1,126 research outputs found

    Development of an Approach for the Holistic Assessment of Innovation Projects in Manufacturing Including Potential, Effort, and Risk Using a Systematic Literature Review and Expert Interviews

    Get PDF
    Manufacturing companies face severe challenges from rapid technological developments. Industry 5.0 indicates the need for a sustainable, human-centered, and resilient industry. In striving for transformation, innovation becomes critical. However, a careful allocation of resources implies the evaluation of innovation projects. Moreover, diverse types of innovation and limited amounts of information represent a significant challenge. Therefore, this contribution presents an approach for holistically assessing innovation in manufacturing. First, a systematic literature review (SLR) was conducted to frame the current research state and identify assessment criteria. Second, a multiple-attribute decision-making method (MADM) was developed using the findings of the SLR and expert interviews. Finally, the criteria and the assessment approach were verified and validated by expert interviews, a workshop, and an industrial use case application. As the main findings, three criteria groups were derived and detailed: potentials, efforts, and risks. These criteria groups were used in a MADM approach incorporating Fuzzy set theory within a hybrid technique, combining the Analytical Hierarchical Process with the Technique for Order Preference by Similarity to Ideal Solutions. In conclusion, an enhancement of innovation assessment in manufacturing was achieved through the integration of different criteria and the balance between complexity and industrial applicability

    A NEW INTEGRATED GREY MCDM MODEL: CASE OF WAREHOUSE LOCATION SELECTION

    Get PDF
    Warehouses link suppliers and customers throughout the entire supply chain. The location of the warehouse has a significant impact on the logistics process. Even though all other warehouse activities are successful, if the product dispatched from the warehouse fails to meet the customer needs in time, the company may face with the risk of losing customers. This affects the performance of the whole supply chain therefore the choice of warehouse location is an important decision problem. This problem is a multi-criteria decision-making (MCDM) problem since it involves many criteria and alternatives in the selection process. This study proposes an integrated grey MCDM model including grey preference selection index (GPSI) and grey proximity indexed value (GPIV) to determine the most appropriate warehouse location for a supermarket. This study aims to make three contributions to the literature. PSI and PIV methods combined with grey theory will be introduced for the first time in the literature. In addition, GPSI and GPIV methods will be combined and used to select the best warehouse location. In this study, the performances of five warehouse location alternatives were assessed with twelve criteria. Location 4 is found as the best alternative in GPIV. The GPIV results were compared with other grey MCDM methods, and it was found that GPIV method is reliable. It has been determined from the sensitivity analysis that the change in criteria weights causes a change in the ranking of the locations therefore GPIV method was found to be sensitive to the change in criteria weights

    Partner selection in green supply chains using PSO – a practical approach

    Get PDF
    Partner selection is crucial to green supply chain management as the focal firm is responsible for the environmental performance of the whole supply chain. The construction of appropriate selection criteria is an essential, but often neglected pre-requisite in the partner selection process. This paper proposes a three-stage model that combines Dempster-Shafer belief acceptability theory and particle swarm optimization technique for the first time in this application. This enables optimization of both effectiveness, in its consideration of the inter-dependence of a broad range of quantitative and qualitative selection criteria, and efficiency in its use of scarce resources during the criteria construction process to be achieved simultaneously. This also enables both operational and strategic attributes can be selected at different levels of hierarchy criteria in different decision-making environments. The practical efficacy of the model is demonstrated by an application in Company ABC, a large Chinese electronic equipment and instrument manufacturer

    Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

    Get PDF
    The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. An appropriate action requirement plan is also suggested, to control and minimize risks associated with e-commerce exercises

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques

    Usage of Structural Equation Modeling and Analytical Hierarchy Process Approach to Select Information Technology

    Get PDF
    Progressive change is an accurate way to describe the advancement of information technology (IT) throughout the 1990s. As IT continues to evolve, the ways in which companies do business are also changing. The emergence ofthe Internet as a business venue, the growing percentage of consumers accessing the Web, and the increasing number of households equipped with a PC or other Web-access device are speeding IT's rate of change. The industries especially banking and financial services industries (BFSI) are heavily supported by IT and technology vendor for their service oriented business. It indicates that choosing the right vendor remains a critical success factor for every enterprise's business success. Selection of the best possible set of vendors not only allow organisations to downsize and utilise resources more effectively, but also allows themto take advantage of the capabilities andtechnologies of the vendors. The vendor selection process can be a very complicated and emotional undertaking if the approach from the very beginning is not known. The purpose ofthis research is to identify the required criteria for selecting the best vendor for information technology (IT) process and provide a vendor selection model including these criteria by using the structural equation modeling (SEM) and analytic hierarchy process (AHP). To demonstrate the above model and also, to arrive at vendor selection scores, the vendor selection for mobile banking application was considered as an example. The developed model is a generic one considering the global economic turmoil and the amount ofpressure on banking &financial services industries (BFSI), where IT is the backbone of the BFSI; In any future studies the model could be applied in making other strategic decisions like IT outsourcing, ERP (enterprise resource planning) implementation vendor selection etc. V

    Uncertainty Models in Reverse Supply Chain: A Review

    Get PDF
    Reverse logistic has become an important topic for the organization due to growing environmental concern, government regulation, economic value, and sustainable competitiveness. Uncertainty is one of the key factors in the reverse supply chain that must be controlled; thus, the company could optimize the reverse supply chain function. This paper discusses progress in reverse logistic research. A total of 72 published articles were selected, analyzed, categorized and the research gaps were found among them. The study began by analyzed previous research articles in reverse logistic. In this stage, we also collected and reviewed journals discussing about the reverse supply chain. Meanwhile, the result of this stage shows that uncertainty factor has not been reviewed in detail. The most common theme as the background research in reverse logistic is environmental and economic aspect. Uncertainty in Close Loop Supply Chain is the most widely used approach, followed by the usage on reverse logistics, reverse supply chain and reverse Model. The most used approach and method on uncertainty are Mixed Integer Linear Programing, mixed integer nonlinear Programing, Robust Fuzzy Stochastic Programming, and Improved kriging-assisted robust optimization method. Customer demand, total cost, product returns are the most widely researched aspects. This paper may be useful for academicians, researchers and practitioners in learning on reverse logistic and reverse supply chain; therefore, close loop supply chain can be guidance for upcoming researches. Research opportunity based on this research combines total cost, quality return product, truck capacity, delivery route, remanufacturing capacity, and facility location got optimum function in uncertainty. The research method and approach for MINLP, IK-MRO and RSFP provide many opportunities for research. For theme and area in reverse logistic, close loop supply chain is the theme that provides the most research opportunities

    A methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency – combination of fuzzy QFD and DEA

    Full text link
    © 2018 Elsevier Ltd Resources of an organisation (people, time, money, equipment, etc) are never endless. As such, a constant and continuous challenge for decision makers is to decide which projects should be given priority in terms of receiving critical resources in a way that the organisation's productivity and profitability is best guaranteed. Previous literature has already developed a plenitude of project portfolio selection methodologies ranging from simple scoring to complex mathematical models. However, most of them too often fail to propose one integrated and seamless method that can simultaneously take into account three important elements: (1) prioritisation of selection criteria over each other, (2) uncertainty in decision-making, and (3) projects interdependencies. This paper aims to fill this gap by proposing an integrated method that can simultaneously address all these three aspects. The proposed method combines Quality Function Development (QFD), fuzzy logic, and Data Envelopment Analysis (DEA) to accounts for prioritisation, uncertainty and interdependency. We then apply this method in a numerical example from a real world case to illustrate the applicability and efficacy of the proposed methodology
    corecore