12 research outputs found

    A comprehensive evaluation of full reference image quality assessment algorithms

    Full text link
    2012 19th IEEE International Conference on Image Processing, ICIP 2012, Lake Buena Vista, FL, 30-3 October 2012Recent years have witnessed a growing interest in developing objective image quality assessment (IQA) algorithms that can measure the image quality consistently with subjective evaluations. For the full reference (FR) IQA problem, great progress has been made in the past decade. On the other hand, several new large scale image datasets have been released for evaluating FR IQA methods in recent years. Meanwhile, no work has been reported to evaluate and compare the performance of state-of-the-art and representative FR IQA methods on all the available datasets. In this paper, we aim to fulfill this task by reporting the performance of eleven selected FR IQA algorithms on all the seven public IQA image datasets. Our evaluation results and the associated discussions will be very helpful for relevant researchers to have a clearer understanding about the status of modern FR IQA indices. Evaluation results presented in this paper are also online available at http://sse.tongji.edu.cn/linzhang/IQA/IQA. htm.Department of ComputingRefereed conference pape

    Perceptual quality of BRDF approximations: dataset and metrics

    Get PDF
    International audienceBidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L 2 —or weighted quadratic—distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments

    Camera based Display Image Quality Assessment

    Get PDF
    This thesis presents the outcomes of research carried out by the PhD candidate Ping Zhao during 2012 to 2015 in Gjøvik University College. The underlying research was a part of the HyPerCept project, in the program of Strategic Projects for University Colleges, which was funded by The Research Council of Norway. The research was engaged under the supervision of Professor Jon Yngve Hardeberg and co-supervision of Associate Professor Marius Pedersen, from The Norwegian Colour and Visual Computing Laboratory, in the Faculty of Computer Science and Media Technology of Gjøvik University College; as well as the co-supervision of Associate Professor Jean-Baptiste Thomas, from The Laboratoire Electronique, Informatique et Image, in the Faculty of Computer Science of Universit´e de Bourgogne. The main goal of this research was to develop a fast and an inexpensive camera based display image quality assessment framework. Due to the limited time frame, we decided to focus only on projection displays with static images displayed on them. However, the proposed methods were not limited to projection displays, and they were expected to work with other types of displays, such as desktop monitors, laptop screens, smart phone screens, etc., with limited modifications. The primary contributions from this research can be summarized as follows: 1. We proposed a camera based display image quality assessment framework, which was originally designed for projection displays but it can be used for other types of displays with limited modifications. 2. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact, which is mainly introduced by the camera lens. 3. We proposed a method to optimize the camera’s exposure with respect to the measured luminance of incident light, so that after the calibration all camera sensors share a common linear response region. 4. We proposed a marker-less and view-independent method to register one captured image with its original at a sub-pixel level, so that we can incorporate existing full reference image quality metrics without modifying them. 5. We identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays, and we used the proposed framework to evaluate the prediction performance of the state-of-the-art image quality metrics regarding these attributes. The proposed image quality assessment framework is the core contribution of this research. Comparing to conventional image quality assessment approaches, which were largely based on the measurements of colorimeter or spectroradiometer, using camera as the acquisition device has the advantages of quickly recording all displayed pixels in one shot, relatively inexpensive to purchase the instrument. Therefore, the consumption of time and resources for image quality assessment can be largely reduced. We proposed a method to calibrate the camera in order to eliminate unwanted vignetting artifact primarily introduced by the camera lens. We used a hazy sky as a closely uniform light source, and the vignetting mask was generated with respect to the median sensor responses over i only a few rotated shots of the same spot on the sky. We also proposed a method to quickly determine whether all camera sensors were sharing a common linear response region. In order to incorporate existing full reference image quality metrics without modifying them, an accurate registration of pairs of pixels between one captured image and its original is required. We proposed a marker-less and view-independent image registration method to solve this problem. The experimental results proved that the proposed method worked well in the viewing conditions with a low ambient light. We further identified spatial uniformity, contrast and sharpness as the most important image quality attributes for projection displays. Subsequently, we used the developed framework to objectively evaluate the prediction performance of the state-of-art image quality metrics regarding these attributes in a robust manner. In this process, the metrics were benchmarked with respect to the correlations between the prediction results and the perceptual ratings collected from subjective experiments. The analysis of the experimental results indicated that our proposed methods were effective and efficient. Subjective experiment is an essential component for image quality assessment; however it can be time and resource consuming, especially in the cases that additional image distortion levels are required to extend the existing subjective experimental results. For this reason, we investigated the possibility of extending subjective experiments with baseline adjustment method, and we found that the method could work well if appropriate strategies were applied. The underlying strategies referred to the best distortion levels to be included in the baseline, as well as the number of them
    corecore