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Partner selection in green supply chains using PSO - a practical 

approach

Abstract: Partner selection is crucial to green supply chain management as the focal 

firm is responsible for the environmental performance of the whole supply chain. The 

construction of appropriate selection criteria is an essential, but often neglected pre-

requisite in the partner selection process. This paper proposes a three-stage model that 

combines Dempster-Shafer belief acceptability theory and particle swarm optimization 

technique for the first time in this application. This enables optimization of both 

effectiveness, in its consideration of the inter-dependence of a broad range of 

quantitative and qualitative selection criteria, and efficiency in its use of scarce 

resources during the criteria construction process to be achieved simultaneously. This 

also enables both operational and strategic attributes can be selected at different levels 

of hierarchy criteria in different decision-making environments. The practical efficacy 

of the model is demonstrated by an application in Company ABC, a large Chinese 

electronic equipment and instrument manufacturer.  

Keywords: Green supply chain; Partner selection criteria; Dempster-Shafer theory; 

Particle swarm optimization 

1. Introduction

The growing acceptance of the concept of the Triple Bottom Line, and the need to 

comply with a series of regulatory and legislative requirements for environment 

protection (e.g. the WEEE and the RoHS Directives) has seen an increased concern that 

organizations should strive for environmental sustainability (Tsai 2012). The behaviour 

of consumers has also begun to change as they start to evaluate the environmental 

impact of the products and services they buy (Montoya-Torres et al. 2015). The focus 

of environmental management and operations has moved from local optimization of 

environmental factors to consideration of the entire supply chain (Jayaraman et al. 2007, 

Tseng et al. 2014). For the focal firm in a supply chain, this concern must also extend 

to the environmental practices and performance of its partners throughout its supply 

chain, as it is likely to be held responsible for any of their adverse environmental 
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impacts as well as its own (Rao and Holt 2005). The need to construct and operate green 

supply chains (GSCs) was highlighted some time ago by Noci (1997). He summarised 

the four key reasons why focal firms need to evaluate their supply chain partners’ 

environmental performance as: (1) to avoid negative managerial implications for the 

customer’s value chain by reducing the quantity of supplied components with low 

environmental performance, (2) to control the cost of their green products effectively, 

(3) to favour frequent modification of the key product environmental performance by 

reducing the company’s response time to the market, and (4) to avoid problems 

associated with the company’s green image which depends on a supplier’s 

environmental efficiency. Since then, the environmental performance of supply chain 

partners has become an even more important issue, and hence, partner selection has 

become a crucial issue in green supply chain management (Awasthi et al. 2010, 

Bhattacharya et al. 2014). 

Green supply chain management (GSCM) encompasses the plans and activities of a 

focal firm, which integrate environmental issues into supply chain management in order 

to improve the environmental performance of all its supply chain partners (Bowen et 

al. 2001, Large and Thomsen 2011). GSCM has becoming one of the main issues in 

supply chain management due to both dramatic increasing of air emissions and 

progressive scarcity of nature resources (Savino et al. 2015). The key purpose of GSCM 

is to control and reduce the environmental impact of all its supply chain activities, both 

upstream and downstream, including the purchase of raw materials, the production and 

delivery of products and services, and the recycling of waste products (Kuo et al. 

2010a). GSCM not only enables a company to comply with different regulatory 

requirements, but can also cultivate green business opportunities (Tsai 2012, Mohanty 

and Prakash 2014). A commitment to environment sustainability in the supply chain 

can be a source of competitive advantage and sustainable development (George et al. 

2006, Large and Thomsen 2011). 

The construction of a GSC requires that only the most environmentally appropriate 

partners be incorporated within it. However, any process used to select supply partners 

needs a comprehensive set of appropriate criteria. However, this is far from 

straightforward as the criteria may vary across different product categories and 

situations (Kannan and Haq 2007). Without appropriate criteria, decision-makers 
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cannot collect and evaluate adequate and appropriate information on potential partners 

(Wu and Barnes 2016). Furthermore, those criteria need to reflect the relative 

importance of different environmental regulations under which the focal firm and its 

partners operate. Without appropriate criteria, even the most advanced models/methods 

cannot perform well thereby reducing the effectiveness of the partner selection process 

(De Boer et al. 2001). Without appropriate criteria, valuable evaluation resources (e.g. 

time and money) will be wasted, reducing the efficiency of the partner selection process 

(Wu and Barnes 2010). In short, the effectiveness and efficacy of GSC construction 

process will be seriously adversely affected if there is not a systematic method to 

construct a set of feasible and practicable criteria. The aim of the research is to analyse 

and to assess how the most appropriate criteria for partner selection in GSCs can be 

identified and organized under different decision-making situations considering the 

managerial resource constraints. 

The remainder of this paper is organized as follows. Section 2 presents a literature 

review of criteria selection and construction in GSCs. Section 3 describes the 

methodology of this research. Section 4 sets out a three-stage model for partner 

selection criteria construction in GSCs based on the use of Dempster-Shafer belief 

acceptability theory and particle swarm optimization technique. Section 5 tests the 

efficacy of the model by presenting an empirical illustration of its application in the 

Chinese Electronic Equipment & Instruments industry. Section 6 summaries a 

managerial application process for the proposed model. The paper closes with some 

concluding remarks in Section 7. 

2. Literature Review

Noci (1997) was the first to propose that a supplier’s environmental performance should 

be incorporated within a comprehensive vendor rating system. Within a pro-active 

green strategy, his model identified four key measures for vendor rating and selection, 

namely the potential vendors’ green competencies, their green image, their current 

environmental efficiency and the net life cycle cost. Three or four sub-measures are 

then included in each of the key measures. These measures can not only be used in 

vendor rating systems but can also be used by firms to drive continuous improvements 

in their environmental performance. Based on the empirical evidence from 119 



- 5 -

manufacturing firms, Lee et al. (2015) argue that green suppliers do have positive and 

significant effects on environmental performance and competitive advantage. 

Therefore, green supplier selection becomes an important decision in efforts to improve 

and enhance the environmental performance and competitive advantage of GSCs.

Noci’s work has provided the foundation on which much of the subsequent research on 

hierarchy criteria in this field has been built. In particular, Klassen and Vachon (2003), 

Zhu and Sarkis (2004), Bai and Sarkis (2010a, 2010b), Erol et al. (2011),  Buyukozkan 

and Cifci (2012), and Kannan et al. (2015) join Noci in including green competencies 

as a partner selection criterion for GSCs. Potential partners could demonstrate their 

green competencies by, for example, their efficiency at managing green supply chain 

management issues, having a reverse logistics system, and transferring employees with 

environmental expertise to suppliers. Melnyk et al. (2003), Matos and Hall (2007), Kuo 

et al. (2010a) and Hashemi et al. (2015) also follow Noci in including green image. 

Examples of meeting this criterion might include having ISO 14000 certification, the 

extent to which the partner is seen to follow green policies, and the extent to which its 

market share relates to green customers. Noci’s environmental efficiency criterion has 

been extended by beyond emissions and energy consumption to encompass broader as 

aspects of environmental performance including product recycling rates and responses 

to environmental product requests (Sarkis 2003, Kassinis and Soteriou 2003, 

Kleindorfer et al. 2005, Corbiere-Nicollier et al. 2011, Dey and Cheffi 2013). Similarly, 

Noci’s net life cycle cost criterion has been extended to encompass other pollution 

control initiatives, including Waste Electrical and Electronic Equipment (WEEE) 

directive (Sroufe 2003, Linton et al. 2007, Awasthi et al. 2010, Tsai 2012). Other 

researchers have put forward alternative sets of criteria to Noci (1997). Yeh and Chuang 

(2011) identify four main criteria for green partner selection, whilst other researchers 

have suggested as many as twelve (Awasthi et al. 2010), or in the case of Tseng and 

Chiu (2013), eighteen qualitative and quantitative criteria. 

As can be inferred from the above discussion, each of the potential criteria for partner 

selection in green supply chains tends to consist of multiple dimensions that can be 

arranged in a hierarchy. Thus, any method used in determining appropriate criteria must 

also include a consideration of what sub-criteria to include within each of the chosen 

top-level criteria (Wu and Barnes 2011, 2012). Based on a literature survey and the 
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approval of experts, Hashemi et al. (2015) identified their green supplier evaluation 

criteria under economic and environment categories. As there are only three sub-

criteria, grouped under each of the top-level criteria, theirs is a fairly simple grouping 

process. In addition, Sarkis and Dhavale (2015) proposed a set of criteria for supplier 

selection for sustainable operations. They supplemented economic and environmental 

criteria with a social criteria category in accordance with the theory of triple bottom 

line (Elkington 1998). Similarly, three sub-criteria were identified and included in each 

of the top-level criteria categories based on a literature survey. It is both efficient and 

practical to identify and cluster criteria in this way, if their number is limited. However, 

if the decision-making situation calls for a more compressive evaluation, then, many 

more criteria need to be identified and clustered; this requires a more reliable and 

systematic approach. 

Kannan et al. (2015) proposed a multi-criteria decision-making approach to select the 

best green supplier for a Singapore-based plastic manufacturing company. At their 

criteria construction stage, they used an affinity diagram to gather large amounts of 

language data and organized them into groupings based on their natural relationships. 

In this way, they narrowed the green supplier selection criteria from the 26 traditional 

criteria and 72 environmental criteria under 13 main criteria in the beginning to 21 

traditional criteria and 39 environmental criteria under 11 main criteria in the end. This 

represents significant progress in both the efficiency of green supplier selection and in 

that the potential criteria can be easily identified, grouped, and filtered. Yet, this criteria 

construction process is mostly qualitative and misses out on quantitative analysis and 

evaluation of factors such as financial cost and management resources. Govindan et al. 

(2015) reviewed thirty three papers which focused on multi criteria decision making 

approaches for green supplier evaluation and selection in recent years. They pointed 

out that additional research is required on identifying, defining, grouping, and filtering 

the criteria of green supplier evaluation and selection. “These areas are important and 

necessary directions” as they concluded.

Additionally, one of the most distinctive features of GSCM is the increased number of 

performance objectives involved than would be the case for more traditional supply 

chains (Seuring and Muller 2008). Thus, the challenge of developing a method to solve 

this problem must take into account not only the hierarchical relationships between 
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criteria but also be able to optimize between multiple, and potentially conflicting 

objectives. This makes for a much more complex problem not only than would be the 

case with a single objective but also when the objectives are mainly economic in nature. 

Thus, any proposed techniques must enable the problem to be solved both efficiently 

and effectively having regard to resource constraints and the decision-making 

environment. 

A variety of methods have been applied tackle the green partner selection problem. 

These have included Analytic Hierarchy Process (AHP)/Analytic Network Process 

(ANP) (Sarkis 2003), ANP (Yang et al. 2010), Artificial Neural Network (ANN) (Kuo 

et al. 2010a), Interpretive Structural Modelling (Kannan and Haq 2007), grey system 

and rough sets (Bai and Sarkis 2010a, 2010b), DEA (Kumar et al. 2014) and multi-

objective mixed-integer programming (Abdallah et al. 2012). Whilst fuzzy logic has 

been applied by Erol et al. (2011) - fuzzy entropy, Lee et al. (2009) - fuzzy AHP, and 

Tseng and Chiu (2013) - fuzzy set theory. One of the common limitations of such works 

has been a tendency for researchers to initiate their partner selection criteria without a 

systematic way to identify, group and filter the potential criteria (Govindan et al. 2015). 

Additionally, the emphasis of most current works has been placed on the partner 

selection methods and approaches (Genovese et al. 2014), rather than first addressing 

the more fundamental problem of constructing a set of appropriate partner selection 

criteria reasonably and systematically. To date, only limited attention has been given to 

partner selection criteria construction which is an essential pre-requisite in any selection 

process (Wu and Barnes, 2011). Lin and Chen (2004) applied Dempster-Shafer theory 

when constructing a partner selection criteria hierarchy within their strategic alliance 

selection model. However, their main focus is on the strategic alliance selection 

approach rather than the partner selection criteria construction, which makes their 

model hard to apply by supply chain managers in practice. Wu and Barnes (2010) tried 

to simplify Lin and Chen’s framework in order to make it more accessible to practicing 

managers. However, their approach to constructing partner selection criteria is limited 

to the use of only a single objective viewpoint and method, namely belief acceptability, 

when a multi-objective approach would be more beneficial for the quality of decision-

making and closer to realistic decision-making environments. 
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In summary, the construction of a set of selection criteria is a necessary pre-requisite in 

any partner selection process. Yet, current approaches to partner selection in green 

supply chains do not consider how to construct an appropriate set of appropriate partner 

selection criteria systematically. Current literature places the emphasis on the partner 

selection method, with little or no consideration being given to the prior construction 

of selection criteria. Approaches that have tackled this issue (e.g. Lin and Chen, 2004; 

Wu and Barnes, 2010) can be shown to have shortcomings. This is a significant gap in 

the literature. There is a need to develop a method that can systematically construct an 

appropriate set of criteria for partner selection in green supply chains. Such a method 

should be able to identify, group and filter all the potential criteria. This paper proposes 

such a method. It is based on multiple objective programming rather than a single 

objective. This enables it to be comprehensive enough to consider a broad range of 

possible criteria, both qualitative and quantitative, whilst being efficient in its use of 

scarce management resources during the criteria construction process. 

3. Methodology

The methodology for this research involved the use of a three step process as shown 

Figure 1. 

Literature research

Theoretical model construction

Researchers and industry experts 
consultations and discussions

Proposed model application

R
ev

is
io

n

Figure 1: Research process of the proposed model

1) Literature review: Recent literature on partner selection criteria construction in 

GSCs was reviewed in order to identify research gaps and opportunities for further 
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development. Keywords, such as partner selection, criteria construction and 

formulation, and green supply chain, were used to search papers published in the 

leading operations management journals from 1990s onwards in the database of ISI 

Web of Knowledge. 67 papers in high ranked journals were selected for inclusion 

in the review. 

2) Model construction: From the literature research, a three-stage model for partner 

selection criteria construction in GSCs was proposed based on the use of the 

Dempster-Shafer belief acceptability theory and particle swarm optimisation 

technique (see below). An expert panel of researchers and industry experts were 

consulted about the proposed model. During several rounds of discussion and 

revision, they provided a number of helpful comments and suggestions for 

improvement, which were incorporated into the finalised proposed model. 

3) Application: The efficacy and effectiveness of the proposed model was then tested 

through an empirical illustration of its application in the Chinese Electronic 

Equipment & Instruments industry. 

This research is based on the use of the Dempster-Shafer theory and the particle swarm 

optimization technique. These are now briefly explained in the following two sub-

sections. 

3.1 Dempster-Shafer theory 

The Dempster-Shafer theory (DST) of evidence was originated by Dempster’s concept 

of lower and upper probabilities (Dempster 1967), and extended by Shafer as a theory 

(Shafer 1976). The basic idea of DST is that numerical measures of uncertainty may be 

assigned to overlapping sets and subsets of hypotheses or events (Beynon et al. 2000). 

As it can include situations of uncertainty and ignorance in the same formulation, DST 

can build a unifying framework for describing uncertainty and ignorance in the 

decision-making environment (Yager 1987). Compared to probability theory, such as 

the conventional Bayesian technique, DST can capture and represent more information 

to support decision-making, by representing uncertain and ignorance evidence (Wu 

2009). In more detail, rather than being represented by exactly specified probability 

distributions as conventional Bayesian technique, DST proposes a mechanism to derive 
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solutions from various vague sets of evidence (Beynon et al. 2000). Furthermore, DST 

can combine unexpected empirical evidence in decision-maker’s mind, and then 

formulate a coherent picture of reality. 

There are three main advantages of applying DST during the partner selection criteria 

construction process. First of all, DST is a valuable tool for the evaluation of risk and 

uncertainty when knowledge is obtained from experts (Sentz and Ferson, 2002). DST 

can build a unifying framework for describing uncertainty and ignorance. Secondly, the 

uncertainty we have to take into consideration during decision-making on partner 

selection criteria construction is epistemic uncertainty. Thus, traditional probability 

theory is not the most appropriate theory to apply. Compared to more traditional 

Bayesian technique, DST can capture and represent more information to support 

decision-making on partner selection criteria construction. Last but not least, criterion 

dependency, which is a common phenomenon in multi-attribute decision-making 

problems, can be considered simultaneously by applying DST. For a target criterion in 

a specific layer, decision-makers can form any meaningful combination out of the 

criteria in the lower layer and generate the subordinate criteria sets with their different 

belief acceptabilities. More importantly, the combination of evidence can be obtained 

from multiple sources (say a panel of decision-makers) in DST while the potential 

conflicts among them can be well modeled. Therefore, in this research, DST is applied 

for representing the uncertainty and ignorance during the prior processes of partner 

selection criteria construction in GSCs. 

3.2 Particle swarm optimization 

Particle Swarm Optimization (PSO) is a metaheuristic algorithm based on the social 

behaviour of a flock of birds or shoal of fish; it is similar to evolutionary computation 

techniques, for instance, genetic algorithm. First proposed by Kennedy and Eberhart 

(1995), PSO is initialized with a population of random solutions, which it then searches 

for optima by updating generations. Then, unlike genetic algorithm, which is based on 

the survival of fitness, the potential solutions will move through the problem space by 

following the current optimum particles (Kuo et al. 2010b). In more detail, each 

particle's movement is guided toward its local best known position. At the same time, 

this movement is also influenced by the best known positions in the whole search space. 
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These basic characteristics are in favour of the swarm moving toward its best solution. 

In addition, PSO can search very large spaces of possible solutions and so can be used 

for complex optimization problems (Zhao et al. 2008, Huang et al. 2011, Che 2012). 

There are two main advantages of applying PSO during the partner selection criteria 

construction process. On the one hand, PSO has been proved to be a simple, sound, and 

effective metaheuristic algorithm (Che 2012). Zhao et al. (2008) and Huang et al. (2011) 

pointed out that PSO is an effective and efficient method to solve a complex 

optimization problem. PSO offers easy programming and can be used on optimization 

problems that are partially irregular, noisy and changes over time. In use, PSO provides 

high efficiency as a result of its fast computation ability.  PSO can search a very large 

space of possible solutions, which makes it very suitable for criteria construction 

problems in GSCs. In other words, compared to other multi-objective optimization 

algorithms, such as genetic algorithm, PSO algorithm is a helpful metaheuristic 

approach which can clearly obtain acceptable solutions (Kuo et al. 2010b). On the other 

hand, the PSO technique is flexible enough to solve the multiple-objective optimization 

problem, which makes it very suitable for decision-making in partner selection criteria 

construction. As the proposed multiple-objective programming model is flexible 

enough to incorporate an increased number of objectives and/or constraints, the PSO 

technique can adapt and solve it efficiently. As such, it seems to offer an appropriate 

approach to solving the partner selection criteria construction sub-problem. Therefore, 

in this research, a PSO based methodology is proposed for solving the multi-objective 

optimization sub-problem within the partner selection criteria construction in GSCs.

4. The three-stage DS-PSO model for partner selection criteria 

construction in GSCs

This research therefore proposes a model that offers a new systematic approach to 

systematically solving this complex and important problem. Its innovativeness lies in 

its three-stage structure and its combination use of both Dempster-Shafer belief 

acceptability theory and particle swarm optimization technique. 

The proposed three stages are as follows: 

(1) GSC partner selection General Hierarchy Criteria (GSC-GHC) construction;
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(2) GSC partner selection Specific Hierarchy Criteria (GSC-SHC) construction;

(3) GSC partner selection Optimization Hierarchy Criteria (GSC-OHC) construction.

In each stage the hierarchy criteria are constructed and operated in accordance with 

different decision-making environments and requirements. The internal logic of the 

three-stage model is shown in Figure 2. 

Extract & refine

Extract & refine

Evaluation resources utilization efficiencyLow

GSC partner selection general hierarchy criteria

GSC partner selection optimization hierarchy criteria

High

 GSC partner selection specific hierarchy criteriaEvaluation
Scope

Small

Large

Figure 2: The three-stage model for GSC partner selection criteria construction

 

The vertical and horizontal axes in Figure 2 are evaluation scope and evaluation 

resources utilization efficiency, respectively. As Figure 2 illustrates, as the construction 

process advances from stage 1 to stage 3, the scope of the evaluation reduces, whilst 

evaluation resource utilization efficiency increases. This is because that, at the GSC 

partner selection general hierarchy criteria construction stage, the numbers of criteria 

are larger than the later stages. Therefore, the scope of evaluation is relatively larger 

than the later stages. However, because of the large numbers of criteria, more resources 

for evaluation are required. Thus, the evaluation resources utilization efficiency is 

relatively lower than the later stages. In contrast, at the GSC partner selection 

optimization hierarchy criteria construction stage, the numbers of criteria have been 

reduced systematically and effectively. Therefore, less resources for evaluation are 

required. In return, the efficiency of evaluation resources utilization can be improved 

while the scope of evaluation being smaller than the former stages. The model enables 
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decision-makers to find an optimization hierarchy of criteria that optimises evaluation 

scope for partner selection in GSCs whilst simultaneously optimising evaluation 

resource efficiency. 

The advantage of a three stage structure is that it offers a well-balanced trade-off 

between effectiveness and efficiency within the hierarchy criteria construction process. 

On the one hand, if only one or two stages are used to construct the hierarchy criteria, 

some requirements and demands of decision-making cannot be adequately fulfilled. In 

particular, it would limit the development of criteria that can be tailored to specific 

decision-making contexts. Therefore, the effectiveness of hierarchy criteria 

construction would be affected. On the other hand, if there are more than three stages 

(perhaps four or five stages), the efficiency of the hierarchy criteria construction would 

be adversely affected as each additional stage requires the consumption of more 

valuable resource and decision-making time. In adopting a three stage model, we follow 

an approach used in previous proposals for the design and formulation of hierarchy 

criteria for partner selection (e.g. Lin and Chen 2004, Wu and Barnes 2010, Kuo et al. 

2010a). A three stage process has also been used in other comparable decision-making 

models. For example, De Snoo et al. (2012) when developing a categorization of 

scheduling performance criteria in an extended planning and scheduling theory, and 

Mexas et al. (2012) when constructing criteria for the selection of ERP systems. 

The use of Dempster-Shafer theory provides an effective way of giving decision-

makers confidence in the information used and thereby the value of the evaluation 

criteria developed. PSO technique provides sufficient flexibility to enable the model to 

be adapted for use with differing numbers of optimization objectives and/or constraints. 

The use of Dempster-Shafer and PSO technique in combination provides a systematic 

and comprehensive way of solving the problem efficiently and effectively, thereby 

opening the way for the use of the proposed model in real business situations. 

The following three sub-sections describe each of the sub-stages in the three-stage 

model for GSC partner selection criteria construction in more details.



- 14 -

4.1 GSC partner selection General Hierarchy Criteria construction

Like Lin and Chen (2004) and Wu and Barnes (2010), the start point of this research an 

initial generic hierarchy of selection criteria derived from a review of the most relevant 

extant literature. Thus, in the GSC-GHC construction stage, a comprehensive partner 

selection hierarchy criteria for GSCs is built. This comprises the three-level hierarchy 

criteria, shown in Table 1. 

Table 1: GSC partner selection General Hierarchy Criteria

Hierarchy 
levels

Selected criteria

High level Partner performance in green supply chains

Middle level Green competencies (Klassen and Vachon 2003, Zhu and Sarkis 
2004, Bai and Sarkis 2010a, b, Erol et al. 
2011)

Environmental performance (Sarkis 2003, Kassinis and Soteriou 2003, 
Kleindorfer et al. 2005, Corbiere-Nicollier et 
al. 2011, Dey and Cheffi 2013)

Partner’s green image (Noci 1997, Melnyk et al. 2003, Matos and 
Hall 2007, Kuo et al. 2010a)

Pollution control (Sroufe 2003, Linton et al. 2007, Awasthi et al. 
2010, Tsai 2012)

Operations and financial capability (Sha and Che 2006, Luo et al. 2009, Burke et 
al. 2009, Yang et al. 2010)

Partnership and technology 
management

(Amaral and Tsay 2009, Sosic 2011, Cui et al. 
2012)

Low level See Table 2 to Table 7 for more details.

Descending the hierarchy criteria from High level to Middle level and to Low level 

requires an increasing amount of detailed information. The High level only includes a 

single criterion, namely supply partner’s green performance. At the Middle level, six 

criteria are proposed, about which information on different potential partners needs to 

be collected and evaluated. The first four of these are derived directly from Noci’s 

(1997) four criteria as discussed in Section 2 above, namely: 

1) Green competencies: The same as Noci’s criterion of the same name. 

2) Environmental performance: An extension of Noci’s environmental efficiency 

criterion.

3) Green image: The same as Noci’s criterion of the same name.
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4) Pollution control: An extension of Noci’s net life cycle cost criterion 

To these four green-related criteria, we propose two additional, economic criteria:

5) Operations and financial capability

6) Partnership and technology management 

The two additional factors (5 and 6 above) ensure that economic as well as 

environmental objectives are incorporated into the criteria chosen for GSC construction 

as firm’s will wish to optimize economic as well as environmental performance (Sha 

and Che 2006, Luo et al. 2009, Sosic 2011, Cui et al. 2012, Wu and Barnes 2014). 

Collecting and evaluating information directly on these six aspects of performance is 

likely to be neither feasible nor effective in practice. A better and more acceptable 

approach method is to break down each dimension into a set of more detailed Low level 

criteria, for which comprehensive and objective performance measures are available. 

These are identified from the literature relevant for each of the respective six Middle 

level criteria as outlined below and shown in Tables 2 through 7. There are no consensus 

rules for classification of the criteria at the lowest level of hierarchy either within 

academia or practice. In this research, the classification of those criteria is based on an 

analysis of their objective and relevance to each of the six aspects of performance. 

Accordingly, the clustering process was discussed by the expert panel of academic 

researchers and industry experts (as noted in Section 3 Methodology). 

1) Green competencies can be broken down into eighteen sub-criteria (see Table 

2). A supplier’s ability to design recyclable products, design renewable product 

and possess a reverse logistics system are identified as green competencies by 

Klassen and Vachon (2003). Similarly, Bai and Sarkis (2010a) list the abilities 

to solve supplier environmental technical problems, transfer employees with 

environmental expertise to suppliers, and reduce supplier’s environmental costs 

as green competencies. Whilst operating appropriate technology, such as the 

availability of clean technologies and use of environment friendly technology 

are also green competencies (Noci 1997, Tsai 2012). Likewise, appropriate 

planning & control and regulatory policies are also sources of green 

competencies. For instance, green process planning, internal control process, 

establishment of environmental commitment and policy, and continuous 
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monitoring and regulatory compliance (Klassen and Vachon 2003, Zhu and 

Sarkis 2004, Bai and Sarkis 2010b, Corbiere-Nicollier et al. 2011). Finally, the 

ability to cooperate with green partners is also a source of green competencies. 

Thus identified are joint and team problem solving on environmental issues, 

information sharing on environmental topics, partnership with green 

organizations, green supply chain management efficiency and green market 

share (Linton et al. 2007, Awasthi et al. 2010, Erol et al. 2011).

2) Environmental performance has nineteen sub-criteria (see Table 3). Product 

recycling rate, product remanufacturing rate and product reuse rate all reflect 

the potential partners’ environmental performance in aspects of recycling, 

remanufacturing and re-use (Sarkis 2003, Kleindorfer et al. 2005). In addition, 

air emissions, solid wastes and waste water represent another side of the 

recycling, remanufacturing and re-use environmental performance (Noci 1997, 

Matos and Hall 2007, Corbiere-Nicollier et al. 2011). Energy use as reflected 

energy consumption, and energy efficiency (Bauer et al. 2010, Erol et al. 2011) 

are also part of potential partners’ environmental performance. Similarly, with 

the ability to co-operate with suppliers influences environmental performance. 

Therefore, having environmental protection plans of suppliers, having 

environmental protection policies of suppliers, supplier rewards and incentives 

for environmental performance, amount of environmentally safe alternatives 

and green knowledge transfer and communication (potential partner’s incentive 

for green knowledge transferring within the GSCs) are all identified as criteria 

(Klassen and Vachon 2003, Bai and Sarkis 2010a). Finally, ratio of green 

customers to total customers, response to environmental product requests, 

identification of environmental aspects, green packaging, and adherence to 

environmental policies are all measures that directly show the environmental 

performance of potential partners (Kassinis and Soteriou 2003, Kleindorfer et 

al. 2005, Awasthi et al. 2010, Bai and Sarkis 2010b). 

3) Green image has eighteen sub-criteria (see Table 4). The partner’s green image 

reflects the ways in which they cooperate with their suppliers. Thus, building 

top management commitment/support for supplier organization for green 

supply practices, building top management commitment/support within buyer 
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organization for green supply practices, introducing a cross-functional supply 

chain team with environmental presence, the participation level of suppliers in 

the eco-design stage, and/or in the process of procurement and production are 

identified as criteria (Zhu and Sarkis 2004, Bai and Sarkis 2010a). A partner’s 

green image is enhanced and recognised by their having some environmental 

related certificates (e.g. ISO 14000) and then them having respect for the policy 

(the attitudes toward the environmental protection policy) (Melnyk et al. 2003, 

Kassinis and Soteriou 2003, Kuo et al. 2010a). A partner’s green image is also 

reflected in their relationships with their customers, employees and 

stakeholders. Thus, market share related to green customers, customers’ 

purchase retention (it's cheaper to get current customer to purchase from you 

again, therefore if you have a good green image from your current customers 

who care about your environmental impact, you may have higher customer 

purchase retention rate), the interests and rights of employee, and the type of 

relationships with stakeholders are also recognised as criteria (Noci 1997, 

Matos and Hall 2007, Kuo et al. 2010a). Additionally, information disclosure is 

identified as an important aspect of a potential partner’s green image (Kuo et al. 

2010a). Finally, investment and planning in relation to environmental issues 

contribute to green image. Thus, green R&D investment, depreciation for 

investments aimed at improving the partner’s environment performance, 

planning of environmental objectives, checking and evaluation of 

environmental activities, and assignment of environmental responsibility are 

appropriate criteria (Zhu and Sarkis 2004, Bai and Sarkis 2010b, Corbiere-

Nicollier et al. 2011). 

4) Pollution control has seventeen sub-criteria (see Table 5). Firstly, 

environmental regulations provide both restrictions and motivations for 

pollution control. Thus, ISO14001 certificate, Waste Electrical and Electronic 

Equipment (WEEE), and Restriction of the use of certain hazardous substances 

in electrical and electronic equipment (e.g. RoHS) can be used as criteria 

(Melnyk et al. 2003, Tsai 2012). Secondly, the costs for pollution treatment also 

influence the scale and scope of pollution control, such indicated by as air 

pollution treatment costs, chemical wastes treatment costs, cost for component 

disposal, energy consumption costs, solid wastes treatment costs, and water 
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pollution treatment costs can be criteria (Noci 1997, Sroufe 2003, Matos and 

Hall 2007, Erol et al. 2011). Thirdly, the methods of pollution control affect the 

result of pollution control. So, end-of-pipe control (pollution control capability), 

pollution control initiatives, design for environment, and production of polluting 

agents are also criteria (Linton et al. 2007, Awasthi et al. 2010, Bai and Sarkis 

2010b). Lastly, the materials used also reflect the pollution control performance. 

So type of materials used in the supplied component (environmental friendly or 

not), use of environment friendly materials, use of harmful materials, and 

production of toxic products are also suitable criteria (Noci 1997, Bai and Sarkis 

2010b, Corbiere-Nicollier et al. 2011, Tsai 2012). 

5) Operations and financial capability can be broken down into two separate 

sub-categories of criteria, operations and financial- related respectively (see 

Table 6). For the first sub-category, producing and delivering the required 

products and services are the key functions of GSCM. To achieve their main 

objective, GSCs need capabilities to provide quality product/service (Zhu and 

Sarkis 2004). This also calls for the ability to meet a high level of production 

volume flexibility, delivery reliability and capacity and variation in types of 

products or services (Sha and Che 2006, Yang et al. 2010, Cui et al. 2012). In 

addition, order lead time and order fulfilment rate are also very important 

attributes when evaluating the flexibility of potential partners (Chung et al. 

2005, Burke et al. 2009). As quality of products has been one of the top concerns 

in literature for some time, an appropriate quality assurance system and 

warranty periods are considered to be relevant criteria (Zhu and Sarkis 2004, 

Xia and Wu 2007), as is good quality philosophy (Pil and Rothenberg 2003). As 

product and service delivery is a key attribute of any potential partner, there is 

a need to consider their geographical location (Bauer et al. 2009). Other partner 

attributes identified in this category include the condition of physical facilities, 

consistent conformance to specifications and design capability (Choi and 

Hartley 1996, Sroufe 2003, Chung et al. 2005). Last, but not least, cost factors 

are likely to influence partner selection decision-making. So, cost-reduction 

capability remains vital to a GSCs’ performance (Sha and Che 2006). For the 

second sub-category, prudent financial capability is the foundation of any 

business operation. Accordingly, various financial accounting ratios can be used 
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as appropriate criteria. Firstly, a firm’s ability to pay its debts as they fall due 

can be assessed from the asset/liability ratio, and the debt/equity ratio (Luo et 

al. 2009). Secondly, a firm’s ability to grow and develop can be assessed from 

the assets rates of increment, the net profits growth rates and total revenue (Lin 

and Chen 2004). Thirdly, the ability of a firm to make profits, which is 

fundamental to its future health, can be assessed from the gross profit margin 

and the net operating margin (Burke et al. 2009). Finally, a firm’s operation 

ability, which is its ability to operate smoothly on a day-to-day basis can be 

assessed from the receivable turnover and the inventory turnover ratios (Luo et 

al. 2009).

6) Partnership and technology has twenty sub-criteria (see Table 7). The ability 

of a potential partner to manage technology and knowledge is one of the key 

attributes in a GSC partner. Thus technical capability, technical advice, 

technology innovation and knowledge of local business practices are used as 

indicators of a potential supplier’s performance (Hajidimitriou and Georgiou 

2002, Yang et al. 2010, Cui et al. 2012). In regard to technology management, 

a partner’s equipment status, their product familiarity, and repair turnaround 

time are basic criteria against which potential partners should be evaluated (Xia 

and Wu 2007, Amaral and Tsay 2009, Cui et al. 2012). As technology has to be 

updated continuously, the purchaser should also evaluate the cost of alternatives 

before selecting a particular partner (Burke et al. 2009). As a GSC needs to be 

a dynamic alliance of member companies in order to respond to fast-changing 

markets, so decision-making about the formation of a new GSC is an important 

consideration. Thus, relationship building flexibility and company’s reputation 

to integrity should be considered as criteria, alongside the cost of integration 

and the time needed to integrate (Lin and Chen 2004, Sosic 2011). Similarly, 

compatible management styles and compatible organization cultures will also 

influence decision making in this regard (Hajidimitriou and Georgiou 2002). 

Also, likely to be included in this evaluation category are special skills that you 

can learn from partners, closeness of past relationship and ease of 

communication (Choi and Hartley 1996, Amaral and Tsay 2009, Yang et al. 

2010). The ability to share knowledge is another key aspect of partnership 

management. Thus, an ability to obtain partner’s local knowledge (Amaral and 
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Tsay 2009) and partner’s ability to acquire your firm’ special skills (Xia and 

Wu 2007) are also included as criteria. Finally, it is also important to assess the 

risk of failure of cooperation when choosing a supply partner in GSCs (Amaral 

and Tsay 2009). 

Table 2: Sub-criteria on green competencies

Table 3: Sub-criteria on environmental performance

Index Criteria details

ya,1 Availability of clean technologies (Noci 1997)

ya,2 Capacity to respond in time (Zhu and Sarkis 2004)

ya,3 Continuous monitoring and regulatory compliance (Klassen and Vachon 2003)

ya,4 Establishment of environmental commitment and policy (Bai and Sarkis 2010b)

ya,5 Green Market share (Awasthi et al. 2010)

ya,6 Green process planning (Corbiere-Nicollier et al. 2011)

ya,7 Green supply chain management efficiency (Erol et al. 2011)

ya,8 Having recycling product design of suppliers (Klassen and Vachon 2003)

ya,9 Having renewable product design of suppliers (Klassen and Vachon 2003)

ya,10 Having reverse logistics system of suppliers (Klassen and Vachon 2003)

ya,11 Information sharing on environmental topics (Erol et al. 2011)

ya,12 Internal control process (Zhu and Sarkis 2004)

ya,13 Joint and team problem solving on environmental issues (Linton et al. 2007)

ya,14 Partnership with green organizations (Erol et al. 2011)

ya,15 Reduce suppliers environmental costs (Bai and Sarkis 2010a)

ya,16 Solve supplier environmental technical problems (Bai and Sarkis 2010a)

ya,17 Transferring employees with environmental expertise to suppliers (Bai and Sarkis 
2010a)

ya,18 Use of environment friendly technology (Tsai 2012)

Index Criteria details

yb,1 Adherence to environmental policies (Awasthi et al. 2010)

yb,2 Air emissions (Matos and Hall 2007)

yb,3 Amount of environmentally safe alternatives (Klassen and Vachon 2003)

yb,4 Energy consumption (Erol et al. 2011)

yb,5 Energy efficiency (Bauer et al. 2010)

yb,6 Green knowledge transfer and communication (Bai and Sarkis 2010a)

yb,7 Green packaging (Kleindorfer et al. 2005)

yb,8 Having environmental protection plans of suppliers (Klassen and Vachon 2003)

yb,9 Having environmental protection policies of suppliers (Klassen and Vachon 2003)

yb,10 Identification of environmental aspects (Bai and Sarkis 2010b)

yb,11 Product recycling rate (Kleindorfer et al. 2005)

yb,12 Product remanufacturing rate (Sarkis 2003)

yb,13 Product reuse rate (Sarkis 2003)

yb,14 Ratio of green customers to total customers (Kassinis and Soteriou 2003)

yb,15 Reduce rate (Sarkis 2003)

yb,16 Response to environmental product requests (Kassinis and Soteriou 2003)

yb,17 Solid wastes (Noci 1997)
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Table 4: Sub-criteria on partner’s green image

Index Criteria details

yc,1 Assignment of environmental responsibility (Bai and Sarkis 2010b)

yc,2 Building top management commitment/support for supplier organization for green 
supply practices (Bai and Sarkis 2010a)

yc,3 Building top management commitment/support within buyer organization for green 
supply practices (Bai and Sarkis 2010a)

yc,4 Checking and evaluation of environmental activities (Bai and Sarkis 2010b)

yc,5 Customers’ purchase retention (Noci 1997)

yc,6 Depreciation for investments aimed at improving the partner’s environment 
performance (Corbiere-Nicollier et al. 2011)

yc,7 Environmental related certificates (Kassinis and Soteriou 2003)

yc,8 Green R&D investment (Zhu and Sarkis 2004)

yc,9 Having ISO 14000 verification of suppliers (Melnyk et al. 2003)

yc,10 Information disclosure (Kuo et al. 2010a)

yc,11 Introducing a cross-functional supply chain team with environmental presence (Bai 
and Sarkis 2010a)

yc,12 Market share related to green customers (Noci 1997)

yc,13 Planning of environmental objectives (Bai and Sarkis 2010b)

yc,14 Respect for the policy (Kuo et al. 2010a)

yc,15 The interests and rights of employee (Kuo et al. 2010a)

yc,16 The participation level of suppliers in the eco-design stage (Zhu and Sarkis 2004)

yc,17 The participation level of suppliers in the process of procurement and production (Bai 
and Sarkis 2010a)

yc,18 Type of relationships with stakeholders (Matos and Hall 2007)

Table 5: Sub-criteria on pollution control

yb,18 Supplier rewards and incentives for environmental performance (Bai and Sarkis 
2010a)

yb,19 Waste water (Corbiere-Nicollier et al. 2011)

Index Criteria details

yd,1 Air pollution treatment costs (Matos and Hall 2007)

yd,2 Chemical wastes treatment costs (Sroufe 2003)

yd,3 Cost for component disposal (Noci 1997)

yd,4 Design for environment (Linton et al. 2007)

yd,5 End-of-pipe control (Bai and Sarkis 2010b)

yd,6 Energy consumption costs (Sroufe 2003)

yd,7 ISO14001 certificate (Melnyk et al. 2003)

yd,8 Pollution control initiatives (Awasthi et al. 2010)

yd,9 Production of polluting agents (Bai and Sarkis 2010b)

yd,10 Production of toxic products (Bai and Sarkis 2010b)

yd,11 Solid wastes treatment costs (Sroufe 2003)

yd,12 The Restriction of the use of certain hazardous substances in electrical and electronic 
equipment (RoHS) (Tsai 2012)

yd,13 Type of materials used in the supplied component (Noci 1997)

yd,14 Use of environment friendly materials (Tsai 2012)

yd,15 Use of harmful materials (Corbiere-Nicollier et al. 2011)

yd,16 Waste Electrical and Electronic Equipment (WEEE) (Tsai 2012)
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Table 6: Sub-criteria on operations and financial capability

Table 7: Sub-criteria on partnership and technology management

yd,17 Water pollution treatment costs (Erol et al. 2011)

Index Criteria details

ye,1 Asset/Liability ratio (Luo et al. 2009)

ye,2 Assets rates of increment (Luo et al. 2009)

ye,3 Capabilities to provide quality product/service (Zhu and Sarkis 2004)

ye,4 Condition of physical facilities (Chung et al. 2005)

ye,5 Consistent conformance to specifications (Choi and Hartley 1996)

ye,6 Cost-reduction capability (Sha and Che 2006)

ye,7 Debt/equity ratio (Luo et al. 2009)

ye,8 Delivery reliability and capacity (Sha and Che 2006)

ye,9 Design capability (Sroufe 2003)

ye,10 Inventory turnover ratios (Luo et al. 2009)

ye,11 Geographical location (Bauer et al. 2009)

ye,12 Gross Profit Margin (Burke et al. 2009)

ye,13 Net Operating Margin (Burke et al. 2009)

ye,14 Net profits growth rates (Lin and Chen 2004)

ye,15 Order fulfilment rate (Burke et al. 2009)

ye,16 Order lead time (Chung et al. 2005)

ye,17 Production volume flexibility (Cui et al. 2012)

ye,18 Quality assurance (Zhu and Sarkis 2004)

ye,19 Quality philosophy (Pil and Rothenberg 2003)

ye,20 Receivable turnover (Luo et al. 2009)

ye,21 Total Revenue (Chung et al. 2005)

ye,22 Variation in types of products or services (Yang et al. 2010)

ye,23 Warranty period (Xia and Wu 2007)

Index Criteria details

yf,1 Closeness of past relationship (Choi and Hartley 1996)
yf,2 Company’s reputation to integrity (Sosic 2011)
yf,3 Compatible management styles (Hajidimitriou and Georgiou 2002)
yf,4 Compatible organization cultures (Hajidimitriou and Georgiou 2002)
yf,5 Cost of alternatives (Burke et al. 2009)
yf,6 Cost to integration (Sosic 2011)
yf,7 Easy communication (Yang et al. 2010)
yf,8 Equipment status of the partners (Cui et al. 2012)
yf,9 Knowledge of local business practices (Hajidimitriou and Georgiou 2002)
yf,10 Obtain partner’s local knowledge  (Amaral and Tsay 2009)
yf,11 Partner’s ability to acquire your firm’ special skills (Xia and Wu 2007)
yf,12 Product Familiarity  (Amaral and Tsay 2009)
yf,13 Relationship building flexibility (Lin and Chen 2004)
yf,14 Repair turnaround time (Xia and Wu 2007)
yf,15 Risk of failure of cooperation (Amaral and Tsay 2009)
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There are two main advantages of using the GSC-GHC, namely flexibility and 

adaptability. On the one hand, given the different features of every specific GSC, the 

GSC-GHC can be adapted to meet individual needs within partner selection resource 

constraints. On the other hand, given that the information on different criteria may not 

be completely certain, Dempster-Shafer theory can be used to assign a belief 

acceptability to represent the bias of decision-makers (Shafer 1976). This is discussed 

below. 

Additionally, our proposal pays particular attention to a common phenomenon in multi-

attribute decision-making problems, namely attribute dependency. In this case, for any 

target dimension criterion in the high and/or middle layer, decision-makers can generate 

different meaningful combinations out of the criteria in the low layer and build the 

subordinate criteria sets for the GSC-SHC and GSC-OHC. This is also discussed below. 

4.2 GSC partner selection Specific Hierarchy Criteria construction

In the second stage, the output from the GSC-GHC construction is used to formulate 

the GSC-SHC. Every GSC requires its own specific hierarchy criteria because every 

GSC has distinctive characteristics, which arise from its industry and the stage of its 

development. It is very hard to collect the required information on supplier’s 

performance by simply using the same set of attributes across different industries. There 

is not a one size “criteria set” fit for all industries (Genovese et al. 2015). During the 

GSC-SHC construction sub-stage, decision-makers have the opportunities to build their 

own partner selection hierarchy criteria in accordance with their specific requirements. 

This requires the construction of a belief acceptability using the Dempster-Shafer 

theory. To do this, we follow the approach of Wu and Barnes (2010). 

Firstly, let us note the terminology inherent within the Dempster-Shafer theory, which 

is somewhat different from that used in probability theory. (The notations used are set 

out in Figure 3.)

yf,16 Special skills that you can learn from partners  (Amaral and Tsay 2009)
yf,17 Technical advice  (Cui et al. 2012)
yf,18 Technical capability  (Cui et al. 2012)
yf,19 Technology innovation (Yang et al. 2010)
yf,20 Time needed to integration (Sosic 2011)
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l layer index of configuration hierarchy, l = 1,2, . . . , L

yli the evaluation attribute i in layer l

yLi the evaluation attribute i which always located in the bottom layer of the attribute 

configuration hierarchy

y11 the final aggregate evaluations attribute

Vlk the kth set of selected attributes s in layer l

Γ a general notation to represent the subordinate attributes set

j11Γ the jth subordinate attributes set of the final aggregate evaluation attribute

lijΓ the jth subordinate attributes set of its master attribute yli

m(·) the basic probability assignment function of a given proposition

m(
lijΓ

)

the belief acceptability for  of the master attribute ylilijΓ

π a general notation to represent the acceptability of an evaluation attribute

liπ the belief acceptability of the subordinate evaluation attribute yli

Vi the binary attribute selection variable that if the evaluation attributes is selected, then  Vi  = 

1; otherwise  Vi  = 0

j the number of subsets on the different criteria groups of 3rd level hierarchy configuration

Figure 3: Notations used in the Dempster-Shafer theory (adopt from Wu and Barnes 

2010: 292)

Let  be a finite set of hypotheses (the frame of discernment). A basic  x,, x,x n21 }…{=ϕ

probability assignment (bpa) is a function m:  such that:]1,0[2 →ϕ

, and .0)( =φm ∑
∈

=
ϕ2

1)(
x

xm

We use the notation  because we have to consider the number of elements in the ϕ2

power set. All of the assigned probabilities sum to unity and there is no belief in the 

empty set. Any subset x of the frame of discernment  for which m(x) is non-zero is ϕ

called a focal element. A focal element represents the exact belief in the proposition 

depicted by x. Possible propositions of interest are “the true value of z lies in Z”, where 

. Thus, propositions are subsets. The value m(Z) represents the confidence that ϕ⊆Z

“the true value of z lies in Z, and not in any proper subset of Z ”.

Other measures of confidence can be defined based on the bpa. A belief measure is a 

function . It is drawn from the sum of probabilities that are subsets of the ]1,0[2: →ϕBel

probabilities in question, defined by



- 25 -

, for all .∑
⊆

=
AB

BmABel )()( ϕ⊆A

This represents the confidence that the value of z lies in A or any subset of A. A 

plausibility measure is a function Pls: , defined by]1,0[2 →ϕ

, for all ∑
≠∩

=
φAB

BmAPls )()( ϕ⊆A

Pls(A) represents the extent to which we fail to disbelieve A. These measures are clearly 

related to one another, for example,

 and ,)(1)( APlsABel −= )(1)( ABelAPls −=

where  refers to ‘not A’, also Bel( ) is often called the doubt in A. Another notable A A

relationship includes; 

, .1)()( ≤+ ABelABel 1)()( ≥+ APlsAPls

These two inequalities represent a major difference from the traditional simple 

probability function used in the Bayesian approach. However, when each of the focal 

elements are singletons, we can revert to traditional Bayesian analysis incorporating 

normal probability theory, because in this case Bel(A) = Pls(A).

For any given green supply chain, taking into account its individual characteristics and 

the judgment bias due to incomplete and inaccurate information used by the decision-

makers, a GSC-SHC can be extracted from the GSC-GHC with assigned belief 

acceptabilities. An illustrative example of the GSC-SHC, where 

 represents the subordinate attributes set in the lower layer },{ jyyV lijlililikklk ∀Γ∈=Γ∪=

of the master evaluation criterion, yli is shown in Figure 4. 
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y11

y21 y22 … y2h2

y31 y32      y33 …    y3(h3-1) y3h3

yL1 yL2 yL3      yL4 … … …   yLh(L-1)     yLhL

… … 

Figure 4: An example of GSC-SHC construction

Uncertainty and ignorance are the two important characteristics of the evaluation 

criteria for the GSC partner selection problem. Uncertainty comes from the available 

information for decision-making which is unreliable, imprecise, or incomplete. 

Ignorance exists when there is a lack of information during decision-making (Beynon 

et al. 2000). For example, if the decision-makers are either not completely certain about 

the performance of potential partners, or if it is too costly to obtain the exact information 

required, then a belief acceptability is assigned to represent the confidence of the 

decision-makers in the information and value of these evaluation criteria.

The belief acceptability of an attribute equates to the lower bound of the belief interval 

(Guan and Bell 1991) in this study. The value of the belief acceptability of an attribute 

is calculated from the summation of the basic acceptabilities of all its subordinate 

attributes sets, as follows:

 and (1)∑
⊂Γ

Γ=
lklij V

lijli m )(π 1)m(
1

lij =Γ∑
=

lkV

j

The procedures to calculate the resultant belief acceptability of the GSC-SHC can be 

summarized as follows: 

• Step 1. Let l = L, where L is the total number of layers of the GSC-SHC. , i∀

calculate the belief acceptability , of yLi.Liπ

• Step 2. Let l = L - 1. , compute  of yli based on Equation (1).i∀ liπ
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• Step 3. , repeat step 2 and calculate  for y(L - 3)i, y(L - 4)i,. . ., y1i, and y11, i∀ liπ

respectively, y11 is the resultant favourability attribute of the GSC-SHC.

4.3 GSC partner selection Optimization Hierarchy Criteria construction

The final stage of the process is the construction of the GSC-OHC based on the output 

of previous sub-process - the GSC-SHC. During this stage, as the evaluation scope has 

been reduced further, the usage of evaluation resources needs to be strictly controlled. 

This is because, in practice, any organization has only limited resources available. If no 

reasonable trade-off between evaluation scope and evaluation resources were made, the 

partner selection hierarchy criteria construction task is potentially inefficient and 

unfeasible (Tsai 2012). Thus, obtaining the GSC-OHC requires balancing the scope of 

evaluation, the belief acceptability and the usage of evaluation resources 

simultaneously. In this research, we propose to do this by developing a PSO based 

multiple objective programming model. 

The proposed multiple-objective programming model contains two main objectives, 

namely, maximizing the total belief acceptability of the GSC-OHC and minimizing the 

human resource usage (including management and administration work) during the 

criteria construction process. The constraints of the programming model include the 

total financial costs related to each selected criterion. The optimization multiple-

objective model and constraints for the evaluation criteria are introduced as follows:

Max.  ( ) (2)li i
l i

Vπ ×∑∑

Min.  ( ) (3)li i
l i

h V×∑∑

s.t.:

k (4)
ik i k

i

f V f× ≤∑ ∀

Vi = 0 or 1 i (5)∀

j (6)
1

1
j

i
i

V
=

≤∑ ∀
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In more detail, objective (2) seeks to maximize the total belief acceptability of the final 

GSC-OHC, whilst objective (3) seeks to minimize the required human resource usage 

to construct it. At the same time, inequality (4) constrains the total financial costs of the 

final GSC-OHC to equal or less than the available amount of financial resources (fk). 

Equation (5) constrains the criteria selection variables to a binary value. Last but not 

least, inequality (6) constrains each criterion to appear only once in the final GSC-OHC.

In the PSO algorithm, particles are represented as Xa = (xa1, xa2, … , xaM). This 

expression represents a potential solution to a problem in M-dimensional space. The 

velocity of this particle can be represented as Va = (va1, va2, … , vaM). In addition, the 

best previous position of each particle is defined as pbest. The global best position of 

the whole swarm found so far is defined as gbest. The updating rule is:

(7)1
1 1 2 2() ( ) () ( )n n n n

am am am amv wv c rand pbest x c rand gbest x+ = + × × − + × × −

(8)1 1n n n
am am amx x v+ += +

in which, a is the particle index,

m is the dimension index,

n is the number of iterations,

w is the inertia weight,

c1 and c2 are acceleration constants,

rand1() and rand2() are independent random variables within [0, 1].

Equation (7) is applied to calculate the particle’s new velocity in accordance with its 

previous velocity and the distances of its current position from the group’s best position 

and its own best position (Huang et al. 2011). Rand numbers in the Equation (7) are 

independent variables which can serve as the weights of speed moving towards gbest 

and pbest for updating positions. Through varying the above random numbers, particle 

a will attempt to move towards the best particle and provides coverage of solution space 

of the potentially good solutions (Zhao et al. 2008). Equation (8), then, is used to 

calculate the particle flies toward a new position. The pseudo code of the PSO algorithm 

and the procedure of the PSO algorithm are shown in Appendices A and B. 
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5. Empirical illustration

In this section, the proposed three-stage DS-PSO model for partner selection criteria 

construction in GSCs is applied to a real company, as a case study to illustrate its 

practical operability. The company (we use the pseudonym, Company ABC) is a large 

company operating within the Chinese Electronic Equipment & Instruments industry. 

China is currently a particularly important country for GSCM. As a rapidly 

industrialising country, it is in the process of evaluating and attempting to draft 

appropriate environmental standards (Zhu et al. 2012). Company ABC manufactures 

products ranging from high-voltage power transmission to industrial motors and drives. 

In the first stage, according to the proposed three-stage DS-PSO model for partner 

selection criteria construction in GSCs, the GSC-GHC is applied without any 

modification, as this is entirely appropriate for the green supply chain partner selection 

decision-making environment. 

The second stage is to construct the GSC-SHC. During this stage, it is necessary to 

organize numbers of experts to select criteria from GSC partner selection general 

hierarchy criteria to construct the GSC partner selection specific hierarchy criteria 

based on their own experience and industry knowledge. It is also necessary to ask them 

to assign the belief acceptability to different alternatives (criteria combinations, such as 

the first column of Table 9 shown) in accordance with the chosen GSC’s business 

characteristics and the judgement bias caused by inaccuracy and incomplete 

information. The group of experts comprised two Chinese academics, one British 

academic, and four purchasing managers within the Chinese Electronic Equipment & 

Instruments industry (three of the four come from the Company ABC). Each of them 

was asked open questions about the different alternatives. A Delphi method was used 

during this stage. The Delphi method is suitable for semi-structured decision making 

within a variable decision-making environment (Hassan et al. 2015). As such, there is 

no standard structured questionnaire (Okoli and Pawlowski 2004). Rather, experts are 

independently asked open questions about their views on the partner selection criteria 

within the framework. If there was still disagreement amongst the experts after two or 

three rounds of Delphi questioning, the Dempster-Shafer evidence combination theory 

(Beynon et al. 2000) was then used to obtain the combined evidence. The GSC-SHC 
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and its belief acceptabilities are obtained and calculated in accordance with the 

Dempster-Shafer methodology discussed in Section 4.2 during this stage. The results 

are shown in Figure 5, Table 8 and Table 9 (Figure 5 is a more visual way to show 

Table 8). 

Green competencies   (Xa)

The 

Certain 

GSC-

oriented 

partner 

selection 

hierarchy 

criteria

Partner’s green image  (Xc)

Pollution control  (Xd)

Partnership and technology 
management  (Xf)

Environmental performance 
(Xb)

Ya,1,  Ya,3,  Ya,6,  Ya,9,  Ya,12, 
Ya,14, Ya,17

Operations and financial 
capability  (Xe)

Yb,1,  Yb,2,  Yb,3, Yb,6,  Yb,11, 
Yb,13, Yb,17, Yb,19

Yc,1,  Yc,4,  Yc,7,  Yc,8,  Yc,10, 
Yc,13

Yd,2,  Yd,4,  Yd,5, Yd,8, Yd,10, 
Yd,12, Yd,16, Yd,17

Ye,4,  Ye,7, Ye,12, Ye,15, Ye,16, 
Ye,17, Ye,23

Yf,2,  Yf,5, Yf,10, Yf,11, Yf,16, 
Yf,19

Figure 5: The GSC-SHC for Chinese Electronic Equipment & Instruments industry
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Table 8: The GSC-SHC for Chinese Electronic Equipment & Instruments industry

Hierarchy level Selected criteria

High level Partner performance in green supply chain

Middle level

Green competencies

Environmental performance

Partner’s green image

Pollution control

Operations and financial capability

Partnership and technology management

Low level
ya,1 Availability of clean technologies
ya,3 Continuous monitoring and regulatory compliance 
ya,6 Green process planning 
ya,9 Having renewable product design of suppliers 
ya,12 Internal control process 
ya,14 Partnership with green organizations 
ya,17 Transferring employees with environmental expertise to suppliers 

yb,1 Adherence to environmental policies
yb,2 Air emissions 
yb,3 Amount of environmentally safe alternatives
yb,6 Green knowledge transfer and communication
yb,11 Product recycling rate 
yb,13 Product reuse rate 
yb,17 Solid wastes 
yb,19 Waste water 

yc,1 Assignment of environmental responsibility 
yc,4 Checking and evaluation of environmental activities
yc,7 Environmental related certificates 
yc,8 Green R&D investment 
yc,10 Information disclosure
yc,13 Planning of environmental objectives

yd,2 Chemical wastes treatment costs
yd,4 Design for environment
yd,5 End-of-pipe control
yd,8 Pollution control initiatives
yd,10 Production of toxic products
yd,12 The Restriction of the use of certain hazardous substances in electrical and 

electronic equipment (RoHS)
yd,16 Waste Electrical and Electronic Equipment (WEEE)
yd,17 Water pollution treatment costs

ye,4 Condition of physical facilities 
ye,7 Debt/equity ratio 
ye,12 Gross Profit Margin
ye,15 Order fulfilment rate 
ye,16 Order lead time 
ye,17 Production volume flexibility
ye,23 Warranty period

yf,2 Company’s reputation to integrity
yf,5 Cost of alternatives
yf,10 Obtain partner’s local knowledge
yf,11 Partner’s ability to acquire your firm’ special skills
yf,16 Special skills that you can learn from partners
yf,19 Technology innovation
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Table 9: The combined evidence, human resource requirements and financial costs of the GSC-
SHC for Chinese Electronic Equipment & Instruments industry 

Potential 
Combinations

Combined 
evidence

Human resource 
requirements

(hours)

External 
financial costs

($)

Internal 
financial costs

($)

(ya,1; ya,9; ya,12; ya,17) 0.112 12 201 30

(ya,3; ya,12; ya,14; ya,17) 0.152 15 220 32

(ya,6; ya,9; ya,12; ya,14) 0.162 16 210 29

(ya,1; ya,6; ya,14; ya,17) 0.133 13 230 31

(yb,1; yb,3; yb,11; yb,17) 0.163 23 327 35

(yb,1; yb,6; yb,13; yb,19;) 0.175 24 354 34

(yb,2; yb,6; yb,11; yb,19) 0.161 25 368 36

(yb,3; yb,6; yb,11; yb,13;) 0.169 22 345 29

(yc,1; yc,4; yc,13) 0.133 20 178 23

(yc,1; yc,10; yc,13) 0.149 19 185 25

(yc,7; yc,8; yc,10) 0.154 17 194 24

(yc,7; yc,8; yc,13) 0.150 18 169 22

(yd,5; yd,8; yd,16; yd,17) 0.170 27 402 51

(yd,2; yd,5; yd,12; yd,16) 0.158 29 409 56

(yd,4; yd,8; yd,10; yd,17) 0.160 28 415 58

(yd,2; yd,4; yd,10; yd,12) 0.172 25 420 59

(ye,4; ye,12; ye,16) 0.136 12 265 38

(ye,7; ye,15; ye,16) 0.119 16 256 39

(ye,12; ye,17; ye,23) 0.142 14 248 33

(ye,4; ye,7; ye,17) 0.135 19 270 36

(yf,2; yf,10; yf,16) 0.148 20 332 45

(yf,5; yf,10; yf,19) 0.157 25 328 42

(yf,2; yf,5; yf,11) 0.160 28 319 41

(yf,11; yf,16; yf,19) 0.174 24 333 47

Combining evidence in this way offers a meaningfully way to summarize and simplify 

different assessments from a panel of decision-makers. It is done by using the 

combinational rule which is an aggregation method for data obtained from multiple 

sources. In this case, the group of experts are the multiple sources, who each provide 

different assessments in accordance with their own knowledge and judgements. To 

capture and summarize their assessments into one meaningfully “number” is a very 

useful preparation for the application of the PSO sub-model. For instance, in Table 9, 

the first row, the combined evidence of the potential choices - (ya,1; ya,9; ya,12; ya,17) is 

0.112. It represents the level of belief that the group of experts on the combination of 
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criteria (ya,1; ya,9; ya,12; ya,17) under Green Competencies sub-criteria. (Appendix C shows 

an example of the combined evidence calculation). From Table 9 we can see that 

different criteria combinations have different combined evidence. These “numbers” 

(the combined evidence) represent the different levels of belief the decision-makers 

have on different possible criteria combinations. The higher the “number”, the higher 

level of belief the decision-makers have. In addition, each possible criteria combination 

corresponds to different managerial resource requirements. Therefore, it becomes an 

optimization problem which will be solved in the following step by PSO sub-model 

shown in Section 4.3. 

The third stage, after constructing the GSC-SHC, is to construct the GSC-OHC by 

applying the PSO sub-model. Under the condition of objectives of combined evidence 

and human resource requirements (shown in Table 9), and the constraint of total 

financial resources of $2,000, the non-inferior solution set is obtained by a number of 

algorithm iterations. The search processes of the PSO sub-model are shown in Figure 

6. From Figure 6(a) and 6(b), we can see that, after completing 120 to 140 algorithm 

iterations, the two basic objectives of the multi-objective model for constructing the 

GSC-OHC are reaching their non-inferior solutions progressively. In other words, 140 

times of iteration are good enough. More iterations cannot improve the effectiveness of 

the PSO sub-model. To achieve the best effectiveness and save the calculation time, the 

number of iterations would be set around 140 to 150. 

These processes demonstrate both the applicability of PSO technique and its high level 

of performance in this decision-making situation. It also indicates that the non-inferior 

solutions of the construction of GSC-OHC can be obtained using the multi-objective 

mathematical model (2) – (6), and that the PSO technique can successfully undertake 

the search for non-inferior solutions. (In this research, the mathematic optimization 

model was programmed and run by applying the toolbox in Matlab®.) Therefore, the 

proposed model and method are effective in solving the problem.
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Figure 6: Search process of the PSO technique

The non-inferior solution set for the construction of the GSC-OHC is shown in Tables 

10 and 11. The results are also shown in Figures 7 through 9 in a more intuitive way. 
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Green competencies   (Xa)

GSC 

partner 

selection 

Optimizati

on 

Hierarchy 

Criteria 

for 

Company 

ABC

Partner’s green image  (Xc)

Pollution control  (Xd)

Partnership and technology 
management  (Xf)

Environmental performance 
(Xb)

Ya,6 Green process planning
Ya,9 Having renewable product 

design of suppliers
Ya,12 Internal control process
Ya,14 Partnership with green 

organizations

Operations and financial 
capability  (Xe)

Yb,3 Amount of environmentally 
safe alternatives

Yb,6 Green knowledge transfer and 
communication

Yb,11 Product recycling rate
Yb,13 Product reuse rate

Yc,7 Environmental related 
certificates

Yc,8 Green R&D investment
Yc,10 Information disclosure

Yd,2 Chemical wastes treatment 
costs

Yd,4 Design for environment
Yd,10 Production of toxic products
Yd,12 RoHS

Ye,12 Gross Profit Margin
Ye,17 Production volume flexibility
Ye,23 Warranty period

Yf,11 Partner’s ability to acquire 
your firm’ special skills

Yf,16 Special skills that you can 
learn from partners

Yf,19 Technology innovation

Figure 9: The GSC-OHC for Company ABC*  

Note*: An example of the seven non-inferior solutions 
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Table 8: The GSC-SHC for Chinese Electronic Equipment & Instruments industry

Hierarchy level Selected criteria

High level Partner performance in green supply chain

Middle level

Green competencies

Environmental performance

Partner’s green image

Pollution control

Operations and financial capability

Partnership and technology management

Low level
ya,1 Availability of clean technologies
ya,3 Continuous monitoring and regulatory compliance 
ya,6 Green process planning 
ya,9 Having renewable product design of suppliers 
ya,12 Internal control process 
ya,14 Partnership with green organizations 
ya,17 Transferring employees with environmental expertise to suppliers 

yb,1 Adherence to environmental policies
yb,2 Air emissions 
yb,3 Amount of environmentally safe alternatives
yb,6 Green knowledge transfer and communication
yb,11 Product recycling rate 
yb,13 Product reuse rate 
yb,17 Solid wastes 
yb,19 Waste water 

yc,1 Assignment of environmental responsibility 
yc,4 Checking and evaluation of environmental activities
yc,7 Environmental related certificates 
yc,8 Green R&D investment 
yc,10 Information disclosure
yc,13 Planning of environmental objectives

yd,2 Chemical wastes treatment costs
yd,4 Design for environment
yd,5 End-of-pipe control
yd,8 Pollution control initiatives
yd,10 Production of toxic products
yd,12 The Restriction of the use of certain hazardous substances in electrical and 

electronic equipment (RoHS)
yd,16 Waste Electrical and Electronic Equipment (WEEE)
yd,17 Water pollution treatment costs

ye,4 Condition of physical facilities 
ye,7 Debt/equity ratio 
ye,12 Gross Profit Margin
ye,15 Order fulfilment rate 
ye,16 Order lead time 
ye,17 Production volume flexibility
ye,23 Warranty period

yf,2 Company’s reputation to integrity
yf,5 Cost of alternatives
yf,10 Obtain partner’s local knowledge
yf,11 Partner’s ability to acquire your firm’ special skills
yf,16 Special skills that you can learn from partners
yf,19 Technology innovation
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Table 9: The combined evidence, human resource requirements and financial costs of the GSC-
SHC for Chinese Electronic Equipment & Instruments industry 

Potential 
Combinations

Combined 
evidence

Human resource 
requirements

(hours)

External 
financial costs

($)

Internal 
financial costs

($)

(ya,1; ya,9; ya,12; ya,17) 0.112 12 201 30

(ya,3; ya,12; ya,14; ya,17) 0.152 15 220 32

(ya,6; ya,9; ya,12; ya,14) 0.162 16 210 29

(ya,1; ya,6; ya,14; ya,17) 0.133 13 230 31

(yb,1; yb,3; yb,11; yb,17) 0.163 23 327 35

(yb,1; yb,6; yb,13; yb,19;) 0.175 24 354 34

(yb,2; yb,6; yb,11; yb,19) 0.161 25 368 36

(yb,3; yb,6; yb,11; yb,13;) 0.169 22 345 29

(yc,1; yc,4; yc,13) 0.133 20 178 23

(yc,1; yc,10; yc,13) 0.149 19 185 25

(yc,7; yc,8; yc,10) 0.154 17 194 24

(yc,7; yc,8; yc,13) 0.150 18 169 22

(yd,5; yd,8; yd,16; yd,17) 0.170 27 402 51

(yd,2; yd,5; yd,12; yd,16) 0.158 29 409 56

(yd,4; yd,8; yd,10; yd,17) 0.160 28 415 58

(yd,2; yd,4; yd,10; yd,12) 0.172 25 420 59

(ye,4; ye,12; ye,16) 0.136 12 265 38

(ye,7; ye,15; ye,16) 0.119 16 256 39

(ye,12; ye,17; ye,23) 0.142 14 248 33

(ye,4; ye,7; ye,17) 0.135 19 270 36

(yf,2; yf,10; yf,16) 0.148 20 332 45

(yf,5; yf,10; yf,19) 0.157 25 328 42

(yf,2; yf,5; yf,11) 0.160 28 319 41

(yf,11; yf,16; yf,19) 0.174 24 333 47

Table 10: The non-inferior solutions found by PSO technique

Non-inferior 
solution

Combined evidence
Human resources 

requirement (hours)
Total financial costs ($)

1 0.973 118 1971

2 0.918 111 1990

3 0.979 120 1985

4 0.947 114 1968

5 0.967 116 1993

6 0.941 112 1990

7 0.891 108 1982
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Table 11: The non-inferior solutions of the GSC-OHC

Non-inferior 
solution

Green competencies   
(Xa)

Environmental 
performance (Xb)

Partner’s green image  
(Xc)

Pollution control  
(Xd)

Operations and 
financial capability  

(Xe)

Partnership and 
technology 

management  (Xf)

1 (ya,6; ya,9; ya,12; ya,14) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,12; ye,17; ye,23) (yf,11; yf,16; yf,19)

2 (ya,1; ya,6; ya,14; ya,17) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,12; ye,17; ye,23) (yf,2; yf,10; yf,16)

3 (ya,6; ya,9; ya,12; ya,14) (yb,1; yb,6; yb,13; yb,19;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,12; ye,17; ye,23) (yf,11; yf,16; yf,19)

4 (ya,6; ya,9; ya,12; ya,14) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,12; ye,17; ye,23) (yf,2; yf,10; yf,16)

5 (ya,6; ya,9; ya,12; ya,14) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,4; ye,12; ye,16) (yf,11; yf,16; yf,19)

6 (ya,6; ya,9; ya,12; ya,14) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,4; ye,12; ye,16) (yf,2; yf,10; yf,16)

7 (ya,1; ya,9; ya,12; ya,17) (yb,3; yb,6; yb,11; yb,13;) (yc,7; yc,8; yc,10) (yd,2; yd,4; yd,10; yd,12) (ye,4; ye,12; ye,16) (yf,2; yf,10; yf,16)
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From Tables 10 and 11, we can see that seven non-inferior solutions have been found 

(each row of Table 11 indicates one of the non-inferior solutions). Figure 9 shows the 

first row of the seven non-inferior solutions in Table 11 in a more visual way as an 

example. A non-inferior solution is one in which an improvement in one objective 

requires a degradation of another (also called Pareto optimality). In most of multi 

objective-decision-making problems, satisfactory solutions often need to be searched 

for in a non-inferior solution set. This characteristic gives the decision-makers more 

flexibility than identifying a single solution only. Having several non-inferior choices 

gives the different decision-makers, who have different personalities, more scope and 

freedom to make the final decision under different decision-making conditions. Then, 

the final decision will be the one which is based not only on concrete quantitative 

calculations but also on comprehensive qualitative analysis as well. 

In this practical example, decision-makers need to make the final decision on trade-offs 

between the seven non-inferior solutions (shown in Figures 7 and 8). Figure 7 includes 

information on the total financial costs (constraint) with other two objectives. This is 

because the different solutions in the non-inferior set correspond to different levels of 

total financial costs. Figure 7 aims to provide a full picture for decision-makers about 

the non-inferior solutions. Therefore, the final decision on trade-off could be made 

depending upon the preferred combination of human resources and/or total financial 

costs. For instance, if a green supply chain has very limited financial resources during 

the decision-making process but has sufficient human resources, it could choose the 

non-inferior solution which requires fewer financial resources but a little higher human 

resources (say non-inferior solution 1 or non-inferior solution 4). 

Considering the metaheuristic algorithm attribute, the optimization results searched by 

PSO technique could be the local optimization solutions only rather than the global 

optimization ones. Therefore, in-depth and comprehensive analysis and comparison on 

the key parameters are necessary and helpful to find the most suitable ones. Table 12 

shows detailed comparisons of the key parameters (acceleration constants c1 and c2) in 

the PSO sub-model. From this we can see that the mean and standard deviations of the 

combined evidence varies slightly from 0.936 to 0.961 and from 0.017 to 0.034, 

respectively. Also, the mean and standard deviations of the human resource requirement 

varies slightly from 113.6 to 116.0 and from 3.162 to 4.536, respectively. In more detail, 
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Figures 10 and 11 indicate the variation tendency of the means of combined evidence 

and human resource requirement in the non-inferior solution set. From Figure 10, it is 

easy to see that the middle area and top right corner area (in purple) have higher 

combined evidence than other areas. In Figure 11, as the objective is the lower the 

better, so the bottom left, bottom right, and top right areas (in red) have top priority. 

Combining the results of the analysis based on Figures 10 and 11, we should try our 

best to choose the overlapping areas from the above identified areas to ensure the most 

suitable parameters are chosen. In this case, c1 = 0.7 and c2 = 0.9 (top right areas in the 

figures) is the best choice for applying PSO sub-model to solve the GSC-OHC 

construction problem in the Chinese Electronic Equipment & Instruments industry and 

a case company within it. With the same analysis procedures and methods, we can also 

undertake more analysis and comparisons between standard deviations in the non-

inferior set. 
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Table 12: Result of multiple comparisons of the parameter of acceleration constants

c1

∅
0.70 0.75 0.80 0.85 0.90

0.947* 0.028** 0.947 0.028 0.951 0.027 0.944 0.033 0.961 0.017
0.70

114.429*** 3.735**** 114.429 3.735 115.500 4.536 114.000 4.320 116.000 3.162

0.939 0.034 0.945 0.032 0.940 0.033 0.941 0.032 0.951 0.027
0.75

113.625 4.138 114.143 4.180 113.625 4.138 114.111 4.106 115.500 4.536

0.945 0.032 0.954 0.023 0.950 0.032 0.949 0.030 0.939 0.034
0.80

114.143 4.180 115.167 3.488 114.667 4.320 115.500 4.536 113.625 4.138

0.939 0.028 0.945 0.032 0.953 0.026 0.940 0.033 0.940 0.033
0.85

113.909 3.477 114.143 4.180 115.000 3.742 113.625 4.138 113.750 3.955

0.940 0.033 0.943 0.034 0.940 0.033 0.948 0.027 0.936 0.033

c2

0.90
113.625 4.138 114.000 4.320 113.625 4.138 114.429 3.735 113.600 4.006

* The mean of combined evidence in the non-inferior solution set
** The standard deviation of combined evidence in the non-inferior solution set
*** The mean of human resource requirement in the non-inferior solution set
**** The standard deviation of human resource requirement in the non-inferior solution set
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Figure 10: The mean of combined evidence in non-inferior solution set with different 

acceleration constants

Note: c1 and c2 are acceleration constants in the PSO sub-model
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Figure 11: The mean of human resource requirement in non-inferior solution set with 

different acceleration constants

Note: c1 and c2 are acceleration constants in the PSO sub-model

6. Managerial application process

In this section, we present a six step application process for use by managers wishing 

to apply the proposed method in their own an organization. This process (as shown in 

Figure 12) aims to enable managers to construct their own customized optimization 

hierarchy criteria for partner selection in GSCs (GSC-OHC). 

c2
c1

c1

c2

The mean of 
HR requirement
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Introduction and constructing the General 
Hierarchy Criteria

Developing the Specific Hierarchy Criteria

Obtaining and calculating belief acceptabilities

Collecting decision support information

Constructing the total customized Optimazation 
Hierarchy Criteria

Identifying the most appropriate solution

Figure 12: The managerial application process of the proposed model

1) Introduction & constructing the General Hierarchy Criteria

First of all, managers should get to know the whole picture of the proposed 

methodology shown as Figure 2. At this stage, the managers can apply the GSC-

GHC without any modification as it is appropriate for GSC partner selection 

decision-making environment (shown as Tables 1 to 7). 

2) Developing the Specific Hierarchy Criteria 

As different industries have different characteristics, the managers could 

organize a decision-making team to construct a specific hierarchy criteria (GSC-

SHC) customized in accordance with the unique characteristics of their industry. 

The team should ideally consist of industry experts, academics whose research 

expertise fall in the specific industry, and purchasing managers who have rich 

knowledge and experience of their suppliers/partners in their specific industry. 

Then, the team can discuss and construct their own GSC-SHC shown as Figure 

5 and Table 8 based on their specialist knowledge and experience of their 

industry and the GSC-GHC. 
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3) Obtaining and calculating belief acceptabilities

Based on the structure of the GSC-SHC, its belief acceptabilities can be 

obtained by experts and then calculated by applying the Dempster-Shafer 

theory. This can be done by asking open questions about the different 

alternatives/combinations (such as the first column of Table 9 shown) to the 

decision-making team members. The Delphi method and the Dempster-Shafer 

theory (shown in Section 4.2) can be used during this step to get a consensus 

view (such as the second column of Table 9 shown). The participants who will 

take part in the Delphi method can be chosen in accordance with the requirement 

and nature of the decision-making. If the decisions are strategic, the numbers 

and level of participants should be relatively more and higher. In addition, it is 

also helpful to include participants from outside of the organization (e.g. 

academics, industry experts and purchasing managers from partner 

organizations). 

4) Collecting decision support information

Managers then need to prepare and collect the decision support information, 

such as the human resources requirements, external and internal financial costs, 

for each alternatives/combinations (such as the third to fifth columns of Table 9 

shown) required for the subsequent optimization step. 

5) Constructing the total customized Optimization Hierarchy Criteria

By applying both the optimization objectives and resource constraints 

previously collected, the managers can apply the PSO sub-model (shown in 

Section 4.3) to construct their own total customized optimization hierarchy 

criteria for partner selection in GSCs based on the GSC-SHC and its belief 

acceptabilities for different alternatives/combinations. The managers will thus 

get the outputs found by the PSO sub-model (such as shown in Tables 10 and 

11), which are the non-inferior solutions. Accordingly, the combined evidence, 

the human resource requirements, and the total financial costs of the GSC-SHC 

are the two objectives and main constraint of the PSO sub-model, respectively. 

The PSO sub-model aims to find an optimization solution(s) which has the 

highest combined evidence and lowest human resource requirements while 

fulfilling the total financial costs constraint. The potential combinations and 
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their different characteristics for this multi-objective optimization are collected 

and analysed during steps 3) and 4) discussed above (such as shown in Table 

9). During this step, the managers could also compare the different outputs by 

varying the parameters of the PSO sub-model to find the most appropriate 

parameters (such as the acceleration constraints c1 and c2 shown in Table 12 and 

Figures 10 and 11). 

6) Identifying the most appropriate solution

Lastly, the managers can analysis these non-inferior solutions and make final 

trade-offs to identify the most suitable solution in accordance with the different 

preferences and the specific decision-making environment identified in the prior 

steps. The final output of the above processes is the total customized 

optimization hierarchy criteria for partner selection in GSCs (GSC-OHC) (such 

as shown in Figure 9). Managers could then apply the GSC-OHC for potential 

partners’ evaluation and selection by integrating it with other decision-making 

methods/models, such as AHP/ANP, DEA, and mathematic programming, etc. 

7. Conclusion

With changes in public policy making, environmental performance is increasingly 

important for manufacturers, who are now exploring how best to improve the 

sustainability of their operations across the whole supply chain (Linton et al. 2007). 

Accordingly, partner selection has become a crucial issue in GSCM. However, various 

studies in partner selection in GSCs conclude that there is a gap between partner 

selection criteria construction theory and practice (e.g. Jayaraman et al. 2007, Singhal 

and Singhal 2012). This has highlighted the need for a new method for identifying the 

most appropriate selection criteria to evaluate and select partner selection criteria in the 

GSC. Such a method needs to be comprehensive through its consideration of a broad 

range of possible evaluation criteria but also efficient in its use of scarce resources 

during the criteria selection process (Guide and Van Wassenhove 2006). It must also 

be flexible in order to cope with different product categories and different decision-

making situations. Accordingly, this paper has proposed a three-stage model for the 

construction of partner selection criteria in GSCs by combining Dempster-Shafer belief 

acceptability theory and PSO technique. The efficacy of the model is demonstrated by 
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way of an illustrative application in Company ABC, a manufacturer in the Chinese 

Electronic Equipment & Instruments industry. 

The paper makes a number of contributions. Firstly, it offers an advance to current 

methods used for partner selection in green supply chains by providing a systematic 

method of constructing appropriate partner selection criteria. This is an essential but 

often neglected pre-requisite in any partner selection process.

Secondly, the proposed model combines, for the first time, Dempster-Shafer theory and 

PSO technique within a three-stage model for the construction of GSC partner selection 

criteria. This model has a number of advantages:

∅ It enables the inter-dependence between criteria to be considered by applying 

Dempster-Shafer theory, and enables optimization levels of both effectiveness and 

efficiency in criteria construction to be achieved simultaneously through the use of 

PSO technique. 

∅ It enables both operational and strategic attributes to be selected at different levels 

of hierarchy criteria in different specific decision-making situations and 

environments.

∅ It is comprehensive enough to consider a broad range of possible criteria, both 

qualitative and quantitative, whilst being efficient in its use of scarce resources 

during the criteria construction process. In other words, it is feasible and practicable 

in the GSC decision-making environment. 

∅ It is an advance on previous single objective seeking solutions as it provides a 

multiple objectives seeking solution. This enables the trade-offs between different 

objectives to be achieved more effectively and practically.

Thirdly, the model incorporates a comprehensive General Hierarchy Criteria list for 

partner selection in GSCs, based on in-depth analysis of the existing literatures and 

expert opinion. This offers a sound basis for both future academic research and practical 

applications. 

Finally, the paper demonstrates the potential of this approach to be applied in practice, 

through its application in a real company, Company ABC, a manufacturer in the 

Chinese Electronic Equipment & Instruments industry. 
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There are three main disadvantages with the model. Firstly, there are no general 

standards for coding in PSO technique. So, the coding process may be inaccurate. 

However, this characteristic also gives enough flexibility to decision-makers to design 

their own coding in order to accommodate their own specific requirements. Secondly, 

as a metaheuristic technique, PSO does not guarantee that an optimization solution is 

ever found within the non-inferior solution set. Therefore, the choice of the most 

appropriate key parameters becomes more important. The cross analysis of key 

parameters proposed in the Empirical illustration is one of the good solutions in this 

respect. Thirdly, in the second stage of framework, the construction of GSC-SHC 

depends heavily on the subjective judgements of decision-makers when assigning belief 

acceptabilities to different attributes. 

Further work is required to overcome the limitations of the model discussed above. In 

particular, research could be undertaken to investigate if other methods/models (e.g. 

DEA, fuzzy set theory, AHP/ANP, etc.) could be beneficially introduced into the stages 

of the partner selection process for GSCs that follow the three-stage DS-PSO model for 

the construction of selection criteria. The choices of the most appropriate combinational 

rules of Dempster-Shafer theory in accordance with specific decision-making contexts 

is also an important direction for future research. Further research is also required to 

investigate how to group lower level criteria in order to ensure that PSO technique 

programming can be undertaken more efficiently. 



- 50 -

Appendices

Appendix A: The procedure of the PSO algorithm

Particle initialization

Calculate the fitness value

Update the best fitness value

Update the non-inferior set

Calculate particle velocity & update particle position

Get the final non-inferior set

Algorithm ending?

No

Yes
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Appendix B: The pseudo code of the PSO algorithm 

For each particle 
Particle initialization

End
Do

For each particle 
Calculate the fitness value
If  (The fitness value is better than the best fitness value in the history)
Then  Set current value as the new pBest

End
Choose the particle with the best fitness value of all the particles as the gBest
For each particle 

Calculate the particle velocity according Equation (7)
Update the particle position according Equation (8)

End 
Until (the maximum iteration number is not reached or the minimum error condition 

is not satisfied)

Appendix C: An example of combined evidence calculation by applying Dempster’s Rule

Given M 1{{ya,1},{ya,9},{ya,12},{ya,17},{ya,1, ya,9, ya,12, ya,17}}

= (0.15, 0.17, 0.20, 0.13, 0.35)

M 2{{ya,1},{ya,9},{ya,12},{ya,17},{ya,1, ya,9, ya,12, ya,17}}

= (0.17, 0.19, 0.18, 0.20, 0.26)

Following the Dempster’s combinational rule, we can get the normalization constant 

(K) firstly: 

K = 1 -  ∑
B ∩ C ≠ ∅

M1(B) × M2(C)

K = 1 – [M1(ya,1)×M2(ya,9) + M1(ya,1)×M2(ya,12) + M1(ya,1)×M2(ya,17) + 

M1(ya,9)×M2(ya,12) + M1(ya,9)×M2(ya,17) + M1(ya,12)×M2(ya,17)]

= 0.8099

By applying the normalization constant (K), then, we can calculate the combined 

evidence of the candidate criteria {ya,1, ya,9, ya,12, ya,17}:

M(ya,1, ya,9, ya,12, ya,17) =
1

K ∑
B ∩ C =

{ya,1, ya,9, ya,12, ya,17}

M1(B) × M2(C)
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= 0.112
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