and reverberation. The 

contaminated speech signal has a detrimental effect on its quality and understandability [14]. It 

is therefore desirable that the corrupted microphone signal has to be cleaned through digital 

signal processing tools before it is played out, transmitted, or stored. The objective of speech 

enhancement may be to improve the overall quality, to enhance the intelligibility, to reduce the 

listener fatigue, etc.

Engineers and researchers in various disciplines have shown considerable recent interest in 

speech enhancement. For example, considerable amount of research continues to be expended 

on improving speech communication over landline or wireless telecommunication channels in 

challenging environments through signal processing. Similarly, there is a considerable research 

effort from hearing aid manufacturers on speech enhancement algorithms, as understanding 

speech in a noisy environment is especially challenging for hearing impaired listeners [6]. In the 

following sections, this need for speech enhancement is further described for two types of 

environments, and a brief introduction to speech enhancement strategies are provided.
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1.1.1 Speech Corrupted by Noise

Noise is omnipresent in this world. For example, environments such as offices, streets, 

restaurants, trains, exhibitions, airports and motor vehicles are replete with interfering 

background noise, and this interfering noise degrades the intelligibility and quality of speech. 

Two categories of algorithms can be recognized when it comes to enhancing speech corrupted by 

background noise. The first category uses multiple microphones during the signal acquisition 

stage (i.e. adaptive microphone arrays) while the second uses only a single microphone. The 

multiple microphone processing exploits any spatial separation between the desired speech and 

the interfering noise sources [48]. In the second category, single microphone speech 

enhancement attempts to extract speech from a single acoustic mixture of speech and the 

background noise and is therefore a much more challenging problem.

During the past few decades, several single microphone digital signal processing strategies have 

been put forward to cleanse the noisy speech samples. Loizou [14] provides a comprehensive 

review o f these algorithms and broadly groups them into (a) spectral-subtractive algorithms, (b) 

Wiener filtering algorithms, (c) statistical model-based algorithms, and (d) subspace algorithms. 

Briefly, spectral subtractive algorithms attempt to estimate the background noise spectrum and 

remove it from the noisy speech spectrum. Wiener filtering algorithms design and apply an 

optimum filter that minimizes the mean-squared error between output and desired signal. 

Statistical model-based algorithms employ statistical methods in estimating and enhancing the 

speech spectrum. Finally, subspace algorithms attempt to decompose the noisy signal into signal 

and noise subspaces and subsequently nullify the noise subspace. Hu and Loizou [12] compared

2



the performance of these different classes of algorithms and concluded that the statistical model- 

based algorithms performed the best.

In addition to these four classes, another class of speech enhancement algorithms exists which 

exploits the harmonic nature of speech components [2]. In particular, these algorithms identify 

and enhance the harmonic portion of the noisy speech spectrum, while suppressing non

harmonic portions to noise floor. This thesis investigates the performance of a statistical model- 

based algorithm and the harmonic speech enhancement algorithm, both in isolation and as a 

combination across a number of noisy environments.

1.1.2 Speech Corrupted by Reverberation

Reverberation is one of the primary factors that degrade the quality of speech when collected by 

a distant microphone. Reverberation is caused by the fact that the microphone not only picks up 

the direct transmission of the signal, but also its reflections [41]. When speech signals are 

obtained in an enclosed space by one or more microphones positioned at a distance from the 

talker, the observed signal consists of a superposition of many delayed and attenuated copies of 

the speech signal due to multiple reflections from the surrounding walls and other objects [45]. 

The perceptual effects of reverberation can be a box effect in which the reverberated speech 

signal can be viewed as the same source signal coming from several different sources positioned 

at different locations in the room and thus arriving at different times and with different 

intensities. This adds spaciousness to the sound and makes the talker sound as if positioned
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inside a box or as the distant talker effect where the perceived spaciousness explained in the 

previous point makes the talker sound far away from the microphone [45].

In cases of excessive reverberation, intelligibility of speech is degraded. Reverberation alters the 

characteristics of the speech signal, and changes the shape of time domain signal which is 

problematic for signal processing applications including speech recognition, source localization 

speaker identification, and channel communication. As the distance between the talker and the 

microphones is increased, the reverberation effects become harmful to target signal processing 

schemes which do not take room effects into consideration.

Similar to noise abatement discussed in previous section, several signal processing strategies 

have been put forth to combat reverberation [45]. These include spectral subtraction algorithms, 

Wiener filtering algorithms, and dereverberation algorithms based on harmonicity and speech 

production models. This thesis investigates the performance of a statistical model-based 

algorithm and the harmonic speech enhancement algorithm in diminishing the deleterious effects 

of reverberation on speech quality.

1.2 Bandwidth extension

Bandwidth extension (BWE) refers to methods that increase the frequency spectrum, or 

bandwidth of electronic signals. Such frequency extension is desirable if at some point the 

frequency content of the signal has been reduced, as can happen, for example, during recording, 

transmission (including storage), or reproduction, mostly because of economical constraints.
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Examples of situations in which bandwidth reduction occurs are telephony, perceptual audio 

coding (at low bit rates), and sound reproduction with non-ideal transducers [9]. As a further 

example, traditional landline and cellular communications utilize a bandwidth of 300 -  3400 Hz 

for transmitting speech [9], This implies that if the speech input has significant spectral content 

beyond 3400 Hz, it will be filtered out by the telecommunication network. Although adequate 

for speech communication, this narrow bandwidth of 300 -  3400 Hz has an impact on both the 

quality and intelligibility of transmitted speech. For specific components of speech the effect of 

bandwidth is even more dramatic. Fricatives such as /s/, /sh/, /f/, whose spectral energy extends 

beyond 3400 Hz, are more affected by the bandwidth. Stelmachowicz et al. [8] showed that 

normal hearing adults achieved only 33% accuracy in identifying the /s/ phoneme spoken by a 

female talker when the bandwidth was 5 kHz and this improved to 80% with a bandwidth 

increase to 6 kHz. In addition to the increase in intelligibility, wider bandwidth is also associated 

with increased "brightness”, “naturalness”, and overall quality of speech [16]. For example, 

Moore and Tan [69] demonstrated a decrease in sound quality for speech signal when the 

bandwidth was less than 10.8 kHz.

Several algorithms exist for extending the bandwidth of the speech signal, and these can be 

classified into (a) blind algorithms which reconstruct the high frequency portion of the speech 

spectrum from lower frequency content, and (b) algorithms which exploit some a priori 

knowledge of the high frequency spectral information. In this thesis, a blind bandwidth 

extension algorithm is employed in conjunction with noise reduction or dereverberation 

algorithm.
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1.3 Speech Quality Measurements

As mentioned in the previous sections, several choices exist for noise reduction, dereverberation, 

and bandwidth extension. This necessitates a method for benchmarking the effect of various 

candidate algorithms on speech quality and intelligibility. This thesis concentrates on the speech 

quality attributes and a brief discussion of the measurement of speech quality is given below.

Speech Quality 
Measures

f 1
Subjective
Measures

\
Objective
Measures

\

\ ________________ \ >>

Non-intrusive
Measures

Speech Quality Estimation

Figure 1.1: The classification of speech quality measurement [40]

6



In general, speech quality can be measured through subjective means or through instrumental 

objective measurements, as shown in Figure 1.1. Subjective measures assess speech quality by 

having people listen and respond the quality perception. On the other hand, objective measures 

assess speech quality through the use of physical characteristics of the speech signal and 

appropriate computational models. Normally, the performance of an objective measure is 

usually evaluated by calculating the degree of correlation between the objective measure and the 

subjective quality scores [40].

The most widely used subjective speech quality test is the absolute category rating (ACR) test.

In the ACR test, subjects are asked to rate the overall quality of a single test stimulus without 

being able to listen to the original reference. The rating of quality in the ACR test is based on an 

opinion scale as shown in Table 1.1. The ACR test is typically administered in two phases: 

training and evaluation [40].

Rating Speech Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Unsatisfactory

Table 1.1: The mean opinion score (MOS) scale in the ACR test

In the training phase, subjects hear a set of reference speech signals that exemplify the different 

quality categories. This process is meant to give all listeners the same subjective range and
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origin in their quality ratings. In the evaluation phase, subjects listen to the speech under test and 

rate each sample in terms of the quality categories. The average of opinion scores of the subjects 

gives the Mean Opinion Score (MOS) [40].

Objective measures are generally divided into intrusive and non-intrusive measures. The 

intrusive measures assess speech quality by comparing known, controlled test signals and the 

corresponding outputs of the system under test. In the intrusive measures, both the original and 

processed signals are available for the computational models [40]. The original input signal is 

assumed to be of perfect or near-to perfect quality, and the computed differences between the 

original and processed signal are mapped into a speech quality score. In order for this difference 

to result in a meaningful metric, it is crucial to synchronize the input and output signals of the 

system under test. Otherwise, the calculation of the difference between these two signals does 

not reliably convey the necessary information. Another type of objective quality evaluation, that 

is, non-intrusive measures, circumvents this need for synchronization as they estimate speech 

quality based only on the output signal of the system under test [40].

While subjective tests are “gold standard” and are attractive for high face validity, they are also 

time and cost consuming. Objective measures, on the other hand, are time and resource efficient, 

and are preferable for rapid benchmarking of different algorithms. Objective metrics that have 

high degree of correlation with subjective scores are attractive, as they can be used as substitute 

for lengthy subjective tests. In this thesis, validated intrusive and non-intrusive measures are 

utilized to evaluate the performance of noise reduction, dereverberation, and bandwidth 

extension algorithms.
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1.4 Thesis Objectives: Speech Enhancement and Bandwidth Extension

Speech corrupted by background noise and/or reverberation has severe impact on perceived 

quality and intelligibility. In addition, the reduced bandwidth associated with narrowband 

telephony and non-ideal transducers may further compromise speech quality. To address these 

issues, this thesis proposes and evaluates the performance of a cascaded set of algorithms that 

aim to reduce noise, mitigate reverberation, and extend the bandwidth of corrupted input speech. 

Figure 1.2 shows the proposed system architecture in which a statistical model-based speech 

enhancement algorithm is cascaded with the harmonic speech enhancement algorithm, the output 

of which is given to a bandwidth extension algorithm. The system designed for this project will 

be eventually ported to a Linux based hand held device that would be used by hearing impaired 

listeners for evaluating hearing aid digital signal processing (DSP) algorithms.

Corrupted Speech 
8 KHz

log MMSE 
(EMSR) -----► H SE -----► BW E

Enhanced Speech Bandwidth Extended
8 KHz Speech 16 KHz

Figure 1.2: System block diagram

The input to the proposed system is corrupted speech samples acquired at a sampling rate of 8 

kHz. The Input samples to the system in Figure 1.2 can be either corrupted by noise or by 

reverberation but not both of them simultaneously. The corrupted speech is cleaned using the
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log MMSE (a statistical model-based algorithm) and the Harmonic speech enhancement (HSE) 

system. The output of this sub-system also operates at a sample rate of 8 kHz. The enhanced 

speech is served as an input to the BWE system. The BWE system replicates the low frequency 

spectrum to the high frequency region and makes spectral adjustments to make the sound natural. 

The output of the entire system now operates at a sample rate of 16 kHz, which implies that the 

highest frequency of the signal has changed from 4 kHz in the input part to 8 kHz in the output 

portion. If there are artifacts in the HSE output, the BWE output may have replication of those 

artifacts. If the output of the HSE has low SNR, the same effects will be seen in the BWE 

output. The task of the project is to create a HSE output with less perceivable artifacts so that 

BWE is able to give an output that has considerably fewer perceived artifacts and a feasible 

signal to noise ratio (SNR). In summary, here is a list of main objectives of this thesis:

• To design a real-time capable logMMSE plus HSE system for speech enhancement and 

BWE system.

• To demonstrate the synergistic performance of logMMSE-HSE system for speech 

enhancement in different noisy and reverberant environments.

• To demonstrate improvement in speech quality using the BWE algorithm.

1.5 Thesis Organization and Scope

Chapter 1 provided a brief overview of need for speech enhancement and bandwidth extension in 

enhancing speech, a description of different speech enhancement algorithms, and methods to 

benchmark their performance. Chapter 2 reviews the literature on bandwidth extension using

10



several methods like linear prediction coding (LPC), and spectral band replication (SBR). It also 

covers speech enhancement techniques such as the Ephraim-Malah noise suppression, Harmonic 

speech enhancement (HSE.) and a review of objective speech quality measures. Chapter 3 

covers implementation details of the speech enhancement algorithms covered in this project. 

HSE and BWE implementation details are provided and algorithm’s performance against the 

EMSR algorithms is discussed. In Chapter 4, objective results are provided for HSE in 

comparison with the EMSR algorithms for speech corrupted by noise and reverberation. 

Objective results for BWE are also analyzed in this Chapter. Finally, a summary of the main 

contribution of this thesis, along with a discussion of future research directions are presented in 

Chapter 5.
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Chapter 2: Literature Review

2.1 Speech Enhancement

The target of speech enhancement is to improve speech quality by using various algorithms. The 

benefit of speech enhancement is possible improvement in intelligibility and/or overall 

perceptual quality of a degraded speech signal using audio digital signal processing techniques. 

Enhancing of speech degraded by noise, or reverberation is of interest to engineers and used for 

many applications such as mobile phones, speech recognition, and hearing aids.

Single-channel speech enhancement degraded by additive noise has been studied with much 

interest in the past. Some techniques are prescribed in [19]-[30] to use the harmonics of voiced 

speech for enhancing the speech quality. In [19] and [20], speech is modeled as harmonic 

components plus noise-like components, and enhancement is performed by modeling the 

harmonic components thereby reducing the additive noise components. A hidden Markov model 

[21] minimum mean square error (MMSE) estimator is extended to enhance the harmonics for 

voiced speech. The sinusoidal model is adopted in the speech enhancement context in the 

algorithms of [22]—[26]. Adaptive comb filtering techniques used in [32] and [33] are used to 

improve the quality of voiced speech by post-enhancing the harmonic structures. In [27] 

fundamental frequency is used to narrow down the a priori probability distribution (PD) of the 

DFT amplitude to improve the estimation of the DFT spectrum and enhance the harmonics of 

speech.
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The spectral subtraction algorithm is used widely in speech enhancement [31]. A noise 

corrupted speech signal y(ri) is composed of clean speech signal x{n) and noise d(ri). The 

noise and the clean speech are assumed to be independent and uncorrelated. The spectrum of the 

noise signal D(co) obtained by Fourier transform is subtracted from corrupted speech spectrum 

to attain clean speech spectrum. The clean speech spectrum is reconstructed to a voltage signal 

back in the time domain signal using the inverse Fourier transform.

y(n) = x(n) + d(n) (2.1)

X{(o) = Y{co)-D{(o) (2.2)

The method of spectral subtraction presented by Boll in [36] uses a short-time Fourier transform 

to compute magnitude, subtract bias from the noise estimate, and do a half wave rectification to 

avoid negative magnitude spectrum owing to errors in estimating noise spectrum in order to 

reduce noise residual. It also employs a voice activity detector (VAD) that attenuates the noisy 

signal during non-presence of speech. The non-linear processing of negative values during half

wave rectification creates small isolated peaks in the spectrum. When converted to a time 

domain signal, these peaks sound similar to tones with frequencies that change randomly from 

frame to frame; that is, tones that are turned on and off at the analysis frame rate. This type of 

noise introduced by the half-wave rectification process has a warbling sound along with a tone 

like quality, and is commonly referred to in literature as ‘musical noise Musical noises can be 

more annoying than the actual background noises like babble noise or street noise. At low 

SNR's, the noisy phase, after the synthesis can lead to roughness in perceived speech signal.

This problem is insignificant when SNR’s are high [14], In Figure 2.1, the top picture shows a 

noisy spectrogram and the bottom pictures shows a processed clean spectrogram with isolated 

spectral peaks in the spectrum that contribute to the musical noise phenomenon.
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Figure 2.1: Arrows point to isolated spectral peaks that cause musical noise

Ephraim introduced an MMSE estimator to enhance speech in [34], and a log MMSE estimator 

in [35] to enhance speech to overcome the musical noise phenomenon. Indeed, in a comparative 

study of several different speech enhancement algorithms, Hu and Loizou [12] showed that the 

logMMSE algorithm provided the most consistent performance across a number of noisy 

environments. As such, a detailed description of the logMMSE technique is presented below.

2.1.1 Principles: Ephraim-Malah Suppression Rule (EMSR) log MMSE

14



Let x(n) and d(n) denote the speech and the noise processes, respectively. The observed signal 

y(ri) is given by

y(n) = x(n) + d(n), 0 < n < N

where without loss of generality, the observation interval is set to [0, N],

Let = Ak exp ( jak),Dk, and Yk = Rk exp( jvk) denote the k!h spectral component of the signal

x(n) and noise d ( n ) , and the noisy observations y (n ) , respectively in the analysis interval [0, N],

A

It is desired to compute the estimator Ak which minimizes the following distortion measure:

£ { ( lo g / l , - lo g i , ) 2 } (2'3)

given the noisy observations {y(ri), 0 < n <  N } . This estimator is easily shown to be

Ak = ex p { £ [ln ^  | j/(h)]}, 0 < n < N)  (2-4)

Under the assumed statistical model, the expected value of Ak given {y{n), 0 < t < N} equals to 

the expected value of Ak , given Yk only. Since this statement remains true when Ak is replaced 

by In Ak , the estimator Eq. (2.4) equals

Ak = ex p la in Ak \ Yk]} (2-5)

Let Zk = In Ak; Then the moment generating function 0 Zt|rt (//) of Zk given Yk

<Kr.H W  = £{exp(/iZt )\Yk) = E{A^t\Yt ) 

E{h\Ak | Yk) is obtained from (//) by

E{\nAk \Yk} = j - ® Zt]Yk{v)l=o

(2.6)

(2.7)

From (2.6) <t>z (r (//) is given by
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(2.8)

< D ^ (//) = £{A" l^ }  =

coinJ \ak, a k)p(ak, a k) d a kdal
0 0 k_________________________
oo2k
S \ P(yk \ a k, a k)p(ak, a k) d a kdak 
0 0

On the basis of the Gaussian model p(Yk \ak, a k) and p(ak, a k) are given by

P(Yk I ak, a k)=  exp{-
nAd(k) Ad(k) Yk ak

ejak 1 2 (2.9)

P(ak,ak) = ———  exp{— ——} 
nAXk) A ( k )

(2.10)

where A  (A:) = E{\ X k ¡} & Ad(k) = E{\ Dk |} are the variances of the k'h spectral component of 

the speech and noise respectively. On substituting (2.9) and (2.10) into (2.8), and using integral 

representation of the modified Bessel function of zero order I0 ( .)  we obtain

f < +1 exp{-a]  / A ) I o(2ak ̂ ¡vJÂ k) da,

®Zk\Yk (P) ~
0
0 0

\ a k exp(~a2k / Ak) I 0(2ak J v k /Ak) da, 
0

(2.11)

where Ak satisfies the following relation

1 1 1
+

K  U k )  AXk)

(2.12)

and vk is defined by

vk =
4k ?Yk; 4k=-T777> Yk =

1 + 5 Ad(k) ’ 7k Ad{k)
(2.13)
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where the terms ¿;k andyk are referred to as the a priori and a posteriori SNRs. The integrals in 

(2.11) are evaluated to get

t/2 T- it1O zm 0 0  = r r ç  + l) M{ -p!2 \  1; - v t )
(2.14)

where T(.) is the gamma function and M(a; c; x) is the confluent hypergeometric function. Note

ththat Q>Z \yt (p)  is the formula of the p  moment of a Rician random variable. The derivative of

O z |y (p)  with respect to p  is obtained as follows. First, we note that M(a;c;x) is defined by

. . .  . «  (a)r x '
M(a;c;x)=  £  — ----- -

r = 0 ^ r  r\

(2.15)

where (a)r A l . a .  (a + 1), .. .(a + r - l ) ,  and (a)0 Al .  M ( - p  / 2; 1; -  vk) can be differentiated 

term by term for \ p \< 2  since the series of its derivatives converges uniformly on that interval.

The derivative of M ( - p  / 2; 1; -  vk) at p  = 0 is obtained by the above way and it equals

d  1#/ . .  , 1 *  (-v )r 1
—— M ( - p /2; 1; -  vt ) | 0 = - -  I  ------ .
op 2 r = \ r\ r

The derivative of T (p  / 2 +1) is conveniently obtained through the derivative of

In T (p  / 2 +1) by using

(2.16)

| - r ( £  + i ) = r ( ^ + i) A i n r ( ^ + i )
oju 2 2 o/u 2

(2.17)

The derivative of In T (p  / 2 +1) is obtained by utilizing its series expansion given by

where

r ( ^  + l) = - c ^  + 
2 2

00
z

r = 2

(~mY
2  ;

cc p  \< 2
(2.18)
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a r A Z 
n = 1

and c = 0.5772156649 is the Euler constant. Differentiating (2.18) term by term, and using 

(2.17) gives

— r (^
dfi 2

T ( ^  + \)\m=0= - c /2

(2.19)

Now, by using (2.16) and (2.19) we obtain from (2.14)

®zt\rk (M) U=o ~ 2^n ^ k + ^
oo ( -v * r  i

2 r  = 1 *  ' (2.20)

1 1 ™ e ~ l
=  j  l n ^  + - ( l n v ,  +  J  —  dt)

The integral in (2.20) is known as the exponential integral ofv*., and can be efficiently

calculated. On substituting (2.20) into (2.7) and using (2.13) and (2.5) we get the desired 

amplitude estimator

£. i 00 e~ t
k ~ exp{— | ----- dt} Rk
k 1 + & 2 t f

A  =
(2.21)

It is useful to consider Ak as being obtained from Rk , by a multiplicative nonlinear gain function 

which depends only on the a priori and the a posteriori SNR %k and yk, respectively. This gain 

function is defined by

G{Sk,Yk) A
= R, (2.22)

In Chapter 3, implementation details surrounding the computation of this multiplicative gain 

function are provided.
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2.1.2 Principles: Harmonic Speech Enhancement

In the given problem, we have a single-channel speech degraded by additive background noise. 

The noisy observation can be written as

y = x + d (2.23)

where y, x, and d  are TV x 1 vectors representing the noisy speech, clean speech, and additive 

noise, respectively. In each analysis time frame, N  is the total number of samples (assuming 

frame length=FFT size). According to the central limit theorem, the additive noise is statistically 

uncorrelated to the clean speech [2]. Denote by F* the N  x N  Fourier transform matrix, where 

(.)* indicates matrix Hermitian. The A-point short time Fourier transform (STFT) of the noisy 

speech is then given by

Y A F * y  = F * x  + F * d  A X  + D (2.24)

where Y, X, and D the Fourier transforms of the noisy speech, clean speech, and noise, 

respectively. The speech enhancement task aims to find a spectral domain linear estimator O

A

such that X  = OY  produces a close approximation to the clean speech spectrum [2]. Ideally, the

A

enhanced signal spectrum X  should be identical to the clean speech spectrum X. To minimize 

the error norm between the estimated and clean speech spectra is to be calculated and several 

approaches to doing this have been studied with interest in the past. Such schemes were covered 

earlier in this chapter. However, in practical applications residual noise components always exist 

in the enhanced speech. It is impossible to remove all that we consider as background noise that
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is meaningfully irrelevant. It is unnecessary to remove the background noise completely because 

in some scenarios, noise may be meaningful and relevant. Moreover, maintaining a comfort 

level of residual noise in the enhanced speech will actually improve the perceived quality in 

many situations [2]. For example, a train noise in the background in a telephone conversation 

may help the talker understand the location of the conversation to be in a train. Therefore, 

considering all these points, the linear estimator is set in such a way that the enhanced speech

A

spectrum X  tends to

X  = X  + AD (2.25)

where A is a N x N diagonal matrix with real-valued diagonal elementsKk, and k = 0,..., N-l is 

the frequency index. The parameters Kk admit certain level of noise to appear at each frequency 

band k in the enhanced speech (0  < Kk < 1). Kk is frequency variable and also controls the 

residual noise level at each frequency band k. Therefore, Kk is described as the frequency- 

dependent noise-flooring parameter (FDNFP) in [2]. With Eq. (2.25) the estimation error is

e = O Y - ( X  + AD)
= ( 0 - I ) X  + ( 0 - A ) D

=  £ .  +  £r>
(2.26)

where exA ( 0 -  I ) X  and £DA(0  -  A)D  represent the speech distortion and residual noise,

respectively. Let

£x =trE{£x£x\ (2.27)

be the energy of speech distortion, where E  is the expectation and tr is matrix trace. Also, let

s l .,  = > * = o,..... , N  -1  (2.28)
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is the residual noise energy in the k,h frequency band, h  is the k'h spectral component selector

defined as

I k = [O ^ O ^ l..... 0.....0]
k

The speech enhancement task is done by the following optimization problem mentioned in [67]

min a]
O

(2.29)

subject to

s l k <Tk k = 0,.... , N - 1 (2.30)

where Tk is the threshold used to suppress noise at the kth spectral component. The solution to 

this constrained optimization problem is given by [2]:

Qk = min
A

\ S d(k)
+ Kk,\

(2.31)

where Qk are the diagonal elements of O. Equation (2.31) is simplified by setting the threshold 

Tk to be a proportion of the noise power spectrum SJ,k). Let Tk = Xk$j W , where Xk is the

proportionality factor and specifies the amount of attenuation of noise power [2], Then (2.31) 

can be rewritten as

Qk = m i n  (xk"2 (2.32)

A small value of Kk will be needed to maintain a low-level of residual noise in the enhanced 

speech. The parameter Xk 2 dominates the value of suppression gain. If we let Kk = 0 for all,
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then Qk =m in (%k 2, l)and the second term “ A/V” on the right-hand side of (2.25) becomes

A

zero implying enhanced speech spectrum X  will approach the clean speech spectrum X  [2]. If 

we allow

** = Sx{k) + Sd(k)sK“*

and Kk = Othen (2.32) reduces to the classical Wiener filter. Therefore, (2.32) is a combination 

of a gain factor and a small positive noise-flooring parameter. The value Kk controls the level of 

admissible residual noise in the speech enhancement output. The quantity %k 2 + ^determ ines

the final suppression level of the noise. It is a balanced combination of admission and 

suppression of noise floor using these two parameters that the speech enhancement system needs. 

The implementation in Chapter 3 involves using frequency-dependent parameters %k and Kk to 

enhance harmonics of voiced speech [2].

2.2 Reverberation

Reverberation is the collection of reflected sounds from the surfaces in an enclosure. Figure 2.2 

shows the sound received by a single listener B as a function of time as a result of a sharp sound 

pulse from source A. The direct sound received first and is followed by distinct reflected sounds 

called early reflections and then a collection of many reflected sounds (diffused reflections) 

which blend and overlaps the direct path signal to give a composite effect called reverberation.
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Figure 2.2: Reverberation- collection of reflected sound

The delay between the direct sound and the first early reflection is a significant characteristic for 

an enclosure, though not as important as the overall reverberation time. Rooms with 

reverberation are often characterized by Reverberation Time (RT60) which is defined as the time 

required, in seconds, for the average sound in a room to decrease by 60 dB after a source stops 

generating sound. A space with a long reverberation time as in a big church or concert hall is 

referred to as a live environment. Table 2.1 displays the impact of reverberation on perceived 

quality and intelligibility for speech and music samples.

Reverberation Time (seconds)
0.8- 1.3 1.4-2.0 2.1 -3.0 Optimum**

Speech Good Fair - Poor Unacceptable* 0.8- 1.1
Contemporary music Fair - Good Fair Poor 1.2- 1.4
Choral music Poor - Fair Fair - Good Good - Fair 1.8-2.0+
* With an adequately designed and installed sound system, speech intelligibility concerns can be mitigated. 
** Optimum reverberation time can be somewhat subjective and can shift based on numerous variables.

Table 2.1: Reverberation time table [66]

The Room Impulse Response (RIR) is another important characteristic of a reverberant 

environment. The RIR mathematically models an enclosure’s acoustics and carries important
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temporal and spectral information. Figure 2.3 displays an example RIR measured in a church. 

Both Finite Impulse Response (FIR) and Infinite Impulse Response (HR) structures have been 

utilized in the literature to model the RIR.
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Figure 2.3: MATLAB plot of an impulse response
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2.2.1 Speech Enhancement by Dereverberation: General System Description

A generic system diagram for multichannel dereverberation is shown in Figure 2.4. The speech 

signal, s(n), from the talker propagates through acoustic channels, Hm(z) for m = 1 to M. The 

output of each channel is observed using M microphones to give signals xm(n). All noise in the 

system is assumed additive and is represented by vm(n). [45]
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Figure 2.4: Generic multichannel reverberation-dereverberation system model [45]

The observed signal, xm(n), at microphone m can be described as the superposition of the direct- 

path signal, which propagates directly from talker to the microphone with corresponding 

attenuation and propagation delay and a theoretically infinite set of reflections of the talker signal

arriving at the microphone at later time instances (late reflections) with attenuation dependent on

the properties of the reflecting surfaces and their absorption coefficients [45]. This can be 

expressed as:

x m(n)=  I  hm i(ri)s(n -i), 
i=0

(2.33)

where the acoustic channel impulse responses hm i(n) represent the attenuation and the 

propagation delay corresponding to the direct signal and all the reflected components. The aim 

of speech dereverberation is to find a system with input xm(n), m = 1, . . . ,  M  and output s(n) , 

which is a good estimate of s(n). It may be desired to estimate s(n) with minimum Mean Square 

Error (MSE) [45]. Dereverberation algorithms broadly fall into three main categories: 

Beamforming -  the signals received at the different microphones are filtered and weighted so as 

to form a beam of enhanced sensitivity in the direction of the desired source and to attenuate
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sounds from other directions. Beamforming or directional null forming is dependent on the 

availability of multi-microphone inputs.

Speech enhancement -  the speech signals are modified so as to represent better some features of 

the clean speech signal according to an a priori defined model of the speech waveform or 

spectrum. Both the aforementioned logMMSE and HSE algorithms fall under this category and 

are further explored later in the thesis.

Blind deconvolution -  the acoustic impulse responses are identified blindly, using only the 

observed microphone signals, and then used to design an inverse filter that compensates for the 

effect of the acoustic channels [45],

2.2.1 Literature Review on Dereverberation Techniques

A temporal and spectral reverberant speech enhancement technique is mentioned in [41]. In this 

technique, the temporal processing involves ways of identifying and enhancing high signal-to- 

reverberation ratio (SRR) regions in the temporal domain. Spectral processing involves ways of 

removing diffused reverberant tail components in the spectral domain.

In [63] harmonicity based dereverberation (HERB) is proposed, which uses properties of speech, 

harmonics, and estimates an inverse filter for an unknown impulse response. Even in severely 

reverberant environments, if a large amount of acoustically stable training data is available this 

algorithm models an accurate inverse filter.
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Oppenheim and Schafer [46], [47] proposed a technique for speech enhancement by 

dereverberation. Simple echoes were observed as distinct peaks in the cepstrum of the speech 

signal and using a peak picking algorithm peaks were identified and were attenuated with a comb 

filter. Some researchers posit that the Linear Prediction (LP) residual signal contained the 

effects of reverberation, comprising peaks corresponding to resonances in voiced speech together 

with additional peaks due to the reverberant channel [48], [49]. These techniques aim to 

preserve the original characteristics of the residual and also to suppress the effects of 

reverberation such that dereverberated speech can be synthesized using the processed residual 

and the all-pole filter resulting from prediction analysis of the reverberant speech. It is assumed 

in these methods that the effect of reverberation on the Autoregressive (AR) coefficients is 

insignificant [48]. It was shown in [50] that multichannel observations can be used to estimate 

the AR coefficients precisely.

A wavelet extrema clustering was used to reconstruct an enhanced prediction residual by Griebel 

and Brandstein et al. [52], [53]. Coarse RIR estimates are employed to apply a matched filter 

type operation to obtain weighting functions for the reverberant residuals in [54], A 

multichannel time-aligned Hilbert envelope was used in [55] to represent the strength of the 

peaks in the prediction residuals by Yegnanarayana et al. The Hilbert envelopes are then 

summed and the result used as a weight vector, which is applied to the prediction residual of one 

of the microphones. A weighting function was derived based on the signal-to-reverberant ratio 

in different regions of the prediction residual [49].
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Gillespie et al. [56] demonstrate the kurtosis of the residual to be a useful reverberation metric, 

which they then maximize using an adaptive filter. This method was extended by Wu and 

DeLiang [57], who added a spectral subtraction stage to further suppress the remaining 

reverberation. These methods attenuate the resonances due to reverberation in the prediction 

residual but they also reduce naturalness in the dereverberated speech. A method closely related 

to the before mentioned scheme was proposed by Nakatani et al. [58] which assumes a sinusoidal 

speech model. In this scheme, first the fundamental frequency of the speech signal was 

identified from the reverberant observations and then the remaining sinusoidal components are 

identified. Using the identified magnitude and phases of these sinusoids, an enhanced speech 

signal is synthesized. Then, the reverberant and the dereverberated speech signals were used to 

derive an equivalent equalization filter. The processing is performed in short time frames and 

the inverse filter was updated in each time frame. It was shown that this inverse filter tends to 

the RIR equalization filter but this method is computationally expensive [58],

Spectral subtraction was applied to dereverberation by Lebart et al. and extended to the 

multichannel case by Habets [61], [62]. The scheme assumes a statistical model of the RIR 

comprising Gaussian noise modulated by a decaying exponential function. The decay rate of this 

exponential function is controlled by the RTio- It was shown that the PSD of the impulse 

response could be identified and removed by spectral subtraction, if a blind estimation of RTeo 

can be done [61].

Unlike speech enhancement for noisy background, for which Hu and Loizou [12] systematically 

compared a number of speech enhancement algorithms, no comprehensive subjective evaluation
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of dereverberation algorithms has been reported. In a recent paper, Jeub et al. [7] compared the 

performance of four different dereverberation algorithms using an objective speech quality 

measure, and showed that a dereverberation algorithm that combines spectral subtraction and 

Wiener filtering provides the best performance. In this thesis, a combination of the logMMSE 

and HSE is used to reduce the reverberant portions, and the performance of this combination will 

be compared to the results reported in Jeub et al. [7].

2.3 Bandwidth Extension of Speech

Different methods have been mentioned in research for HF bandwidth extension of speech [11]. 

In general there is a blind method wherein no useful information about E1F envelope is sent 

through the channel for reconstruction of full band spectrum. In the other, some a priori 

knowledge of HF spectrum is sent.

Blind approach: When the BWE algorithm is blind, no information about the missing high- 

frequency components is passed to the decoder that reconstructs the HF part of the sound. 

Usually spectral envelope information of the HF region would be needed to adjust the HF band 

gains, if high quality sound is desired. Therefore, in blind approaches assumptions on the 

statistics of audio signals can be used to design such systems. The main advantages of using this 

approach are that such a BWE system can be applied to a wide class of signals like music and 

speech and that there are no requirements on the signal format, because the only required 

information is the actual signal waveform. The computation is not expensive and can be 

deployed in real-time bandwidth extension schemes. The drawback is that the quality of the
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bandwidth-extended output signal is significantly lower than that of the original full-bandwidth 

signal, even though it is higher than the bandwidth-limited signal. This is due to the lack of 

information about the missing high frequencies [9]. The BWE implementation in Chapter 3 was 

designed to work at an audio 10 latency of approximately 1-3 ms to fit in real-time projects in 

the future. One such blind scheme called a non-linear distortion BWE was used to achieve 

desired project results.

A Priori knowledge approach; The BWE algorithm does have a priori knowledge regarding 

the missing high-frequency components. Usually spectral envelope information of HF region 

would be sent through the channel to adjust the HF band gains at the decoder, if high quality 

sound is desired. More exact reconstruction of the original full-bandwidth signal is possible in 

this case which is not possible with the blind approach. Therefore, the quality of the bandwidth- 

extended signal can be indistinguishable from the original full bandwidth signal. The main 

advantage of this approach is high perceptual sound quality of the output signal. The drawback 

is the computation cost, as usually it is hard to make an encoder-decoder scheme work in real

time project applications. The techniques of spectral band replication (SBR [37]), linear 

prediction coding (LPC), and modified discrete cosine transform (MDCT) belong to this second 

category. In [9] some examples that follow this kind of BWE are mentioned. The line spectral 

frequencies (LSF) are an alternative representation of LPC coefficients. The low band LSF of 

the synthesis signal are obtained from the input speech signal and the high band LSF are 

estimated from the low band ones using statistical models. There is also a method of bandwidth 

extension based on codebook mapping mentioned in [9] in page 217. The implementation of 

BWE in this project eventually will be used in a real-time hand application. It may not be
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practical to do a real-time optimization of a coding-decoding mechanism for BWE (like SBR) 

along with speech enhancement algorithms as it’s expensive.

2.4 Objective Speech Quality Measures

As mentioned in Chapter 1, objective speech quality measures offer an attractive way to 

benchmark the performance of a speech processing algorithm. In this thesis, both intrusive and 

non-intrusive speech quality measures are utilized. In particular, the Perceptual Evaluation of 

Speech Quality (PESQ) metric as standardized by the International Telecommunication Union 

(ITU) [40], the Itakura-Saito (IS) metric, and the Speech To Reverberation Masking Ratio 

(SRMR) metrics are utilized. A brief description of these objective metrics is give in the 

following sections.

2.4.1 Perceptual Evaluation of Speech Quality (PESQ)

The structure of the PESQ measure is shown in Figure 2.5. The clean and degraded signals are 

first level-equalized to a standard listening level, and filtered by a filter with response similar to a 

standard telephone handset. The signals are then synchronized in time to compensate for any 

time delays, and then processed through an auditory transform to obtain the loudness spectra.

The auditory transform in PESQ uses a psychoacoustic model which translates the reference and 

degraded signals into a representation of perceived loudness in time and frequency [14].
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Figure 2.5: Structure of perceptual evaluation of speech quality (PESQ) model [14].

This is accomplished by first calculating the instantaneous power spectrum in each frame and 

grouping the spectrum into bins equally spaced on a modified Bark scale [14]. The Bark 

spectra are then equalized for linear filtering and gain variation, and converted to a loudness 

scale using a frequency-dependent threshold and exponent. These so-called “internal 

representations” are then compared, and the absolute differences between them are weighted 

appropriately based on masking, deletion, and asymmetry [14]. Finally the frequency -  specific 

and frame-by-frame differences are aggregated and mapped to a predicted Mean Opinion Score 

(MOS) using an optimized and validated mapping function.

2.4.2 Itakura-Saito (IS)

The Itakura-Saito distance is a measure of the perceptual difference between a reference power 

spectrum S(co) and a test spectrum X(a>). It was proposed by Fumitada Itakura and Shuzo Saito

in the 1970s while they were with Nippon Telegraph and Telephone.

X(ffl)
- lo g f  S{a>)A 

X(co)
-1

(2.34)
dco
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Owing to its asymmetric nature, the IS measure provides more emphasis on spectral peaks than 

spectral valleys. The IS distortion measure between the estimated and true short-time power 

spectra at the kfh frequency bin is given by:

(2.35)

2.4.3 PESQ-IS Overall

In a study comparing the performance of different objective speech quality metrics in predicting 

the subjective speech quality ratings of speech enhancement algorithms, Hu and Loizou [13] 

discovered that a combination of PESQ and IS resulted in a correlation coefficient greater than

0.9 between predicted and actual quality scores. This combination is given by:

BF1 = max(0, PESQ -1.696); (2.36)
BF2 = m ax(0,IS-11.708); (2.37)
BF3 = m ax(0,IS-3.559); (2.38)
BF4 = max(0, PESQ - 2.431 ); (2.39)
BF5 = max(0,PESQ - 2.564); (2.40)
Y TOTAL = 1.757 +1.740 x BF1 + 0.047 x BF2 - 0.049 x 

BF3 - 2.593 x BF4 +11.549 x BF5;
(2.41)

This thesis utilizes this combination of PESQ and IS to evaluate the performance of speech 

enhancement algorithms in noisy backgrounds.

2.4.4 Speech to Reverberation modulation energy ratio (SRMR):

SRMR is a non-intrusive quality measure metric. The processing performed by the cochlea is 

simulated by filtering x(n) by a 23-channel gamma-tone filter bank. The filter center
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frequencies range from 125 Hz to nearly 4 kHz (half the sampling rate) and the filter bandwidths 

are characterized by the equivalent rectangular bandwidth. For simplicity x(n) will be used to 

denote the (de)reverberant speech signal [42],

±(n) Ü <li ft 3
%
1 **
Vm

± l ( « )

i j { n )  Temporal e , ( n ) 
cnvckjpc 

coiiriputation
Windowing 

and OFT
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£j »(m)

(n)

Figure 2.6: Signal processing involved in the computation of modulation spectra [42]

•thFor each of the 23 spectral bands, the time domain temporal envelope efji) of the j  filter output 

signal x / (n) is then computed using the Hilbert transform H{.} as

ej(n) = J x j(n )2 +H{xJ(n)}2. (2.42)

This results in 23 time domain signal vectors. Each of these 23 temporal envelopes ejji) are 

multiplied by a 256-ms Hamming window with 32-ms shifts and the windowed envelope for 

each frame is represented as ej(m,n)- Modulation spectral energy for each critical band is then 

computed as the squared magnitude of the discrete Fourier transform F{.}of temporal envelope

ej{m,n)

E; (m ;/)= |F ’(e7( m ; / ) |2 (2-43)

where /indexes the modulation frequency bins. Again, an auditory-inspired modulation 

filterbank is simulated by grouping modulation frequency bins into eight bands [42].
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thThe notation ff/ks is used to denote the average modulation energy over all frames of the j

critical-band signal grouped by the modulation filter, with j = 1 , 2 3 ,  ks = 1,..., 8. The 

modulation spectrogram shows modulation energy distribution as a function of modulation 

frequency and acoustic frequency, averaged over all speech frames [42]. Additionally, the 

average per-modulation band energy rfjk is denoted by

_  _ _ L ^ -  (2-44)
Vj,ks 22 * 2 ̂  ite

It was shown in [42] that LF modulation energy is reduced for reverberant and dereverberated 

speech signals. Such effects are relatively independent of reverberation time and are likely due 

to early reflections. But reverberation time dependency was observed for higher frequency 

modulation channels [42]. It was also shown [42] that the modulation energy increases almost 

linearly with reverberation time. Moreover, the delay and sum beamformer is shown to reduce 

high-frequency modulation energy by approximately 1 dB relative to reverberant speech. An 

approximate 6.5 dB difference remains between anechoic and dereverberated speech for a 

reverberation time of 533 ms [42]. Using this insight, an adaptive measure termed speech to 

reverberation modulation energy ratio (SRMR) is proposed for non-intrusive quality 

measurement of reverberant and dereverberated speech. The measure is given by

4

IX
SRMR = ^ —  (2.45)

IX
k = 5

and is adaptive as the upper summation bound K* in the denominator is dependent on the speech 

signal under test [42]. In this thesis, the SRMR measure is used to benchmark the performance 

of speech enhancement algorithms in reverberant environments.
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Chapter 3 : Algorithm Implementation and Results

3.1 System Description

The entire software was written in C with floating point precision using the Intel IPP DSP library 

in an Eclipse CDT IDE on Linux operating system. Gnuplot [15], Octave and MATLAB were 

used for plotting and analysis. This chapter is divided into three main headings: Ephraim-Malah 

log MMSE, HSE and BWE. All these algorithms are cascaded in series, in the same order. The 

speech enhancement is followed by BWE, cascaded in series. Outputs of the speech 

enhancement system comprising the logMMSE and HSE were sampled at a rate of 8 kHz. The 

analysis frame rate was set to 32 ms (256 audio samples). The hop-size was 8 ms at an analysis 

overlap of 75%. The FFT size was set to 256. A Hamming window was used for analysis of 

corrupted inputs. The outputs of the BWE were sampled at 16 kHz per frame rate.

3.2 EMSR logMMSE Implementation

As shown in Chapter 2, the desired amplitude estimator is given by:

A 1 0Oe " i
Ak = — —  exp{— | ----- dt} Rk

1 +  &  2 tk (3.1)

It is useful to consider Ak as being obtained from Rk, by a multiplicative nonlinear gain function 

which depends only on the a priori and the a posteriori SNR %k and yk, respectively. This gain 

function is defined by

G(Sk,yk) A
A
A

(3.2)
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The logMMSE estimator algorithm can therefore be implemented using the following four steps: 

For each windowed speech frame:

1. Compute the DFT of the noisy speech signal: Y (cok ) = Yk exp( j 0 Y (k ) ) .

2. Estimate the a posteriori SNR asyk -  Yk2 / Xd (A:) where hd{k) is the power spectrum of the 

noise signal computed during non-speech activity (e.g., during initial silence periods or 

during speech pauses). Then estimate %k using any one of the two equations.

4k(p) = max(yk ( / ? ) - 1,0)

4t ( P ) ‘ ft
x k\ p - 1)
Ad( k ,p - \ )

+ (\-p)max[yk(p)-\ ,0\

(3.3)

(3.4)

where 0 < a  < 1 is the weighting factor and p  is time frame number. This equation needs 

initial conditions for the first frame. The following initial conditions were recommended:

^  (0) = fi + (1 -  fi) max[ÿk (0) -1,0] (3.5)

Good results were obtained with /? = 0.98.

3. Estimate the enhanced signal magnitude.

A A

4. Construct the enhanced signal magnitude X k (to) = X k exp(y 6y (k ) ) . Compute the inverse

A

DFT of X k (cok ) to get the enhanced time-domain signal x(n) corresponding to a given input 

speech frame.

3.2.1 A Priori Estimator: Decision Directed Approach

The MMSE amplitude estimator was derived under the assumption that the a priori SNR and the 

noise variance are known. In practice, however, we only have access to the noisy speech signal.
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The noise variance can be estimated easily assuming noise stationarity, and can in principle be 

computed during non speech activity. Ephraim-Malah found that the MMSE estimator was 

relatively insensitive to small perturbations of the %k value. More interestingly, the MMSE was

more sensitive to underestimates rather than overestimates of the a priori SNR£t . There are

several proposed methods in the literature for computing the a priori SNR estimates but in this 

implementation, a decision-directed approach is followed.

Let {p) , Ak ( p ) , Ad (k, p) and yk (p) denote the a priori SNR, the amplitude, the noise

variance, and the a posteriori SNR, respectively, of the corresponding k!h spectral component in 

the p lh analysis frame. The derivation of the a priori SNR estimator is based here on the 

definition of %k (p), and its relation to the a posteriori SNR yk (p), as given below:

b k ( P ) =  .  , ,Ad(k ,p )

U p )  = E{yk(p )~  1}

Using the above equations, we get

(p) = E\ -  (p) -1]
* ’ 2 Ad(k ,p )  2 k

Zk(p)= P Al ip l)A d ( k , p -  1)
+ (i -  P ) P [ r k ( p ) ~  i],o  < p  < i

(3.6)

(3.7)

(3.8)

(3.9)
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where Ak ( p - 1) is the amplitude estimator of the kth signal spectral component in the (p - l ) ,h 

analysis frame, and P[.] is an operator which is defined by

if  x  > 0 
Otherwise

3.2.2 Elimination of Musical Noise

(3.10)

Cappe [39] noted that the effectiveness of the a priori SNR estimator Çk is closely coupled to 

the suppression rule. The Ephraim-Malah suppression rule (EMSR) is greatly affected by both a 

priori ( gk) and a posteriori ( y k ) parameters. Of these two parameters, the a priori Çk is the 

dominant one and exerts the most influence on suppression.

S N R s  in s u c e s s iv e  sho rt t im e f r a m e s

Figure 3.1: The a posteriori and a priori adaptation for an adaptive a smoothing factor 

As shown in Figure 3.1, during speech presence, the a posteriori clearly follows a priori. It must 

be noted that there is no big fluctuation in values of these two SNRs. When y k stays below or is

in proximity to 0 dB, the %k estimate corresponds to a smoothed version o iy k over successive
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short-time frames. As a consequence, the variance of %k is much smaller than the value of yk .

When Yk is considerably larger than 0 dB, the %k estimates follow the yk estimates very closely

with a simple delay of one short-time frame. In both cases, the decision-directed estimator of %k

produces smoothed estimates of the true a priori SNR. In contrast, the spectral subtraction 

algorithm depends on the estimation of the a posteriori SNR, which can change radically from 

frame to frame [14]. Therefore, the decision-directed estimator is highly preferred.

3.2.3 Statistical Model VAD

A statistical-model based voice activity detector (VAD) was used to update the noise spectrum 

during speech-absent periods [14]. The following VAD decision rule was used:

N

N  -  1 
I  >og 

k = 1

>
<

H 0

where
At ~ & -  

k i+4,
exp{ r A k , 

i + &

where yk and %k are the a posteriori and a priori SNR’s and %k is computed using the decision 

directed approach with ¡5 = 0.98, N is the size of FFT, Hi denotes the hypothesis of speech 

presence, Ho denotes the hypothesis of speech absence, and g is a fixed threshold, which was set
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to = 0.15. When speech absence was detected, the noise power spectrum was updated 

according to:

Dk(p) = ( \ -J3) .Yk\ p )  + /3Dk( p - \ )

where /? = 0.98, Dk (p) is the noise power spectrum in frame p  (for frequency bin k) and 

Yk2(p) is the noisy speech power spectrum [14].

3.2.4 The influence of factor (3 (adaptive)

The alpha parameter was also adaptively calculated as mentioned in [68]. In the decision-

directed approach, the parameter (3 is used to control the speed of the forgetfulness of the

estimator. A low value of ¡3 will be suitable for rapidly changing speech regions, while a high

value of a  will be suitable for near stationary speech frames. A fixed a  value was normally

chosen to be in the range of 0.95 to 0.99. In this implementation, a fixed value of 0.98 also

works very well. However, it is possible to deduce whether the speech frames are changing

rapidly or not by computing the frame energy. The common assumption is that noise is

stationary and the noise energy does not change significantly from frame to frame. Hence,

significant changes in frame energy from frame to frame must be due to the underlying speech

changes. A possible formulation using only the previous frame energy is given below:

I FEp -  FE , (3-n >
j3= 1--------- p--------

]  max{FEp,FEp_x)

where

FE = Y jY( k )2 (3-12)
k
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3.3 HSE Implementation Details

The signal can be corrupted by background noises like multi-talker babble, train, automobile, 

restaurant noises, and street noises or it can be corrupted by early and diffused reflections in any 

sort of reverberant chamber ranging from a closed space to a concert hall. The HSE algorithm 

enhances the corrupted signal by harmonic emphasis using an adaptive comb filtering scheme.

An adaptive resonant comb frequency response was used to enhance the harmonic sinusoidal 

peaks in the spectrum by submerging the noisy components in the valleys between resonant 

comb structures in the spectral domain. The Inverse FFT was applied to the clean spectrum to 

reconstruct back the signal in time domain. Two design parameters were employed in the 

suppression gain, namely, the Frequency domain noise floor parameters (FDNFP, Kk) and gain

factor ( x k )• The FDNFP controls the level of allowable residual noise in the enhanced speech.

Enhanced harmonic structures were incorporated into the FDNFP by time-domain processing of 

the linear prediction residuals of voiced speech. An adaptive was deployed for enhancing the 

harmonics further. This algorithm was designed with an intention to integrate it into hearing aid 

or cell phone speech enhancement applications.

3.3.1 Frequency Domain Noise Floor Parameter

The fundamental frequency was found using the autocorrelation method described later in this 

chapter. Because voiced speech is periodic in nature, its magnitude spectrum exhibits peaks and 

valleys separated by harmonics of the fundamental frequency. The harmonic structure of clean 

voiced speech is often corrupted by the additive noise spectrum. Besides suppressing the noise
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to a comfortable low-level, the FDNFP can be used to enforce a harmonic-shaping on the 

residual noise spectrum in the enhanced speech.

The motivation for time domain processing is to preserve the correlation between both spectral 

amplitudes and phases when restoring the harmonics. Because the phase coherence in voiced 

speech is a significant source of correlation and corresponds to energy localization in the time 

domain, the harmonic information from noisy speech is retrieved by enhancing the excitation 

peaks in the linear prediction residuals [2].

The correct linear prediction (LP) residual peaks separated in a given time frame due to the 

periodicity of speech are found by using the algorithm depicted in Figure 3.2. The LP residual 

array is sorted in descending order and stored in array X. The first element is assumed to be a 

right LP peak and marked as a reference peak. An artificial LP peak array Y is formed using this 

reference peak and fundamental time period information such that the

LP peak array e (0, frame length -1 ) in samples .i.e. the LP peak array is limited to values in 

between 0 and frame length-1.

The elements in Y are traced for nearest neighbors in array X and real LP spikes are stored in 

array Z. If all the elements in Z are closer to elements in artificial array Y within a small 

threshold limit (5 samples), the array Z is declared to have the correct LP spikes for an analysis 

time frame. If not, the next element in array X is chosen to be the reference LP peak and the 

whole sequence of processing is repeated until the correct LP peaks are obtained. Kaiser
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windows are applied around these LP peaks as shown in Figure 3.3 to get smooth FDNFP in the 

time domain.

Figure 3.2: System for finding the LP residual peaks
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3.3.2 Windowing

For voiced speech, a linear prediction (LP) analysis was performed on the noisy speech. A 

classical autocorrelation method was used to derive the LP parameters. The model order was set 

to 15. The LP residual signal was processed in parallel by two different methods to enhance the 

excitation peaks. The first method attenuates the signal amplitudes between excitation peaks by 

windowing the LP residual signal with a Kaiser-window series. The duration of each window 

was set to be equal to the pitch period. The centers of the windows were aligned in time with the 

peaks of excitation pulses. The purpose of windowing was to enhance the amplitude contrast 

between peaks and valleys of the excitation pulses [2].

3.3.3 Averaging

The motivation for this averaging was based on the fact that while the LP bursts of voiced speech 

were quasi-periodic, the additive noise tends to be random and uncorrelated [2]. By averaging 

the LP residuals over several pitch periods, the periodic components will therefore be enhanced 

while the uncorrelated random components will be suppressed. In this method, the LP residuals 

were averaged over the pitch epoch.

—  Y u ( n  + iP) n = 0,1,2...P-1
M  /=o

(3.13)

where ua (n) and u(n) were the averaged and noisy LP residuals, respectively. M was the largest

integer number of pitch periods in the current analysis frame. P was the number of samples in 

one pitch period, n was the time sample index, and i was the pitch epoch index. It should be
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noted that the duration of ua(n ) , the averaged LP residual, was exactly one pitch period [2], 

Subsequently, ua(n) was repeated during the whole analysis frame. In order to provide the

necessary pitch information for the aforementioned windowing and averaging process, a pitch 

detection algorithm was run in parallel to determine the pitch period of the current frame. The 

SIFT (Simple Inverse Filter Tracking) method was used for pitch determination [3].

uh(n) = quw(n) + ( \-q )u c(rt) n = 0 , . . . l - \  (3.14)

where q was a weighting factor, and uw(n) was the window-enhanced LP residuals. uc(n) was 

obtained by periodically extending ua(n) in over the entire duration of the analysis frame. 

uh(n) was the final LP residual with enhanced periodicity. Because the averaging-enhanced 

residuals may not be as accurate as windowing-enhanced residuals, due to shimmer for example, 

the parameter was set to 0.8. uh(ri) was then transformed to the frequency domain, and its

magnitude spectrum was normalized to 0 dB by its maximum magnitude. Finally, the FDNFP 

was down by 5 dB for strongly voiced speech [2] to allow for some headroom.

The /? parameter for Kaiser Window was set to 4 by default. As the value of parameter/? goes 

higher, the windows become narrow and hence the smoother the LP residual. The /? parameter 

was adjusted based on performance of the system for different inputs.
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FDNFP: Frequency Domain
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Figure 3.5: FDNFP: LP residual Frequency Spectrum (top); Smooth spectrum (bottom)

3.3.4 Fundamental frequency estimation:

An autocorrelation based Fo estimation as mentioned in [3] was carried out to estimate the 

fundamental frequency in a given time frame. The analysis settings for Fo estimation were the 

same as the analysis settings for the entire system. A pre-emphasis filter was applied to the input 

signal. Then, the input samples were low pass filtered with a FIR filter of cut-off frequency 800 

Hz and downsampled by a factor of 5. A linear prediction analysis was done with an order of 4. 

The LP residual was obtained after inverse filtering. The autocorrelation matrix for the LP 

residual signal was calculated. The autocorrelation function was searched for a maximum (other 

than the value at zero lag) within a range of allowed values which corresponded to Fo from 40 to 

500 Hz, and which also exceeded a certain threshold value (0.4). If this search succeeded, the
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frame was classified as voiced; otherwise the frame was classified unvoiced. Figure 3.6 has 

maximum lag sample 60. The fundamental frequency equals sampling rate (8 kHz) divided by 

60 which equals 133.33 Hz.
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Figure 3.6: Autocorrelation based fundamental frequency estimation.
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Figure 3.7: Block diagram for fundamental frequency detection [3].
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3.3.5 Peak picking algorithm & Harmonic peak test:

The peak picking algorithm picks harmonic peaks from the smooth FDNFP spectrum. For 

voiced frames, the estimation of the maximum voiced frequency was based on the following 

peak picking algorithm. In the frequency range [«0 / 2,3co0 / 2], the largest sine-wave amplitude

(peak) was picked. Let a>c denote the frequency location of the peak and let A(coc) denote the 

amplitude (in decibels) at coc . In order to distinguish between true and spurious peaks, a second 

amplitude measure referred as cumulative amplitude, Ac was used.

Figure 3.8: Cumulative amplitude definition [4]

This amplitude was defined as a non-normal ized sum of the amplitudes of all of the samples 

from the previous valley to the following valley of the peak. The peaks in the frequency range 

[«c — o)0 / 2, coc + (Oq / 2] were also considered and the two types of the amplitudes were

calculated for each peak [4]. Let «¿denote the frequencies of these peaks and let AMioj,) and 

A M c(cot) be the amplitude and cumulative amplitude, respectively, at «, . Denote by

50



AM c (co, ) the mean value of these cumulative amplitudes, and by / the number of the nearest

harmonic to coc, the following “harmonic test” was applied to the peak at coc if

^ ( 0 ) ^   ̂ 1 3
A M c(œ,)

(3.15)

or

then if

and

AM C(coc) ~ max{AM {at)} > 8

fcf - t o t  
lcon

< 11%

(3.16)

(3.17)

[¡/ = min
r SFM ^  
\  SFM max ’ ,

> 0.1
(3.18)

frequency was declared voiced; otherwise coc was declared unvoiced. The quantity Spectral 

Flatness Measure (SFM) denotes the spectral flatness measure as defined in:

SFM = lOloglO
( r*Gm
\ A m  J (3.19)

where Gm and Am are the geometric mean and arithmetic mean of the power spectrum in the 

range [coc - co0I2 ,cqc +eo012] [2], In this software SFMmax was set to -50 dB, which indicates 

that the signal is entirely tone like. Having a classified frequency as voiced or as unvoiced, then 

the interval [coc -co012, coc +3 co0/2] was searched for its largest peak and the same “harmonic 

test” was applied. The process was continued throughout the speech band. The y/ parameter 

was used as a tonality test. The advantage of the tonality test was to effectively remove spurious
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peaks caused by white noise [2], MVF is the maximum voiced frequency or peak frequency in a 

spectral chunk.

Time Frame = 2

Figure 3.9: Part of the spectrum within a time frame subjected to harmonic peak test.

3.3.6 Post-processing

The post-processing is done in three stages:

1. Interpolation of a single harmonic peak: A local peak was declared a harmonic peak if its 

frequency was within 15% of, the nearest harmonic frequency and there were at least 

three peaks before and two peaks after it [2].

2. Rejection of isolated peaks: A harmonic peak was rejected if its distance to the nearest 

neighboring peaks was either less than 0.85eyoor greater than 1.15cwo.

3. Recovery of multiple submerged intermediate peaks: Assume LI and M l be some 

positive integers LI + 3 < M 1. If L I - 1, then M  needs to be minimum value of 4. 

Multiple harmonic peaks were interpolated if

• There were no peaks picked in the frequency range A/kq, ].
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• There were at least three good harmonic peaks in the range [0, Zl<w0]and at least another 

three harmonics m[M\(oQ,K] [2]

If both of above conditions were true, then harmonics were interpolated in range[L\co0,M\o)0]. 

The value of LI equals Ml after recovering intermediate peaks within the 

bandwidth[L\o)0,M\o)0]. For example, LI becomes 4 and Ml becomes 7 after computing for the

first spectral band. An intermediate peak recovery is done for next spectral band and the 

computation is continued towards Nyquist frequency.

3.3.7 Adaptive comb filter

After finding as many additional frequency locations of harmonic peaks as possible, an adaptive 

comb filter was designed. In the first step, an initial comb filter was implemented in the 

frequency domain as:

-2 {a k-(ocy

H M )  = B e c
Bk,

,(Qk Si\cOc-CO0l2,(Qc+CQ0l2\
Otherwise

(3.20)

where coc was the peak frequency as determined by the modified peak-picking method and post

processing. / / ,  (cok) was the frequency response of the initial comb filter at frequency cok . 

cr controls the width of the comb filter and was set to 0.002 in our implementation.
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Figure 3.10: Adaptive comb filter (min ACF gain -20dBFS)

The quantity Bc specifies the filter gain at peak frequency coc. The comb structures were only 

implemented within the vicinity of one fundamental frequency range centered at the peak 

frequency. The value of ^determ ines the filter response outside the frequency range. Since

there were many design choices for the gain factor, designs of Bc and Bk were also flexible [2].

3.3.8 Spectral Subtraction

The Bc and Bk gains were implemented as Wiener-type gains

B =
C Sy(û>c)

Bk
Sy(CDk)

(3.21)

(3.22)
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A A #
where S x was the estimated power spectrum of clean speech, and Sy was the spectrum of noisy

speech which can be computed directly from the noisy speech. The accurate estimation of the 

clean speech spectrum was very crucial to the performance of the harmonic enhancement method 

[2]. We have used the classical spectral subtraction

S X

Sy( k ) - S n(k), Sy( k ) > S n(k)

' ssn(k), sy(k )< sn(k) (3.23)

A

where 8  = 0.025 was a zero-flooring parameter and Sn (k ) was the estimated spectrum of the

/K ^
noise. Sn(k) was simply the index of frequency. Estimated noise spectrum S',, (k) was obtained 

from the initial noise only frames. Eventually, the gain factor was obtained by

Xk = m ax(i/l K ) -20  dB) (3.24)

The minimum adaptive comb filter response was mentioned to be -20 dBFS in [2] according to 

equation (3.24). For silent frames, it was mentioned as -30 dBFS. However, in the HSE speech 

enhancement or logMMSE-HSE system, -36 dB was set as the minimum response for the 

dereverberation system and -6 dB or -36 dB for the noise reduction system as mentioned in the 

section on software settings. These values give best possible sound quality and objective scores.

3.3.9 Software settings: Noise reduction & Dereverberation

In order to achieve best possible objective results, the software parameter settings in Table 3.1 

need to be used, ‘min ACF Gain’ is the minimum adaptive comb filter response gain.
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Algorithm Speech
Enhancement

Focus

min
ACF
Gain

(dBFS)

Noise
Estimate
Updates

Log
Frequency

Gain

Input
Stimuli

logMMSE Noise
reduction

N/A Yes optional Noisy speech

HSE Noise
reduction

-36 No ON Noisy speech

logMMSE+
HSE

Noise
reduction

-6 No ON Noisy speech

MB + HSE Noise
reduction

-6 No ON Noisy speech

logMMSE Dereverberation N/A Yes optional Speech degraded 
by Reverberation

HSE Dereverberation -36 No ON Speech degraded 
by Reverberation

logMMSE+
HSE

Dereverberation -36 No ON Speech degraded 
by Reverberation

MB + HSE Dereverberation -36 No ON Speech degraded 
by Reverberation

Table 3.1 : Software parameter settings (Speech Enhancement)

It turned out that using the VAD for HSE and logMMSE plus HSE algorithms, had a negative 

effect on getting high objective MOS scores. In noise-only frames, no useful harmonic peaks 

were picked by the harmonic peak test subroutine. In such cases, the response of the comb filter 

is flat. Therefore, the adaptive comb filter suppresses the noise heavily in noise only frames. 

Hence, there was no need to deploy a VAD. The adaptive comb filter indirectly does the job of a 

VAD. Since VAD was not used, noise estimate updates were also not involved in the getting the 

objective scores reported in chapter 4.

The log-frequency spectrum of the FDNFP can be optionally multiplied with a gain factor of 1.5 

(as shown in Figure 3.11) after filtering the log-magnitude spectrum with ACF coefficients and 

just before reconstructing the time domain signal using IFFT. This operation boosts the peaks 

further and suppresses noise contents further. Care must be taken to multiply this gain factor
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only in the log frequency domain spectrum. Doing this, significantly improves objective MOS

scores in many cases.

Log Frequency Gain

Figure 3.11: Multiplying log-Frequency spectra by gain 1.5 just before signal reconstruction

3.4 Bandwidth Extension (BWE) Implementation

This algorithm reconstructs HF harmonics but complies with requirements of low computational 

complexity, low memory requirements, independence of signal format (PCM), applicability to 

music and speech and no requirement of a priori knowledge about the missing high frequencies. 

Figure 3.12 displays the proposed processing scheme. There are two signal branches, the lower 

of which passes the input signal unprocessed. The spectrum extension and all signal processing
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takes place in the upper branch. Using FIL1 filter, the highest octave present in the signal is 

extracted viz l/2fu-fu, where fu is the upper frequency limit of the input signal.

Figure 3.12: High-frequency bandwidth extension [64]

“FIL” is an acronym used for filter. In the non-linear device (NLD block), harmonics were 

created. The first harmonic, which is just the fundamental, is in the frequency range l/2fu-fu; the 

second harmonic is in the frequency range fu-2fu, the third harmonic is in the range 2fu-3fu, etc.

In FIL2 filter, the desired part of the complete harmonics signal is extracted. Typically, this will 

be the range of the second harmonic, thus fu-2fu. The output of FIL2 is scaled by a constant gain 

factor Gain = 0.5. The processed delayed signal is added to the direct unprocessed signal.

The HF limit of the output signal now equals 2fu, double that of the input signal. Depending on 

the application, the filters FIL1 and FIL2 may be fixed or signal dependent. The non-linear 

device NLD is the element that creates the additional high frequencies in the output spectrum 

[64]. The target is to add only the next highest octave to the input spectrum. Therefore, a 

nonlinear device that generates mainly the second harmonic is needed. Independent of signal 

level, the system should add the same amount of harmonics to the signal. Therefore, amplitude 

linearity is desirable.
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BWE: Filter responses

Figure 3.13: Squared filter magnitudes, FIL1 and FIL2 [64]

A full-wave rectifier has both these characteristics and is therefore highly suitable for use as non

linear device in the scheme of Figure 3.12. On a negative note, the non-linear processing besides 

generating harmonic frequencies also introduces inter-modulation distortion. In some situations 

this can give rise to audible artifacts [64]. If an appropriate delay is also used in the lower 

branch, the two signal branches will add exactly in phase [64]. This has the advantage that 

transients in the input signal will remain compact in the output (because of the filter’s constant 

group delay), which is beneficial for perceptual quality. Therefore, filters FIL1 and FIL2 should 

be either FIR filters, or linear phase HR filters (using time-forward and time-reversed filtering 

filtfilt function in MATLAB), which may be more efficient [64]. In the thesis code, an elliptic 

filter of the order 2 was chosen as a choice for FIL1 and a second order Butterworth filter was 

chosen for FIL2.
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3.5 Sample Results -  Speech Enhancement in Noise

Clean Speech

Figure 3.14: Time Domain output of different algorithms

Clean Speech
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Figure 3.15: Sonogram of output of different algorithms
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Figure 3.14 and Figure 3.15 show the temporal and spectrogram plots of clean speech, speech 

corrupted by babble noise at SNR of 5 dB, output of the logMMSE algorithm, HSE algorithm, 

and logMMSE plus HSE algorithms cascaded together in series. It is clear from the 

spectrogram of the noisy signal that a significant portion of speech spectrum is masked by noise. 

The spectrogram of the logMMSE output depicts a reduction in noisy spectral components and a 

betterment of the speech components in the time-frequency plane. Furthermore, the application 

of harmonic enhancement is readily apparent the bottom right panel, where the dominant 

harmonic peaks belonging to the speech signal are further enhanced. A complete objective 

characterization of the logMMSE and HSE algorithms across a number of noisy environments is 

given in Chapter 4.

3.6 Sample Results -  Speech Enhancement in Reverberation

3.6.1 RIR Databases

In order to evaluate the performance of the logMMSE and HSE algorithms with reverberated 

speech, two different RIR databases were utilized, and these are described below.

The first sets of RIRs were recorded at the reverberation chamber at the National Centre for 

Audiology (NCA) at the University of Western Ontario. Two reverberation chamber settings 

that correspond to reverberation times of 0.88 (moderate reverberation conditions) and 1.39 

seconds (severe reverberation conditions) were set up and impulse responses were collected.
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The impulse responses were sampled at 44.1 kHz and later downsampled to 8 kHz or 16 kHz. 

These impulse responses were convolved with the clean speech signals sampled at 8 kHz to 

create the necessary reverberant speech samples.

The Aachen Impulse Response (AIR) [65] database is a set of impulse responses that were 

measured in a wide variety of rooms. The first version of this database was published in 2009 

and included binaural room impulse responses (BRIR) measured with a dummy head in different 

locations with different acoustical properties, such as reverberation time and room volume. In a 

first update, the database was extended to BRIRs with various azimuth angles between head and 

desired source.

All impulse responses of the AIR database are stored as double-precision binary floating-point 

MAT-files which can be directly imported into MATLAB. Additionally, a load function 

(load air.m) as well as an example script (load air example.m) was provided in [65] to allow for 

a rapid integration into existing evaluation frameworks.

Room # Type Speaker-Microphone Distances
1 Booth (0.5m, lm, 1.5m}
2 Office {lm, 2m, 3m}
3 Meeting {1.45m, 1.7m, 1.9m, 2.25m, 2.8m}
4 Lecture {2.25m, 4m, 5.56m, 7.1m, 8.68m, 10.2m}
5 Stairway {lm, 2m, 3m}

Table 3.2: AIR database settings and options

A MATLAB script was used to choose room options, speaker-microphone distances and AIR 

azimuth of 90 degrees was set for front (range [0 180] in 15 degree increments). The impulse
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responses were first loaded and sampled at 44.1 kHz and later downsampled to 16 kHz. Once 

the appropriate binaural impulse response was loaded for a set of parameters, clean stereo speech 

files were convolved with the impulse responses and the output speech corrupted by 

reverberation was written to hard disk and finally downsampled again by a factor of 2 to get 

reverberation corrupted speech sampled at 8 kHz.

These corrupted files were passed as Inputs to the logMMSE-HSE dereverberation algorithm, 

and the outputs of the algorithm were stored for objective analysis using SRMR. The objective 

SRMR analysis results are discussed in Chapter 4, and detailed tables are published in the 

appendix.

3.6.2 Sample Results

Figure 3.16 displays the results of applying the combination of the logMMSE and HSE 

algorithms to reverberant speech generated using the NCA RIR database. The impact of 

reverberation on speech components can be seen in the subplots in the second column of this 

plot, where the well-defined harmonic content and the smooth formant transitions are obscured 

by reverberation, more so at higher reverberation time. Application of the enhancement 

algorithm appears to retrieve some of the harmonic content.
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Reverb Speech RT60 0.88 Seconds

Reverb Speech RTBO 1.39 Seconds
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Figure 3.16: Dereverberation using logMMSE-HSE (NCA Impulse Response)

Figure 3.17 depicts a similar set of results with the AIR database. From the left column of this 

Figure, it can be observed that a progressive increase in the reverberation time results increased 

smudging of the speech components in the time-frequency plane. The speech enhancement 

algorithms appear to restore some of the structural elements of the underlying clean speech 

signal.

64



F
re

q
u

e
n

cy
 (

H
z)

Clean Speech

Time (Seconds)

Figure 3.17: Dereverberation: AIR database Spectrograms
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For a closer look at the performance of the speech enhancement algorithms with reverberant 

speech, Figure 3.18 and Figure 3.19 show water fall plots of a clean speech signal and 

reverberant speech signal respectively. The arrows in Figure 3.18 show places in the spectrum 

where initially there is not much energy. Usually the higher frequencies are absorbed a lot faster 

than low frequencies. But when the reverberation time is quite longer (RT6o = 0.88 seconds) as 

in Figure 3.19 the high frequencies and parts of the spectrum that do not contribute to speech 

harmonics are notable and they are shown with arrows. Frames 25 to 35 are silent frames in the 

clean speech signal, .i.e. parts of the wave data where there is no meaningful speech. The 

reverberation effects are pronounced in the high frequency region and in between frames 25 to 

35 where reverberation tail effects are seen that are caused by sound decay due to lack of quick 

sound absorption from the surrounding enclosure. In Figure 3.20, the arrows point to the places 

in comb filter response which minimizes the reverberation effects after the filter application to 

corrupted signal. The high frequencies which were caused by reverberation effects of the clean 

speech have been removed in Figure 3.21. In the time frames where no useful harmonic peak is 

picked by the peak picking algorithm, a flat comb filter response at -36 dBFS is applied that 

suppresses the reverberation tail effects to noise floor. This suppression mostly happens in 

silence frames where diffused reverberations are prevalent as in frames 25 to 35. Figure 3.21 

shows the waterfall plot of the dereverberated speech signal, where it can be seen that the 

affected regions have been enhanced. It must be noted, however, that the reverberation effect is 

not completely removed. The time frames of the speech signal used in this waterfall plot 

example, do not start at the actual 0th frame or the beginning of the sound. It was arbitrarily 

focused or zoomed on to the end of a speech syllable and start of a consecutive speech syllable to 

show the reverb tail effects in the silent/noise only frame inbetween speech syllables.
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Figure 3.18: Waterfall plot of clean signal
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Figure 3.19: Waterfall plot of speech corrupted by Reverb (RT60 = 0.88 sec)
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Figure 3.20: Waterfall plot of ACF with flat response at -20dBFS where there is a decay of
reflections

Dereverberation Output

Frequency bins u Time Frames

Figure 3.21: Waterfall plot of Dereverberation output effects of reverb removed
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Figures 3.22 and 3.23 depict the results from the application of BWE to enhanced narrowband 

speech samples. In Figure 3.22, the bottom two spectrograms in the second column show the 

extension of the low-frequency spectrum into higher frequencies, after the application of the 

speech enhancement algorithms. Similarly, Figure 3.23 displays the spectrograms of BWE 

applied to dereverberated speech, where the generation of high frequency content is notable.

B W E : HF R e co n s tru c tio n  us ing  NLD
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Figure 3.22: Noise reduction-BWE output Spectrograms (for SNR 5dB)
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Figure 3.23: Reverberant speech, dereverberated speech, and BWE (NLD) speech.
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Chapter 4 : Algorithm Evaluation

4.1 Introduction

In this chapter, the performance of the harmonic speech enhancement algorithm was evaluated 

objectively with noisy and reverberant speech databases. For evaluating the performance in 

noisy environments, the publicly available NOIZEUS database [14] is utilized. Performance 

evaluation in reverberant environments was performed using the impulse response databases 

detailed in Chapter 3.

4.2 Algorithm Evaluation -  Noisy Speech 

4.2.1 NOIZEUS Database

NOIZEUS is a publicly available noisy speech corpus developed for evaluating the performance 

of speech enhancement algorithms [14]. It consists of speech samples uttered by three male and 

three female speakers, which were subsequently processed by a filter simulating the frequency 

response characteristics of telephones. The list of 16 sentences used for performance evaluation 

in this thesis is given in the Appendix (Table 4.9). Each of these sentences was mixed with one 

of four different noise samples: multi-talker babble, car interior noise, street noise, and train 

station noise at two different SNRs: 5 dB and 10 dB. The algorithms were then applied 

individually to each noisy speech sentence, and the objective measure of speech quality was 

estimated for the enhanced speech sample using the procedure described below.
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4.2.2 Comparisons to Other Algorithms

As discussed in Chapter 2, Hu and Loizou [12], [13] evaluated a number of speech enhancement 

algorithms both objectively and subjectively. These algorithms are tabulated in Table 4.1, and 

although these algorithms have not been thoroughly studied in this thesis, their objective speech 

quality scores are included in the subsequent results for comparative purposes, and to position 

the results from HSE in context.

KLT Karhunen-Loeve Transform
pKLT Perceptual Karhunen-Loeve Transform
MMSE
SPU

Minimum Mean Square Estimation Speech Presence Uncertainty

logMMSE Log Minimum Mean Square Estimation
logMMSE
SPU

Log Minimum Mean Square Estimation Speech Presence Uncertainty

pMMSE Speech Enhancement based on perceptually motivated Bayesian Estimators of 
the Magnitude Spectrum

RDC Spectral Subtraction using Reduced Delay Convolution and Adaptive 
Averaging.

RDC-ne RDC Algorithm That Included Noise Estimation
MB Multi-Band Spectral Subtraction
WT Speech Enhancement based on Wavelet Thresholding the Multitaper Spectrum
Wiener-as Speech Enhancement based on A Priori Signal To Noise Estimation
AudSup Speech Enhancement based on Audible Noise Suppression

Table 4.1: List of speech enhancement algorithms included for comparative purposes.

4.2.3 Results

Figures 4.1 and 4.2 depict the predicted speech quality scores averaged over the 16 speech 

sentences for the multi-talker babble condition at 5 dB and 10 dB SNRs respectively. Table 6 in

[12] presents results obtained from comparative statistical analysis of overall quality (OVRL)
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scores. The table mentions list of algorithms that perform equally well despite variations in the 

subjective MOS scores. The subjective scores of such speech enhancement algorithms are 

plotted in blue and magenta colors in the bar plots of Figure 4.1 to Figure 4.8. Some algorithms 

mentioned in that table were said to perform poorly.

With logMMSE score as reference, Weiner-as was found to be the closest algorithm with MOS 

scores that indicated poor performance. The algorithms that had scores in between the scores of 

logMMSE and Weiner-as were said to be performing same as the logMMSE algorithm. There 

was a MOS score decrement of 0.25 between logMMSE and Weiner-as algorithms. Therefore, a 

change of 0.25 in MOS scores was found to be needed in order to sense a significant perceptual 

degradation of sound quality. Thereby, a confidence interval of 0.25 was introduced around 

logMMSE subjective MOS in the plots of the following figures and objective MOS of HSE, 

logMMSE-HSE and MB-HSE were plotted against it. Since the correlation between the 

subjective and objective MOS of logMMSE and Noisy were found to be very good, it seemed 

justifiable to have subjective MOS of different algorithm being compared against the objective 

scores of HSE and logMMSE plus HSE. A confidence interval of 0.25 and 0.20 were used for 5 

dB and 10 dB SNRs respectively across all cases of background noises after analyzing the table 6 

in [12]. Figure 4.2 has all the subjective and objective MOS differences labeled properly for 

clarification. It is seen that all cases of 5 dB SNRs irrespective of background noises, the 

logMMSE-HSE lies within the confidence interval but for most of the 10 dB SNR cases, the 

logMMSE-HSE objective MOS exceeds the 0.25 confidence interval which equates to 

significant perceptual improvement. In almost all cases of logMMSE-HSE, MOS improvements 

are seen as compared against logMMSE.
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Figure 4.1: Predicted speech quality for different algorithms: multi-talker babble at 5 dB SNR.
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Figure 4.2: Predicted speech quality for different algorithms: babble at 10 dB SNR.
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Of particular interest are the speech quality scores for noisy (unprocessed) speech, and the scores 

computed from enhanced speech samples produced by logMMSE, HSE, and logMMSE-HSE in 

comparison to the other algorithms. It can be seen from these figures that the enhanced speech 

samples from logMMSE and HSE algorithms are better in quality than the unprocessed noisy 

speech. Furthermore, the combination of logMMSE and HSE produced a better quality score, 

particularly at the 10 dB SNR condition, highlighting the synergistic effect of cascading these 

two speech enhancement strategies. In order to further probe the synergistic effect, the HSE 

algorithm was cascaded with one of the other better performing algorithms, viz. the MB 

algorithm. A clear improvement in the speech quality score can be seen for the MB + HSE 

combination at 10 dB SNR.

Figure 4.3 and Figure 4.4 display the results with car interior noise at 5 dB and 10 dB SNRs 

respectively. At 10 dB SNR, the substantial increase in speech quality score is evident with the 

combination of logMMSE and HSE algorithms. While there is an improvement in the quality 

score for the same combination in the 5 dB SNR condition, there is a slight degradation when 

compared to the logMMSE only condition. This is mainly due to the low frequency nature of the 

car interior noise, which affects the performance of the HSE algorithm at lower SNRs.

Similar trends can be observed in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8 which 

respectively show the performance of the algorithms in street noise at 5 dB, street noise at 10 dB, 

train station noise at 5 dB, and train station noise at 10 dB. The combination of logMMSE and 

HSE produced the best sound quality score when the input SNR was 10 dB.
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Figure 4.6: Predicted speech quality score for different algorithms: street noise at 10 dB SNR.
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Figure 4.7: Predicted speech quality score for different algorithms: train noise at 5 dB SNR.

Overall MOS for train @ SNR: 10 dB

CD

D0-
LU
CO

0cLU
CO

D0. LU O CO LJ
0 CO v_

£ ? Q_D
CO■o

>  LU
f  CO LU

CO
LUCOco1 CO 2  CC § i.0 g I I I

LU LU IE cc § C D + +CO
2

8>
3

CO
2

Q. 1 < LUCO
2

CO
2

S’
S’

Figure 4.8: Predicted speech quality score for different algorithms: train noise at 10 dB SNR.

78



4.3 Algorithm Evaluation -  Reverberant Speech

4.3.1 Objective quality results for Dereverberation (using SRMR)

Sixteen speech samples produced by two male talkers and two female talkers were used for the 

evaluation of algorithm performance. These speech samples were then convolved individually 

with each of the impulse responses in the NCA RIR and the AIR databases. The reverberant 

speech outputs were then processed by the combination of logMMSE and HSE algorithms. The 

resulting output was assessed using the SRMR metric, described in Chapter 2. The procedures to 

create the Input speech stimulus corrupted by reverberation and objective quality scores of the 

dereverberation algorithm are presented in this section.

4.3.2 Results

Figure 4.9 displays the SRMR results obtained for the NCA RIR database. It must be noted here 

that a higher SRMR value indicates a better quality of speech. It can be observed from this 

graph that there is a decrease in the SRMR value with an increase in the reverberation time.

More importantly, there is a substantial improvement in the SRMR scores with the application of 

the speech enhancement algorithm. This holds true even in a more challenging reverberant 

environment with a reverberation time of 1.39 s.

Figure 4.10 to Figure 4.14 report the results obtained with the AIR database. These graphs 

depict the performance of the speech enhancement algorithm in booth, office, meeting room, 

lecture hall,
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Figure 4.9: SRMR Dereverberation Results
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Figure 4.11: SRMR-Dereverberation for Office Room
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Figure 4.12: SRMR-Dereverberation for Meeting Room
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Figure 4.14: SRMR-Dereverberation for Stairway 

and stairway environments respectively. Across all conditions, a clear improvement in the 

objective score is apparent in these Figures.
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To put these results in context, a comparison is made with the recent results reported by Jeub et 

al. [7], where the authors compared the performance of five different dereverberation algorithms 

using the same SRMR metric. The authors reported that a two-stage algorithm, one that 

incorporates both spectral subtraction and Wiener filtering, resulted in an average improvement 

in SRMR scores of 1.85, 2.30, and 2.40 for the office, lecture, and stairway environments 

respectively. The SRMR data presented here exhibited an improvement of 4.23, 4.12, and 4.17 

for the same environments respectively. Thus a consistent improvement across a range of 

reverberation environments was observed with the combination of logMMSE and HSE 

algorithms.

4.4 Objective evaluation of Bandwidth Extension

A total of 16 sentences were used for the objective evaluation of the BWE algorithm. It must be 

noted here that the 16 input speech sentences used for analyzing BWE are different from the 

ones used for objective analysis of speech enhancement algorithms in Section 4.2. The noisy 

samples used for objective evaluation of BWE algorithm were prepared by adding environmental 

noises (babble, car interior) to the clean speech signal sampled at 16 kHz rate. This corrupted 

speech was downsampled by a factor of 2 and passed as input to the logMMSE and HSE 

systems.
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Figure 4.15: Objective evaluation of BWE algorithm

The sample rate of these systems (logMMSE-HSE) is 8 kHz. The output of these systems is 

upsampled by a factor of 2 by passing it into the BWE system. PESQ analysis is done by 

comparing clean speech to noisy speech and clean speech to BWE speech. Figure 4.16 and 

Figure 4.17 show the PESQ results for noise reduction plus BWE speech and SRMR results for 

dereverberation-BWE respectively. From Figure 4.16, it can be noticed that there is an 

improvement in the speech quality score for the enhanced speech samples in the multi-talker 

babble condition. However, there was no statistically significant difference between the BWE 

output and a simple upsampling of the narrowband enhanced speech. This is possibly due to the
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objective measure not being sensitive to changes in the high frequency region. It must be noted 

here that PESQ is developed and optimized for assessing speech coders and enhancements for 

narrowband telephony, and as such may not be sensitive to subtle changes in the high frequency 

portion.
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Figure 4.16: PESQ results for Noise reduction-BWE (NLD method)

A validated wideband objective metric is desirable in order to properly benchmark the BWE 

Output. The MOS scores for bandwidth extended speech in car interior noise was lower than 

noisy case because the car interior noise was colored and most of its energy was below 500 Hz. 

Figure 4.17 displays the results from applying bandwidth extension to dereverberated speech. A 

slight improvement in the SRMR scores is noted with BWE speech. A subjective evaluation
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study is necessary in order to determine whether this small improvement is statistically 

significant.

Dereverberation-BWE: SRMR results (fs = 16 KHz)

CO

CO

RT60 0.88 sec RT60 1.39 sec

Figure 4.17: SRMR results for Dereverberation-BWE (NLD method)
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Chapter 5: Conclusion

5.1 Summary

This thesis investigated the performance of a set of speech processing algorithms in enhancing 

the quality of speech acquired in challenging environments. It is well known that speech 

corrupted by background noise and/or reverberation suffers from poor quality. Previous studies 

have shown that a statistical model-based speech enhancement algorithm viz. logMMSE 

performed better than other classes of speech enhancement algorithms. In this work, an 

investigation of combining the logMMSE algorithm with a second algorithm (HSE) that 

enhances the harmonic structure of the speech was undertaken. The performance of this 

combination was investigated in both noisy and reverberant environments. Furthermore, the 

effect of extending the bandwidth of enhanced speech using a simple technique was also 

investigated.

For the speech-in-noise conditions, the logMMSE plus HSE resulted in speech quality 

improvements, more notably at 10 dB SNR than at 5 dB SNR, as evidently seen from the 

confidence interval plots shown in chapter 4. Furthermore, the combination was the best for the 

multi-talker babble condition. In poorer SNRs (5 dB) and predominantly lower frequency noise 

sources, the HSE algorithm was found not to perform as effectively. For the reverberation 

conditions, there was a significant improvement in the objective quality scores with the 

application of the logMMSE and HSE. This was consistent across multiple impulse response 

databases, and multiple reverberant environments.
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In case o f BWE using the HF harmonic reconstruction using the non-linear distortion method, 

there was significant improvement in MOS when the input to the Speech Enhancement system 

was corrupted by babble background noise.

5.2 Major Contributions

The following list details the contributions of this thesis:

• Realtime-capable versions of the Harmonic Speech Enhancement (HSE) and logMMSE 

algorithms were implemented using the Intel IPP signal processing library.

• logMMSE and HSE algorithms were cascaded and their synergistic performance was 

demonstrated for certain noise condition.

• The same combination was evaluated with reverberant speech samples and shown to 

perform better than recently reported dereverberation algorithms.

• A simple, realtime capable bandwidth extension algorithm was applied to enhanced 

speech in both noisy and reverberant environments.

5.3 Future Extensions

This system is very close to becoming a real-time speech processing system. The speech 

enhancement C-code written for this thesis project has an audio 10 latency ranging from 1 to 3 

milliseconds for 256 audio samples (32 millisecond analysis frame rate at 8 kHz) on a Red Hat 

Linux (Fedora) platform. Eventually, the code can be ported to a hand held device (Linux
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environment) and optimized for real-time performance following [1] using tools like Jack audio 

connection kit.

The highly successful outcome with processing reverberant speech samples should be validated 

with subjective evaluation experiments. In particular, the performance of the logMMSE plus 

HSE should be evaluated with hearing impaired listeners. For speech at 10 dB SNR, this thesis 

has demonstrated significant improvement in speech quality. Since hearing aids amplify the 

processed speech, impaired listeners may perceive improvement in sound quality from the output 

of this algorithm more effectively than normal listeners. The background noise and 

reverberation effects were reduced by the speech enhancement algorithms and hence do not get 

amplified much. Furthermore, the speech harmonics were either preserved or emphasized by the 

HSE algorithm.

In most of the real world cases, speech is corrupted by both noise and reverberation 

simultaneously. Therefore, both objective and subjective evaluations need to be carried out with 

both noise and reverberation. In a similar vein, the BWE stimuli should be evaluated by both 

normal hearing and hearing impaired listeners. BWE of speech in hearing aids is a fairly new 

area of research.
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Appendix A

A.l Real-time Implementation:

The algorithm implementation was done in floating point C using the Intel IPP audio DSP library 

with an intention to port it into a hand held device with Linux operating system that a hearing 

impaired subject could carry to various reverberation and noisy environments to validate the 

algorithms in real-time. Therefore, this appendix provides some information on the operating 

system, IPP DSP library and IDE’s used in developing these test algorithms.

A.1.1 Intel IPP Audio DSP library:

Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of multicore-ready, 

highly optimized software functions for multimedia, data processing, and communications 

applications. Intel IPP offers thousands of optimized functions covering frequently used 

fundamental algorithms. It is a multi-threaded library of functions for multimedia and data 

processing applications, produced by Intel. The library supports Intel and compatible processors 

and is available for Windows, Linux, and Mac OS X operating systems. It is available separately 

or as a part of Intel Parallel Studio.

This document describes the structure, operation and functions of the Intel® Integrated 

Performance Primitives (Intel® IPP) for Intel® architecture that operate on one-dimensional 

signals. This is the first volume of the Intel IPP Reference Manual, which also comprises
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descriptions of Intel IPP for image and video processing (volume 2), operations on small 

matrices, 3D data processing and rendering (volume 3), and cryptography functions (volume 4). 

The Intel IPP software package supports many functions whose performance can be significantly 

enhanced on Intel architecture, particularly using the MMX™ technology, Streaming SIMD 

Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 

(SSE3), as well as Intel® Itanium® architecture.

The Intel IPP for signal processing software is a collection of low-overhead, high-performance 

operations performed on one-dimensional (ID) data arrays.

The Intel IPP for Intel architecture software enables taking advantage of the parallelism of the 

single-instruction, multiple-data (SIMD) instructions that make up the core of the MMX 

technology and Streaming SIMD Extensions. These technologies improve the performance of 

computation-intensive signal, image, and video processing applications. Use of Intel IPP 

primitive functions can help to drastically reduce development costs and accelerate time-to- 

market by eliminating the need of writing processor-specific code for computation intensive 

routines.

A.1.2 Hardware and Software Requirements:

The Intel IPP for Intel architecture software runs on personal computers that are based on 

processors using IA-32, Intel® 64 or IA-64 architecture and running Microsoft Windows* OS, 

Linux* OS, or Apple Mac OS* X. Intel IPP can be integrated into the customer’s application or 

library written in C or C++.
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A.1.3 Platforms Supported:

Intel IPP for Intel architecture software runs on Windows* OS, Linux* OS, and Mac OS* X 

platforms. The code and syntax used in this manual for function and variable declarations are 

written in the ANSI C style. However, versions of Intel IPP for different processors or operating 

systems may, of necessity, vary slightly.

A.1.4 Intel IPP usage in C software:

Type Usual C type Intel IPP type
8u Unsigned char Ipp8u
8s Signed char Ipp 8 s
16u Unsigned short Ippl6u
16s Signed short Ipp16s
löse Complex short Ipplöse
32u Unsigned int Ipp32u
32s Signed int Ipp32s
32f Float Ipp32f
32fc Complex float Ipp32fc
64s int64 (Windows*) or long long (linux) Ipp64s
64f Double Ipp64f
64fc Complex double Ipp64fc

Table 4.2: Data Types Supported by Intel IPP for Signal Processing

covers all the Intel IPP data types. In this software implementation, Ipp32f an Intel floating point 

data type was used prevalently. Here is an implementation example for linear prediction and 

FFT method

// Initialization

IppStatus st; 
int lenSrc = 256; 
int lpOrder = 12;
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// Memory Allocation

Ipp32f* lpCoeff = ippsMalloc_32f(lpOrder); // pointer to LP-Coeff vector
Ipp32f* pPreEmpOut = ippsMalloc_32f(lenSrc);// pointer to pre-emphasis output

// Calculate Linear prediction coefficients: Function call

st = ippsLinearPrediction_Auto_32f(pPreEmpOut, lenSrc, lpCoeff, lpOrder);

// FFT Function definition

IppStatus myFFT(Ipp32f* pSrc, Ipp32f* pSrcSpec, struct paramSet* pz)
{

IppStatus st;

// FFT settings:
IppsFFTSpec_R_32f *ppFFTSpec; 
int flagFFT = IPP_FFT_DIV_FWD_BY_N; 
IppHintAlgorithm hint = ippAlgHintAccurate; 
int fftOrder = (pz)->fftOrder; 
int fftSize = (pz)->fftSize;

// Memory allocation
Ipp32f* pSrcFFT = ippsMalloc_32f(fftSize);

// pointer to complex FDNFP Vector 
Ipp32fc* pSrcCplx = ippsMalloc_32fc(fftSize);

// FFT memory allocation
st=ippsFFTInitAlloc_R_32f(SppFFTSpec, fftOrder, flagFFT, hint);

// Fast-Fourier transform
ippsFFTFwd_RToCCS_32f(pSrc, pSrcFFT, ppFFTSpec, NULL);

// Converts the data in CCS format to complex data format 
ippsConjCcs_32fc(pSrcFFT, pSrcCplx, fftSize);

// Calculate Magnitude spectrum 
ippsAbs_32fc_A24(pSrcCplx, pSrcSpec, fftSize);

// Closes FFT specification structure 
ippsFFTFree_R_32f(ppFFTSpec); 
return st;

}
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A.2 Linux (Fedora):

Fedora is a Linux-based operating system, a collection of software that makes your computer 

run. You can use Fedora in addition to, or instead of, other operating systems such as Microsoft 

Windows™ or Mac OS X™. The Fedora operating system is completely free of cost for you to 

enjoy and share.

The Fedora Project is the name of a worldwide community of people who love, use, and build 

free software from around the globe. We want to lead in the creation and spread of free code and 

content by working together as a community. Fedora is sponsored by Red Hat, the world's most 

trusted provider of open source technology. Red Hat invests in Fedora to encourage collaboration 

and incubate innovative new free software technologies.

A.3 Eclipse CDT IDE:

Eclipse is a multi-language software development environment comprising an integrated 

development environment (IDE) and an extensible plug-in system. It is written mostly in Java 

and can be used to develop applications in Java and, by means of various plug-ins, other 

programming languages including Ada, C, C++, COBOL, Perl, PHP, Python, Ruby (including 

Ruby on Rails framework), Scala, and Scheme. The IDE is often called Eclipse ADT for Ada, 

Eclipse CDT for C/C++, Eclipse JDT for Java, and Eclipse PDT for PHP.
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The CDT Project provides a fully functional C and C++ Integrated Development Environment 

based on the Eclipse platform. Features include: support for project creation and managed build 

for various tool-chains, standard make build, source navigation, various source knowledge tools, 

such as type hierarchy, call graph, include browser, macro definition browser, code editor with 

syntax highlighting, folding and hyperlink navigation, source code refactoring and code 

generation, visual debugging tools, including memory, registers, and disassembly viewers.

A.4 MATLAB, Gnuplot & Audacity:

MATLAB (for matrix laboratory) is a numerical computing environment and fourth-generation 

programming language. Developed by MathWorks, MATLAB allows matrix manipulations, 

plotting of functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages, including C, C++, and Fortran.

In our project, MATLAB was used in simulating the Harmonic speech enhancement model and 

Ephraim-Malah noise reduction prior to porting it into a C program. Besides this, MATLAB 

was used extensively for data plotting and analysis.

Gnuplot is a portable command-line driven graphing utility for linux, OS/2, MS Windows, OSX, 

VMS, and many other platforms. The source code is copyrighted but freely distributed (i.e., you 

don't have to pay for it). It was originally created to allow scientists and students to visualize 

mathematical functions and data interactively, but has grown to support many non-interactive
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uses such as web scripting. It is also used as a plotting engine by third-party applications like 

Octave. Gnuplot has been supported and under active development since 1986.

Gnuplot supports many types of plots in either 2D or 3D. It can draw using lines, points, boxes, 

contours, vector fields, surfaces, and various associated text. It also supports various specialized 

plot types. Gnuplot supports many different types of output: interactive screen terminals (with 

mouse and hotkey input), direct output to pen plotters or modem printers, and output to many file 

formats (eps, fig, jpeg, LaTeX, metafont, pbm, pdf, png, postscript, svg ,...). Gnuplot is easily 

extensible to include new output modes. Recent additions include an interactive terminal based 

on wxWidgets and the creation of mousable graphs for web display using the HTML5 canvas 

element.

Gnuplots are used in C code by using pipes. Here is a sample C code used in the HSE-BWE 

algorithm:

// G i v e n  p o i n t e r s  to X  a n d  Y data, the f u n c t i o n  p l o t s  a n d  r e t u r n s  c o n t r o l  to m a i n  
f u n c t i o n  or s u b r o u t i n e s

v o i d  p l o t 2 D (Ipp32f* xData, I p p32f* ylData, Ipp32f* y2Data, I p p 32f* y3Data, int 
d a t a S i z e ,  c h ar* xlabel, char* ylabel, cha r *  title)
{

F I L E *  pipe, * t e m p D a t a F i l e ;  
c h a r *  t e m p D a t a F i l e N a m e ;

I p p 3 2 f  x , y l,y2,y3; 
i n t  i;
int l e n g t h  = 200;
t e m p D a t a F i l e N a m e  = " t e m p D a t a . d a t " ;

c h a r *  x l b l  = (char*) m a l l o c  ( s i z e o f ( c h a r ) * l e n g t h ) ; 
c h a r *  ylbl = (char*) m a l l o c  ( s i z e o f ( c h a r )* l e n g t h ) ; 
c h a r *  ttl = (char*) m a l l o c  ( s i z e o f ( c h a r ) * l e n g t h ) ;

s t r c p y ( x l b l , " s e t  x l a b e l  '"); 
s t r c a t ( x l b l ,  xlabel); 
s t r c a t  (xlbl, ' " X n ” ) ;

s t r c p y ( y l b l , " s e t  y l a b e l  '"); 
s t r c a t ( y l b l ,  ylabel); 
s t r c a t ( y l b l , H , \ n " ) ;
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s t r c p y ( t t l , " s e t  tit l e  '"); 
s t r c a t ( t t l ,  title); 
s t r c a t ( t t l , " 1\n") ;

p i p e  = p o p e n (" g n u p l o t  - p e r s i s t " , " w " ) ;
f p r i n t f ( p i p e ,  ttl);
f p r i n t f ( p i p e ,  xlbl);
f p r i n t f ( p i p e ,  y l b l ) ;
f p r i n t f ( p i p e ,  "set grid\n");
f p r i n t f ( p i p e ,  "set a u t o s c a l e \ n " );

if (pipe)
{

f p r i n t f ( p i p e , " s e t  key top right\ n " ) ; 
f p r i n t f ( p i p e , " s e t  key box\n");
f p r i n t f ( p i p e , " p l o t  \"%s\" u s i n g  1:2 title ' Src' w i t h  lines, "

" \"%s\" u s i n g  1:3 t i t l e  1 Est' w i t h  lines, "
” \"%s\" u s i n g  1:4 t i t l e  'Err' w i t h  l i n e s \ n ” , 
t e m p D a t a F i l e N a m e , t e m p D a t a F i l e N a m e , t e m p D a t a F i l e N a m e ) ;

f f l u s h ( p i p e ) ;

t e m p D a t a F i l e  = f o p e n ( t e m p D a t a F i l e N a m e , " w " ); 
for (i=0; i <= dataSize; i++)
{

x = x D a t a [ i ] ; 
yl =  ylData[i]; 
y2 = y2Data[i]; 
y3 = y3Data[i];
f p r i n t f ( t e m p D a t a F i l e ,  " % 1 . lOf %1 . 1 0 f  %1 . 1 0 f  % 1 .l O f \ n " , x , y l , y 2 , y 3 ) ;

}
f c l o s e ( t e m p D a t a F i l e ) ;
p r i n t f ( " p r e s s  e n t e r  to c o n t i n u e . . . " ) ;  
g e t c h a r ();
r e m o v e ( t e m p D a t a F i l e N a m e ) ; 
fprintf(pipe, "exit \n");

}
e l s e
{

p r i n t f (" g n u p l o t  not found...");
}

Audacity® is free, open source software for recording and editing sounds. It is available for Mac 

OS X, Microsoft Windows, GNU/Linux, and other operating systems. Audacity can be 

downloaded for free from: http://audacitv.sourceforge.net/
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Appendix B

Appendix B provides all the data tables that were used in creating the plots presented in chapter 

4. The nomenclature of some of the sound files used in the objective evaluation is also provided.

B.l Result Tables:

W av e  file 
n a m e H S E logM M S E  +  H S E M B  + H S E

_babble_sn5 P E S Q IS Y _T O T A L P E S Q IS Y T O T A L P E S Q IS Y _T O T A L

spOl 2.21 1.84 2.66 2.14 1.86 2.53 2.29 9.31 2.5--- ------
sp02 2.35 2.4 2.89 2.27 3.62 2.76 2.35 23.7 2.48

sp03 2.2 2.76 2.64 2.22 3.7 2.66 2.24 29.2 2.28

sp04 2.39 2.21 2.96
.... i

2.29 2.27 2.79 2.29 12.3 2.39

sp06 2.44 2.95 3.03 2.38 2.37 2.95 2.48 7.85 2.78

sp07 2.12 2.61 2.49 2.09 2.99 2.45 2.27 19.1 2.34

0©OQ.C/5 2 .32 3.28 2.85 2.23 2.38 2.69 2.24 14.6 2.29

sp09 2 2.26 2.29 2.08 2.11 2.43 2.18 6.73 2.44

s p l l 2.04 1.98 2.36 2.1 1.57 2.47 2.19 9.09 2.35

sp l2 1.99 2.25 2.27 2.16 3.41 2.57 2.13 27.2 2.07

sp l3 2.17 2.77 2.58 2.29 4.75 2.74 2.18 18.8 2.18

s p l4 2.14 5.12 2.45 2.07 3.47 2.4 2.28 35.2 2.32

s p l6 2.06 2.52 2.39 2.05 2.36 2.37 2.17 3.13 2.59

s p l7 2.2 1.6 2.63 2.39 1.76 2.96 2.32 11.1 2.48

sp l8 2.01 3.9 2.29 2.12 7.09 2.32 2.11 28.9 2.04

s p l9 2.3 5.44 2.71 2.37 7.46 2.74 2.38 42.3 2.49

_ b ab b le_ sn l0 P E S Q IS Y _ T O T A L P E S Q IS Y _T O T A L P E S Q IS Y _T O T A L

spOl 2.37 2.44 2.93 2.54 3.62 2.94 2.5 37.6 2.53

sp02 2.61 1.93 3.36 2.6 1.67 3.26 2.74 10.4 4.49

sp03 2.47 2.04 3 2.71 4.47 4.41 2.84 33.1 5.46

sp04 2.49 1.9 2.99 2.58 1.42 3.14 2.69 3.74 ____1
sp06 2.7 3.61 4.35 2.77 1.93 5.12 2.83 13.6 5.42

sp07 2.58 2.46 3.2 2.77 1.64 5.14 2.91 9 6.41

sp08 2.59 3.23 3.23 2.48 1.17 3 2.55 2.99 2.93
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sp09 2.18 2.57 2.6 2.27 3.5 2.75 2.34 15.1 2.47

s p l l 2.41 2.1 3.01 2.38 0.996 2.94 2.54 1.5 2.95

s p l2 2.44 2.24 3.03 2.6 3.58 3.36 2.66 21.7 3.49

sp !3 2.48 2.65 2.99 2.54 2.89 2.94 2.39 20.3 2.55

s p l4 2.51 5.5 2.88 2.58 4.34 3.08 2.72 37.8 4.14

s p l6 2.41 1.98 3 2.7 2.85 4.41 2.62 14.5 3.14

s p l7 2.38 1.23 2.94 2.29 1.16 2.78 2.44 1.14 3.03

sp l 8 2.44 2.21 3.03 2.64 2.12 3.76 2.57 25.8 2.61

sp !9 2.42 3.21 3.02 2.6 2.61 3.29 2.58 25.5 2.65

Table 4.3: Predicted speech quality for different algorithms: babble noise SNR 5&10 dB

W av e  file 
n am e H S E lo g M M S E  +  H SE M B  + H S E

_car_sn5 P E S Q IS Y _T O T A L P E S Q IS Y _T O T A L P E S Q IS Y _T O T A L

spOl 2.2 2.15 2.63 2.27 3.62 2.75 2.3 16.8 2.4
............

sp02 2.32 2.06 2.84 2.44 2.15 3.03 2.35 16.6 2.48

sp03 2.24 3.16 2.71 2.3 5.24 2.73 2.43 32 2.59

sp04 2.28 2.52 2.78 2.4 2.49 2.98 2.32 7.64 2.64

sp06 2.24 3.83 2.69 2.22 4.27 2.63 2.23 25.9 2.26

sp07 2.12 2.89 2.49 2.45 3.67 3.01 2.43 15.1 2.63

sp08 2.28 4.97 2.7 2.39 4.18 2.94 2.35 39 2.45

sp09 1.94 2.65 2.18 2.33 3.05 2.86 2.34 8.47 2.65

s p l l 2.12 3.29 2.49 2.46 3.46 3.01 2.34 27.4 2.44

sp l2 2.09 2.78 2.43 2.44 2.79 3.03 2.47 18.3 2.59

sp l3 2.09 2.02 2.45 2.09 2.02 2.45 2.16 4.86 2.49
I

sp l4 2.25 4.01 2.7 2.47 5.91 2.89 2.43 39 2.58

sp l6 2.36 2.5 2.92 2.3 2.71 2.82 2.4 7.46 2.78

s p l7 2.02 2.02 2.32 2.21 1.73 2.65 2.29 5.51 2.7

sp l8 2.12 2.28 2.5 2.15 2.3 2.54 2.21 11.8 2.25 1---------
sp l9 2.34 4.28 2.83 2.36 3.12 2.92 2.39 26.5 2.54

________________1---— ----
_car_sn lO P E S Q IS Y _T O T A L P E S Q IS Y__TOTAL P E S Q IS Y T O T A L

r  '' ------
spOl 2.35 2.74 2.9 2.31 3.68 2.83 2.43 42.6 2.57

sp02 2.53 2.74 2.95 2.68 3.3 4.21 2.62 25.8 3.09

sp03 2 .57 4.23 2.91 2.64 3.66 3.77 2.83 40.9 5.26

sp04 2.43 2.34 3.03 2.52 3.09 2.96 2.43 9.97 2.71

sp06 2.66 8.27 3.68 2.76 1,6 4.6 2.9 68.2 6.01

r ~
sp07 2.43 3.43 3.03 2.84 2.45 5.85 2.89 17.9 6.04

sp08 2.55 9.85 2.62 2.55 11.5 2.55 2.71 59 3.95
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sp09 2.2 2.72 2.64 2.58 3.39 3.05 2.58 11.8 2.7
.......... ...... ............ .1

s p l l 2 .39 6.41 2.82 2.61 10.7 3.02 2.67 65.5 3.53

s p l2 2.35 2.64 2.9 2.81 2.83 5.51 2.83 24.4 5.35

sp l3 2.56 2.68 2.92 2.8 2.71 5.5 2.69 15.1 3.81
—

s p l4 2.52 7.72 2.76 2.75 10.2 4.59 2.69 53.8 3.73

s p l6 2.63 2.22 3.63 2.64 2.14 3.78 2.62 7.67 3.27

s p l7 2.56 1.8 2.93 2.78 1.5 5.26 2.76 4.16 5.02

sp l8 2.48 2.73 3 2.68 2.66 4.18 2.68 19.2 3.78

sp !9 2.54 8.62 2.69 2.71 4.54 4.41 2.73 33.6 4.22

Table 4.4: Predicted speech quality score for different algorithms: car noise SNR 5&10 dB

W av e  file 
n a m e H S E logM M S E  + H S E M B  + H SE

__street_sn5 P E S Q IS Y T O T A L P E S Q IS Y JT O T A L P E S Q IS Y JT O T A L

spOl 2.1 2.43 2.46 2.05 2.27 2.37 2.19 2.89 2.62

sp02 2.18 2.76 2.6 2.16 3.11 2.56 2.14 14.4 2.13

sp03 2.15 1.98 2.55
.......... ............ 1

2.01 2.39 2.3 2.37 13.1 2.52

sp04 2.28 2.57 2.77 2.13 2.28 2.51 2.14 4.7 2.47

sp06 2.35 3.67 2.9 2.38 2.83 2.96 2.46 24.7 2.59

sP07 2.11 2.17 2.48 2.07 2.03 2.42 2.37 3.36 2.92

sp08 2.16 5.38 2.48 2.1 4.21 2.43 2.08 25.9 2

sp09 1.8 2.75 1.94 1.83 2.68 1.98 2.01 3.89 2.3

s p l l 2.1 5.83 2.35 2.17 15.8 2.18 2.01 72.6 1.77

sp l2 2.06 2.21 2.4 2.19 1.81 2.62 2.33 4.28 2.82

sp l3 2.25 2.03 2.72 2.33 2.83 2.86 2.25 6.84 2.57

s p l4 2.24 5.67 2.59 2.37 8.97 2.66 2.31 52.8 2.35
\------------ “------------

s p l6 2.39 2.63 2.96 2.53 2.49 2.95 2.51 9.32 2.68
________________i

s p l7 2.32 2.52 2.84 2.33 3.53 r.........2 86.........
2.23 35.2 2.25

sp l8 2.08 2.21 2.42 2.04 2.05 2.36 2.13 2.96 2.51

sp l9 2.45 8.46 2.78 2.41 13.7 2.59 2.41 44.5 2.54

s tre e ts n lO P E S Q IS Y JT O T A L P E S Q IS Y JT O T A L P E S Q IS Y JT O T A L

spOl 2.57 4.98 2.94 2.55 7.78 2.73 2.64 36 3.28

sp02 2.67 2.84 4.03 2.67 1.83 4.07 2.7 5.88 4.27

sp03 2.54 3.87 2.93 2.56 3.63 2.92 2.57 48.2 2.54

sp04 2.39 2.28 2.97 2.42 1.57 3.02 2.52 2.43 2.96

sp06 2.58 7.17 2.95 2.68 5.94 4.03 2.6 36.7 2.81

sp07 2.52 3.12 2.96
i...............................

2.62 1.96 3.48 2.65 3 3.82

sp08 2.4 5.99 2.86 2.46 1.98 3.01 2.58 7.75 2.9
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sp09 2.19 2.31 2.62 2.41 1.92 3 2.64 8.1 3.53

s p l l 2 .37 11.3 2.55 2.47 11.7 2.6 2.59 69.5 2.63

sp l2 2.3 2.47 2.8 2.32 2.03 2.85 2.47 8.77 2.75

sp l3 2.73 3.42 4.69 2.76 2.87 5.01 2.62 10.9 3.16

sp l4 2.66 16.7 3.52 2.69
............. .... ..........

14.9 3.87 2.62 70.7 3.05

sp 16 2.67 2.85 4.02 2.73 5.12 4.61 2.56 37.4 2.47

sp l7 2.56 2.22 2.92 2.65 1.79 3.86 2.72 7.41 4.43

sp l8 2.45 2.71 3.02 2.53 1.64 2.95 2.66 3.64 3.94

sp l9 2.57 16.9 2.55 2.58 15.7 2.66 2.62 71.9 2.97

Table 4.5: Predicted speech quality score for different algorithms: street noise SNR 5&10 dB

W av e  file 
n am e H S E lo g M M S E  + H S E M B  + H S E

_train_sn5 P E S Q IS Y T O T A L P E S Q  IS Y JT O T A L P E S Q IS Y  T O T A L
-

spOl 1.97 2.22 2.24 1.97 2.37 2.23 2.22 7.02 2.51

sp02 2.25 2.1 2.71 2.25 2.46 2.72 2.37 11.2 2.55

p i  sp03 2.27 3.4 2.76 2.23 9.52 2.39 2.26 65.3 2.22
r..................................

sp04 2.08 2.86 2.43 2.22 5.05 2.6 2.18 27.8 2.17

sp06 2.33 3.57 2.85 2.31 3.17 2.83 2.42 12.6 2.62

sp07 2.23 3.32 2.68 2.19 10.8 2.27 2.43 56.4 2.55

sp08 2.26 6.95 2.58 2.32 12.1 2.43 2.15 49.9 2.07

sp09 1.77 3.37 1.88
.

2.05 4.08 2.35 1.98 12.6 1.86
i......................... .........

s p l l 1.95 3.01 2.2 2.25 4.36 2.68 2.19 23.8 2.2

s p l2 1.87 2.22 2.06 2.14 2.29 2.53 2.15 12.8 2.14

I  1 y  -  a
s p l3 2.22 2.12 2.67 2.28 2.02 2.78 2.25 3.73 2.71

s p l4 2.1 3.46 2.46

________
2.27 5.56 2.66 2.17 50.1 2.1

i- - - - - - - - - - - - - - - - - - - - - - - - : - - - - - - - -
s p l6 2.28 2.7 2.77 2.33 3.07 2.85 2.18 6.71 2.44

s p l7 2.09 2.79 2.45 2.38 4.08 2.93 2.21 25 2.23
i

sp l8 2.14 2.46 2.54 2.4 4.19 2.94 2.3 12.7 2.41

?  . . . . . . .  ~
s p l9 2.22 3.01 2.67 2.26 2.78 2.73 2.37 10.3 2.6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
_ tra in _ sn !0 P E S Q IS Y _T O T A L P E S Q IS Y JT O T A L P E S Q IS Y T O T A L  j

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

spOl 2.41 2.67 2.99 2.51 6.18 2.84 2.52 38.3 2.51

sp02 2.51 2.2 2.97 2.55 2.16 2.94 2.68 10.8 3.79

sp03 2.32 2.48 2.84 2.41 2.95 2.99 2.5 19.1 2.56

sp04 2.34 2.97 2.88 2.43 3.77 3.02 2.62 19 3.06

\- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sp06 2.49 3.97 2.96 2.45 1.63 1 3.02 2.53 8.42 2.71

sp07 2.34 2.86 2.87
!

2.37 2.6 2.93 2.61 16.3 2.99

sp08 2.48 4.43 2.95 2.54 1.59 2.94 2.75 8 4.7
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sp09 2.07 2.38 2.41 2.27 1.86 2.75 2.56 4.66 2.87

s p l l 2.23 2.33 2.68 2.5 3.51 2.98 2.54 22.4 2.52

s p l2 2.42 3.15 3.01 2.65 4.18 3.77 2.67 26.4 3.66

sp 13 2.45 2.45 3.02 2.61 5.48 3.35 2.57 9.97 2.67

s p l4 2.51 5.2 2.89 2.57 4.16 3.01 2.71 38.6 4.06

sp 16 2.58 2.77 3.09 2.66 3.24 3.95 2.49 14.3 2.58

sp !7 2.48 3.04 3 2.78 3.33 5.23 2.74 24.2 4.36

sp 18 2.42 3.12 3.03 2.6 3.62 3.28 2.58 23.1 2.69

s p l9 2.56 5.68 2.82 2.63 3.42 3.68 2.78 23.9 4.84

Table 4.6: Predicted speech quality score for different algorithms: train noise SNR 5&10 dB 

In the following tables, the names of wave files are to be deciphered as in the example below:

In “R21S01A90.wav”, R implies Room, 2 implies room number (NCA database 1-low RT60, 2- 

moderate RT60 of 0.88 seconds, 3-another moderate RT60, 4- severe RT60 of 1.39 seconds and 

5-anechoic chamber; AIR database 1-booth, 2-office, 3-meeting, 4-lecture, 5-stairway), 1 implies 

speaker-microphone distances if any, SOI implies name of the clean speech file that was

convolved with the impulse response and A90 implies azimuth 90.

.... '
SRMR Values

.......... '...... ..................
Filename 

(Reverb Corrupt 
Speech)

Input
RT60=1 sec

Output 
RT60= lsec 

(logMMSE+HSE)

Filename 
(Reverb Corrupt 

Speech)

Input
RT60= 1.5 sec

Output 
RT60= 1.5 sec 

(logMMSE+HSE)

R21S01A90.wav 1.591 3.884 R41 SO 1A90R. wav 1.142 2.391

R21S02A90.wav 2.04 5.385 R41S02 A90R.wav 1.574 4.3

R21S03A90.wav 1.579 4.05 R41S03A90R.wav 1.175 3.074

R21S04A90.wav 1.47 2.726 R41S04A90R.wav 1.066 1.959

R21S05A90.wav 1.625 4.135 R41S05A90R.wav 1.178 2.938

R21S06A90.wav 1.596 3.73 R41 S06A90R.wav 1.153 2.484

R21S07A90.wav 1.424 2.683 R41S07A90R. wav 1.113 2.143

R21S08A90.wav 2.302 7.394 R41S08A90R.wav 1.527 3.752

R21S09A90.wav 3.069 9.071 R41S09A90R.wav 2.151 6.153

R21S10A90.wavr 2.678 6.857 R41S10A90R.wav 1.952 4.925
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R21SllA90.wav 2.986 7.147 R4 IS 1 lA90R.wav 1.92 4.493

R21S12A90.wav 1.949 4.145 R41S12A90R.wav 1.439 3.243

R21S13A90.wav 2.475 5.548 R41S13A90R.wav 1.871 4.859

R21S14A90.wav 2.201 5.087 R41S14A90R.wav 1.622 4.126

R2lS15A90.wav 1.741 4.007 R41S15A90R.wav 1.23 3.143

R21S16A90.wav 1.473 2.637 R41S16A90R.wav 1.141 2.3

Table 4.7: SRMR modulation values for 2 Reverberation time sets (Speech Enhancement)

-------- ------ ----- y-*-.---
SRMR Values

’..
Filename 

(Reverb Corrupt 
Speech)

Input
RT60=1 sec

Output 
RT60= lsec 

(logMMSE+HSE)

Filename 
(Reverb Corrupt 

Speech)

Input
RT60= 1.5 sec

Output 
RT60= 1.5 sec 

(logMMSE+HSE)

R21S01A90.wav 1.5923 3.9160 R41 SO 1 A90R.wav 1.1420 2.3381

R21S02A90.wav 2.2395 5.9164 R41 S02A90R.wav 1.5739 4.8711

R21S03A90.wav 1.6530 4.4495 R41S03A90R.wav 1.1755 3.2794

R21S04A90.wav 1.5345 2.7658 R41S04A90R.wav 1.0664 2.0504

R21S05A90.wav 1.8040 4.5343 R41S05A90R.wav 1.1783 3.1573

R21S06A90.wav 1.9791 4.8392 R41S06A90R.wav 1.1534 3.0583

R2IS07A90.wav 1.5116 2.9130 R41 S07A90R.wav 1.1129 2.2588

R21S08A90.wav 2.6647 8.2069 R41S08A90R.wav 1.5274 4.2609

R21S09A90.wav 3.1759 10.2854 R41 S09A90R.wav 2.1511 6.8170

R21S10A90.wav 2.7581 6.9826 R41S10A90R.wav 1.9523 4.6559

R21SllA90.wav 3.3099 7.9329 R41S1 lA90R.wav 1.9201 5.3477

R2IS12A90.wav 1.9629 4.2918 R41S12A90R.wav 1.4389 3.5659

R21S13A90.wav 2.3921 5.3436 R4tS13A90R.wav 1.8711 4.8371

R21Sl4A90.wav 2.4174 5.8504 R41S14 A90R. wav 1.6216 4.7059

R21S15A90.wav 1.6800 3.8388 R41S15A90R.wav 1.2304 2.8291

R21S16A90.wav 1.5022 2.6244 R41S16A90R.wav 1.1407 2.2862

Table 4.8: SRMR modulation values for 2 Reverberation time sets (BWE)

NOIZEUS is a noisy speech corpus for evaluation of speech enhancement algorithms. The 

details of speech material, noise sources and algorithms that are used to compare against can be 

obtained from [12], [14].

107



Table 1: List of sentences used in NOIZEUS
Filename Speaker Gender Sentence
sp01.wav CH M The birch canoe slid on the smooth
so02.wav CH M He knew the skill of the great young actress
so03.wav CH M Her purse was full of useless trash
SD04.wav CH M Read verse out loud for pleasure
sp05.wav CH M Wipe the grease off his dirty face
sn06.wav DE M Men strive but seldom get rich
sn07.wav DE M We find joy in the simplest things
SD08.wav DE M Hedge apples may stain your hands green
so09.w av DE M Hurdle the pit with the aid of a long pole
spl0.wav DE M The sky that morning was clear and bright blue
SD ll.w av JE F He wrote down a long list of items
sn l2 .w av JE F The drip of the rain made a pleasant sound
sn l3 .w av JE F Smoke poured out of every crack
sp l4 .w av JE F Hats are worn to tea and not to dinner
spl5.wav JE F The clothes dried on a thin wooden rack

Table 2: List of sentences used in NOIZEUS
SDl6.wav Kl F The stray cat gave birth to kittens
sn l7 .w av Kl F The lazy cow lay in the cool grass
sD l8.w av Kl F The friendly gang left the drug store
sn l9 .w av Kl F We talked of the sideshow in the circus
sp20.wav Kl F The set of china hit the floor with a crash
sp21 .wav SI M Clams are small, round, soft and tasty
sp22.wav SI M The line where the edges join was clean
sp23.wav SI M Stop whistling and watch the boys march
sp24.wav SI M A cruise in warm waters in a sleek yacht is fun
sp25.wav SI M A good book informs of what we ought to know
sp26.wav TI F She has a smart way of wearing clothes
sp27.wav TI F Bring your best compass to the third class
sp28.wav TI F The club rented the rink for the fifth night
sp29.wav TI F The flint sputtered and lit a pine torch
sp30.wav TI F Let us all join as we sing the last chorus

Table 4.9: The sentences used in the subjective evaluation are underlined. Courtesy [12]

R ev erb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D erev e rb
O u tp u t

R e v erb
In p u t

D erev e rb
O u tp u t

D istance 0.5m 0.5m lm lm 1.5m 1.5m

R llS 0 1 A 9 0 R .w a v 4.3 13 R 12S01A 90R .w av 3.7 7.1 R 13S01A 90R .w av 3.7 6.3

R llS 0 2 A 9 0 R .w a v 5.9 11 R 12S02A 90R .w av 5.1 8.8 R 13S02A 90R .w av 4.9 7.6

R llS 0 3 A 9 0 R .w a v 3.8 7 R 12S03A 90R .w av 3.9 7.3 R 13S03A 90R .w av 4.3 6.6

R llS 0 4 A 9 0 R .w a v 3.8 5.4 R 12S04A 90R .w av 3.3 4.5 R 13S04A 90R .w av 3.8 5.7
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R llS 0 5 A 9 0 R .w a v 2.6 4.7 R12S05A 90R .w av 2.7 5.1 R 13S05A 90R .w av 4 9.5

R llS 0 6 A 9 0 R .w a v 3 5.1 R12S06A 90R .w av 3.3 5.5 R13S06A 90R .w av 3 4.5

R llS 0 7 A 9 0 R .w a v 4.7 9.4 R12S07A 90R .w av 4.8 9.9 R13S07A 90R .w av 5.9 12

R llS 0 8 A 9 0 R .w a v 6.1 14 R 12S08A 90R .w av 6.1 17 R13S08A 90R .w av 6.1 10

R llS 0 9 A 9 0 R .w a v 8.4 14 R 12S09A 90R .w av 6.6 12 R13S09A 90R .w av 8.1 20

R llS 1 0 A 9 0 R .w a v 12 20 R 12S10A 90R .w av 10 17 R13S10A 90R .w av 8.9 16

R l lS l lA 9 0 R .w a v 9.5 13 R 1 2 S llA 9 0 R .w av 8 11 R 1 3 S llA 9 0 R .w av 8.1 11

R llS 1 2 A 9 0 R .w a v 11 15 R 12S12A 90R .w av 8.4 12 R 13S12A 90R .w av 8.2 11

R llS 1 3 A 9 0 R .w a v 12 17 R12S13A 90R .w av 12 17 R 13S13A 90R .w av 11 17

R I lS 14A 90R .w av 14 28 R12S14A 90R .w av 13 24 R 13S14A 90R .w av 10 18

R llS 1 5 A 9 0 R .w a v 8.6 14 R12S15A 90R .w av 7.9 14 R 13S15A 90R .w av 8.6 17

R llS 1 6 A 9 0 R .w a v 10 13 R12S16A 90R .w av 8.9 12 R 13S16A 90R .w av 7.6 10

7.48 12.72 6 .73 11.51 6.63 11.38

Table 4.10: SRMR Dereverberation results for Booth room

R ev erb
In p u t

D e rev e rb
O u t

R e v erb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D e rev e rb
O u tp u t

D istance lm 2m 3m

R 21S01A 90R .w av 2.5 5.3 R22S01A 90R .w av 2.5 4.9 R23S01A 90R .w av 2.1 4.1

R 21S02A 90R .w av 4.7 14 R22S02A 90R .w av 3.1 7.3 R23S02A 90R .w av 2.1 3.9

R 21S03A 90R .w av 2.9 6.6 R22S03A 90R .w av 3.1 7.3 R23S03A 90R .w av 2.4 5.3

R 21S04A 90R .w av 2.8 4.8 R 22S04A 90R .w av 2.3 4.3 R23S04A 90R .w av 2.3 4.6

R 21S05A 90R .w av 2.7 7.6 R 22S05A 90R .w av 2.2 5 R 23S05A 90R .w av 2 4

R 21S06A 90R .w av 2.7 6 R22S06A 90R .w av 2.9 6.2 R23S06A 90R .w av 1.9 3.9

R 21S07A 90R .w av 3.5 9.6 R22S07A 90R .w av 3.1 7.4 R23S07A 90R .w av 2.3 4.5

R 21S08A 90R .w av 3.6 7.9 R22S08A 90R .w av 3 7.2 R23S08A 90R .w av 2.3 4.7

R 21S09A 90R .w av 6.5 17 R22S09A 90R .w av 4 7.7 R23S09A 90R .w av 4.6 12

R 21S10A 90R .w av 4.8 7 R22S10A 90R .w av 4.9 8.6 R 23S10A 90R .w av 4.7 12

R 2 1 S llA 9 0 R .w a v 5.9 11 R 2 2 S llA 9 0 R .w a v 5.3 9.1 R 2 3 S llA 9 0 R .w a v 4.4 11

R 21S12A 90R .w av 6.6 13 R22S12A 90R .w av 4.2 8.1 R23S12A 90R .w av 3.2 6.4

R 21S13A 90R .w av 6.6 11 R 22S13A 90R .w av 5.8 13 R23S13A 90R .w av 3.2 5.2

R 21S14A 90R .w av 6.7 14 R 22S14A 90R .w av 5.3 14 R23S14A 90R .w av 4.1 7.9

R 21S15A 90R .w av 4.6 8.5 R 22S15A 90R .w av 3.7 7.9 R 23S15A 90R .w av 4.2 11

R 21S16A 90R .w av 5.1 8 R 22S16A 90R .w av 4.2 8.4 R23S16A 90R .w av 3.2 5.8

M ean 4.51 9.45 3.72 7.9 3.06 6.64

Table 4.11 : SRMR Dereverbération results for Office room

R ev erb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D e rev e rb
O u tp u t

R e v e rb
In p u t

D erev e rb
O u tp u t

D istance 1.45m 1.7m 1.9m

R 31S01A 90R .w av 4.3 12 R 32S01A 90R .w av 4.5 13 R33S01A 90R .w av 4.3 14

R 31S02A 90R .w av 5.9 16 R 32S02A 90R .w av 3.6 5.9 R33S02A 90R .w av 4.5 11

R 31S03A 90R .w av 4.1 9.1 R 32S03A 90R .w av 4.4 11 R 33S03A 90R .w av 4.9 15

R 31S04A 90R .w av 3.5 5.7 R 32S04A 90R .w av 3.3 5.9 R33S04A 90R .w av 3.2 5.2

R 31S05A 90R .w av 2.8 5.2 R 32S05A 90R .w av 3.2 8.4 R33S05A 90R .w av 2.9 6.5

R 31S06A 90R .w av 3.9 7.6 R 32S06A 90R .w av 3.3 7.7 R33S06A 90R .w av 3.1 7
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R 31S07A 90R .w av 4 12 R 32S07A 90R .w av 4.1 13 R33S07A 90R .w av 3.9 12

R 31S08A 90R .w av 8.5 19 R 32S08A 90R .w av 4.4 12 R33S08A 90R .w av 4.4 12

R 31S09A 90R .w av 6.2 11 R32S09A 90R .w av 8.6 19 R33S09A 90R .w av 8.3 19

R 31S10A 90R .w av 7.5 15 R32S10A 90R .w av 7.3 13 R33S10A 90R .w av 7 13

R 3 1 S llA 9 0 R .w a v 7.5 9.7 R 3 2 S llA 9 0 R .w av 8.3 12 R 3 3 S llA 9 0 R .w av 7.4 11

R 31S12A 90R .w av 6 11 R 32S12A 90R .w av 6.2 11 R 33S12A 90R .w av 5.7 10

R 31S13A 90R .w av 9.2 16 R 32S13A 90R .w av 8.7 14 R33S13A 90R .w av 10 15

R 31S14A 90R .w av 7.2 13 R32S14A 90R .w av 8 16 R33S14A 90R .w av 8 16

R 31S15A 90R .w av 6.8 15 R 32S15A 90R .w av 6.1 11 R33S15A 90R .w av 5.8 12

R 31S16A 90R .w av 7.5 12 R 32S16A 90R .w av 6.6 9.9 R33S16A 90R .w av 5.9 8

5 .9 3 1 1 .8 3 5 .6 6 11 .4 2 5 .5 8 11 .6 6

R e v e rb
In p u t

D e rev e rb
O u tp u t

R e v erb
In p u t

D erev e rb
O u tp u t

2.25m 2.8m

R 34S01A 90R .w av 3.5 8.3 R 35S01A 90R .w av 3 5.9

R 34S02A 90R .w av 4 7.8 R 35S02A 90R .w av 3.6 6.5

R 34S03A 90R .w av 3.7 7.9 R35S03A 90R .w av 3.3 6.3

R 34S04A 90R .w av 2.8 5.2 R35S04A 90R .w av 2.5 3.6

R 34S05A 90R .w av 2.6 6.1 R 35S05A 90R .w av 3 7.2

R 34S06A 90R .w av 2.8 5.2 R 35S06A 90R .w av 2.7 4.9

R 34S07A 90R .w av 3.4 7.6 R35S07A 90R .w av 3.7 7.4

R 34S08A 90R .w av 4.2 12 R35S08A 90R .w av 3.9 11

R 34S09A 90R .w av 6.7 14 R35S09A 90R .w av 6 15

R 34S10A 90R .w av 7.5 15 R35S10A 90R .w av 5.5 8.9

R 3 4 S llA 9 0 R .w a v 8.3 14 R 3 5 S llA 9 0 R .w av 8.3 18

R 34S12A 90R .w av 5.9 10 R35S12A 90R .w av 4.5 6.5

R 34S13A 90R .w av 8.7 15 R35S13A 90R .w av 6.8 13

R 3 4 S i4 A 9 0 R .w av 7.1 13 R35S14A 90R .w av 7.5 17

R 34S15A 90R .w av 5.7 10 R35S15A 90R .w av 5.1 9.1

R 34S16A 90R .w av 5.3 7.5 R 35S16A 90R .w av 4.5 7

5 .1 3 9.91 4 .61 9 .2 0

Table 4.12: SRMR Dereverberation results for Meeting room

R ev erb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D erev e rb
O u tp u t

R ev erb
In p u t

D e rev e rb
O u tp u t

D istance 2.25m 2.25m 4m 4m 5.56m 5.56m

R 41S01A 90R .w av 2.3 4.7 R42S01A 90R .w av 2.6 5.4 R43S01A 90R .w av 1.8 3.4

R 41S02A 90R .w av 3.9 9.7 R42S02A 90R .w av 2.9 6.2 R43S02A 90R .w av 2.3 5

R 41S03A 90R .w av 2.9 7 R42S03A 90R .w av 3 8 R43S03A 90R .w av 2 4.4

R 41S04A 90R .w av 2.4 4.2 R42S04A 90R .w av 2.2 3.6 R 43S04A 90R .w av 2 3.7

R 41S05A 90R .w av 2.3 6 R42S05A 90R .w av 1.8 3.7 R43S05A 90R .w av 2 4.7
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R 41S06A 90R .w av 2.8 7.3 R 42S06A 90R .w av 2 3.5 R43S06A 90R .w av 1.9 3.6

R 41S07A 90R .w av 3.2 12 R42S07A 90R .w av 2.8 7.7 R43S07A 90R .w av 2.2 4.5

R 41S08A 90R .w av 4.4 13 R42S08A 90R .w av 3.8 15 R43S08A 90R .w av 3.2 14

R 41S09A 90R .w av 4 8.1 R 42S09A 90R .w av 4.3 10 R 43S09A 90R .w av 3.3 8.5

R 41S10A 90R .w av 5.7 13 R 42S10A 90R .w av 7.3 18 R43S10A 90R .w av 4.6 11

R 4 1 S llA 9 0 R .w a v 5.4 11 R 4 2 S llA 9 0 R .w av 4.6 8 R 4 3 S llA 9 0 R .w av 3.3 5.4

R 41S12A 90R .w av 4.5 9.2 R 42S12A 90R .w av 3.3 5.9 R43S12A 90R .w av 2.9 6.5

R 41S13A 90R .w av 5.5 15 R 42S13A 90R .w av 4.3 9.2 R43S13A 90R .w av 2.8 5.7

R 41S14A 90R .w av 5 10 R 42S14A 90R .w av 5 11 R43S14A 90R .w av 3.6 9.3

R 41S15A 90R .w av 4.2 8.9 R 42S15A 90R .w av 4.1 11 R43S15A 90R .w av 2.8 6.8

R 41S16A 90R .w av 3.7 6.5 R42S16A 90R .w av 3.8 8.8 R43S16A 90R .w av 3.6 7.7

M ean 3.88 9.1 3.6 8.4 2.76 6.51

R ev erb
In p u t

D e rev e rb
O u tp u t

R e v erb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D e rev e rb
O u tp u t

7.1m 8.68m 10.2m

R 44S01A 90R .w av 1.9 3.4 R45S01A 90R .w av 2.1 4.2 R 46S01A 90R .w av 2.5 5.5

R 44S02A 90R .w av 2.3 6 R45S02A 90R .w av 2.4 5.8 R 46S02A 90R .w av 2.8 6.3

R 44S03A 90R .w av 1.9 3.8 R 45S03A 90R .w av 1.8 3.5 R 46S03A 90R .w av 2 4

R 44S04A 90R .w av 1.8 3.6 R45S04A 90R .w av 1.5 2.7 R46S04A 90R .w av 2.2 4.3

R 44S05A 90R .w av 1.6 3.1 R45S05A 90R .w av 1.6 3.5 R 46S05A 90R .w av 1.9 3.9

R 44S06A 90R .w av 2.1 4.8 R 45S06A 90R .w av 2.1 4.8 R46S06A 90R .w av 2.1 4

R 44S07A 90R .w av 2.3 4.9 R 45S07A 90R .w av 1.9 4.1 R46S07A 90R .w av 2 3.8

R 44S08A 90R .w av 2.1 6 R 45S08A 90R .w av 3.1 13 R46S08A 90R .w av 2.8 9

R 44S09A 90R .w av 3.3 8.6 R 45S09A 90R .w av 2.6 5.3 R46S09A 90R .w av 3.5 8.6

R 44S10A 90R .w av 3.5 6.9 R45S10A 90R .w av 5.6 16 R 46S10A 90R .w av 5 16

R 4 4 S llA 9 0 R .w a v 3.7 7 R45S1 lA 90R .w av 4.7 9.4 R 4 6 S llA 9 0 R .w av 3.6 6.8

R 44S12A 90R .w av 3 6.4 R 45S12A 90R .w av 3 7.1 R 46S12A 90R .w av 2.6 6.1

R 44S13A 90R .w av 2.9 6.2 R 45S13A 90R .w av 2.9 6.3 R46S13A 90R .w av 3.9 14

R 44S14A 90R .w av 2.9 6.9 R 45S14A 90R .w av 3.1 6.6 R 46S14A 90R .w av 3 7
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R 44S15A 90R .w av 2.4 5.5 R45S15A 90R .w av 2.4 6.2 R46S15A 90R .w av 2.1 4.9

R 44S16A 90R .w av 2.4 4.7 R 45S16A 90R .w av 3.3 8.4 R46S16A 90R .w av 2.8 5.4

M ean 2.50 5.4 2.7 6.68 2.8 6.85

Table 4.13: SRMR Dereverberation results for Lecture room

R e v e rb
In p u t

D e rev e rb
O u tp u t

R ev erb
In p u t

D e rev e rb
O u tp u t

R e v erb
In p u t

D erev e rb
O u tp u t

D istance lm lm 2m 2m 3m 3m

R 51S01A 90R .w av 2.5 5.4 R 52S01A 90R .w av 2.5 6.9 R53S01A 90R .w av 1.9 3.7

R 51S02A 90R .w av 3.6 7.5 R 52S02A 90R .w av 2.5 4.9 R53S02A 90R .w av 2.5 6.8

R 51S03A 90R .w av 2.5 5.4 R52S03A 90R.w av 3.2 8.3 R53S03A 90R .w av 2.3 4.8

R 51S04A 90R .w av 2.5 4.4 R 52S04A 90R .w av 2.1 4 R 53S04A 90R .w av 2 3.6

R 51S05A 90R .w av 2 4.1 R52S05A 90R.w av 2 4.3 R 53S05A 90R .w av 2.2 5.2

R 51S06A 90R .w av 2.3 4.3 R52S06A 90R.w av 2.4 4.9 R53S06A 90R .w av 1.5 2.6

R 51S07A 90R .w av 3.1 7.7 R 52S07A 90R .w av 3 9.7 R53S07A 90R .w av 2.6 6.4

R 51S08A 90R .w av 4.2 14 R 52S08A 90R .w av 3.2 8.6 R53S08A 90R .w av 2.4 5.5

R 51S09A 90R .w av 4.5 9.1 R 52S09A 90R .w av 4.2 9.4 R 53S09A 90R .w av 3.7 8.9

R 51S10A 90R .w av 6.9 14 R52S10A 90R .w av 3.3 5.9 R 53S10A 90R .w av 3.6 7.8

R 5 1 S llA 9 0 R .w a v 5.7 9.7 R 5 2 S llA 9 0 R .w av 5 9.7 R 5 3 S llA 9 0 R .w av 3.5 7.7

R 51S12A 90R .w av 5.4 9.9 R52S12A 90R .w av 4.6 8.7 R53S12A 90R .w av 3.2 6.3

R 51S13A 90R .w av 7.7 15 R52S13A 90R .w av 5.3 13 R 53S13A 90R .w av 3.7 7.8

R 51S14A 90R .w av 7 16 R52S14A 90R .w av 5.8 13 R 53S14A 90R .w av 4 10

R 51S15A 90R .w av 5.3 11 R52S15A 90R .w av 3.4 7.8 R 53S15A 90R .w av 3.1 7.3

R 51S16A 90R .w av 6.3 11 R52S16A 90R .w av 3.4 5.5 R53S16A 90R .w av 2.6 4.8

4.46 9.28 3.49 7.78 2.8 6.2

Table 4.14: SRMR Dereverberation results for Stairway room
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B W E  P E S Q  For babble B A K  @ 5 dB S N R

Figure 4.19: BWE PESQ for car Interior noise at 10 dB SNR
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Figure 4.21: B W
E PESQ

 for car interior noise at 10 dB SN
R

501. wav Vs S01_car_interior_16k_sn10.wav

502. wav Vs S02_car_interior_16k_sn10.wav

503. wav Vs SCX3_carJnterior_16k_sn10.wav

504. wav Vs S04_car_interior_16k_sn10.wav

505. wav Vs S05_car_interior_16k_sn10.wav

506. wav Vs SC6_carJnterior_16k_sn10.wav

507. wav Vs S07_carjnterior_16k_sn10.wav

508. wav Vs S08_carJ nterior_16k_sn 10. vsav

509. wav Vs S09_car_interior_16k_sn10.wav

510. wav Vs S10_carjnterior_16k_sn10.v\av

511. wav Vs S11_car_interior_16k_sn10.wav

512. wav Vs S12_car_interior_16k_sn10.wav

513. wav Vs S13_car_interior_16k_sn10.wav

514. wav Vs S14_carjnterior_16k_sn10.wav

515. wav Vs S 15_carJ nterior_16k_sn 10. vsav

516. wav Vs S16_car_intericx_16k_sn10.wav
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