200,439 research outputs found

    A Component-Based and Aspect-Oriented Model for Software Evolution

    Get PDF
    International audienceComponent-Based Software Development (CBSD) and Aspect-Oriented Software Development (AOSD) are solutions to support software evolution by decomposing a software system into concerns. In this article, we propose Fractal Aspect Component (FAC), a general and symmetrical model for components and aspects. FAC decomposes a software system into regular components and aspect components which embody crosscutting concerns. We reify the relationship between an aspect component and a component, called an aspect binding, as a first-class runtime entity. The evolution of the system can be expressed by adding or removing components (aspect or regular) and by setting bindings (regular or crosscutting)

    Aspects of Assembly and Cascaded Aspects of Assembly: Logical and Temporal Properties

    Full text link
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. This has to be done in a timely fashion, and the adaptation process must be as fast as possible and mastered. Moreover the adaptation process has to ensure a consistent result when finished whereas adaptations to be implemented cannot be anticipated at design time. In this paper we present our mechanism for self-adaptation based on the aspect oriented programming paradigm called Aspect of Assembly (AAs). Using AAs: (1) the adaptations process is fast and its duration is mastered; (2) adaptations' entities are independent of each other thanks to the weaver logical merging mechanism; and (3) the high variability of the software infrastructure can be managed using a mono or multi-cycle weaving approach.Comment: 14 pages, published in International Journal of Computer Science, Volume 8, issue 4, Jul 2011, ISSN 1694-081

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Towards a re-engineering method for web services architectures

    Get PDF
    Recent developments in Web technologies – in particular through the Web services framework – have greatly enhanced the flexible and interoperable implementation of service-oriented software architectures. Many older Web-based and other distributed software systems will be re-engineered to a Web services-oriented platform. Using an advanced e-learning system as our case study, we investigate central aspects of a re-engineering approach for the Web services platform. Since our aim is to provide components of the legacy system also as services in the new platform, re-engineering to suit the new development paradigm is as important as re-engineering to suit the new architectural requirements

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    An ontology of agile aspect oriented software development

    Get PDF
    Both agile methods and aspect oriented programming (AOP) have emerged in recent years as new paradigms in software development. Both promise to free the process of building software systems from some of the constraints of more traditional approaches. As a software engineering approach on the one hand, and a software development tool on the other, there is the potential for them to be used in conjunction. However, thus far, there has been little interplay between the two. Nevertheless, there is some evidence that there may be untapped synergies that may be exploited, if the appropriate approach is taken to integrating AOP with agile methods. This paper takes an ontological approach to supporting this integration, proposing ontology enabled development based on an analysis of existing ontologies of aspect oriented programming, a proposed ontology of agile methods, and a derived ontology of agile aspect oriented development
    • 

    corecore