
Towards a Re-engineering Method for
Web Services Architectures

Claus Pahl and Ronan Barrett

Dublin City University, School of Computing
Dublin 9, Ireland

[cpahl|rbarrett]@computing.dcu.ie

Abstract. Recent developments in Web technologies – in particular
through the Web services framework – have greatly enhanced the flexible
and interoperable implementation of service-oriented software architec-
tures. Many older Web-based and other distributed software systems will
be re-engineered to a Web services-oriented platform. Using an advanced
e-learning system as our case study, we investigate central aspects of a
re-engineering approach for the Web services platform. Since our aim is
to provide components of the legacy system also as services in the new
platform, re-engineering to suit the new development paradigm is as im-
portant as re-engineering to suit the new architectural requirements.

Keywords: Software Re-engineering, Web Services Framework, Services-orien-
ted Architectures, Architectural Transformation.

1 Introduction

Activities aiming to develop the Web from a document- to a services-centric
environment are bundled in the Web Services Framework WSF [1]. The WSF
philosophy is to open the Web for application-to-application use. It provides a
framework based on description languages to describe services, a publication and
discovery facility acting as a marketplace for providers and users of services, and
protocols allowing services to be invoked in a distributed environment.

With the Web services technology becoming mature, it will impact exist-
ing Web-based and other distributed systems. Numerous software systems will
be re-engineered for the Web services platform in the future. Re-engineering
these systems as service-oriented architectures SOA [2] will become possible.
The advantage of service-oriented architectures for Web-based environments in
particular is a standardised interaction architecture [3, 4], allowing the flexible
integration or exchange of components. This in turn will allow a different style
of system design and implementation – more open and more based on sharing
and reusing resources. Improved maintainability is another advantage.

Our aim is to investigate central aspects of a re-engineering method for the
Web services platform. The Web services framework deployed as a service-
oriented architecture [2] poses new architectural constraints on these systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This is an expected aspect, but we found that the new development style asso-
ciated with the Web services framework also influences the re-engineering ap-
proach. Preparing an existing software component as a service not only for later
deployment in a service-oriented architecture, but also as a software entity that
can be made available through the WSF description and discovery mechanisms,
is a central requirement that a re-engineering method needs to embrace.

The literature on re-engineering is rich; see e.g. [5, 6]. However, the focus is
often on program design and implementation. Our contribution is a collection
of re-engineering techniques specific to the WSF. In addition to program de-
sign questions such as modularisation, which has to been considered here in the
context of architectures, the development aspects has turned out to be central.
Re-engineering existing software entities as services and providing them to other
users enables reuse and composition. We have focussed on architectural transfor-
mation to enable composition. Reference architectures and architectural patterns
play a central role in coarse- and fine-granular architectural transformation.

We will use an e-learning system as our case study here to illustrate our
findings [7]. This system is a Web-based, distributed system that is characterised
by complex interaction processes. The existence of a reference architectures and
standards for this area – such as the Learning Technology Standard Architecture
LTSA [8] – will guide the re-engineering process.

Section 2 addresses the wider re-engineering context. In Section 3, we in-
troduce our case study. We address the description and discovery of services in
service-oriented architectures in Section 4. In Section 5, we focus on the architec-
tural transformation and the assembly of services. We end with some conclusions.

2 Software Re-engineering

Software re-engineering is a central method to deal with software evolution [5,
6]. The requirements concerning a software system or the environment in which
the system is running will inevitably change. The ability to adapt software to
these changing needs (e.g. through re-engineering) is paramount.

Software re-engineering is concerned with the reimplementation of legacy
software in order to improve its maintainability [6]. In our case, we are also
interested in enabling reuse and composition, allowing components of the legacy
system to be provided (and discovered) as services. This obviously widens the
classical re-engineering focus. Re-engineering usually involves techniques such as
source code translation, program structure improvement, modularisation, and
data re-engineering [6]. Modularisation becomes more important, leading us to
focus on architectures and architectural transformation [9]. This needs to be
embedded into a concern for development process aspects for the target platform.

Modularisation is the process of (re)organising a software system such that
related parts form coherent components. A service-oriented architecture is the
target of the architectural transformation [9, 10]:

– reference architectures determine the architecture on a coarse-grained level,
– architectural patterns determine the architecture on a fine-grained level.

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Component/
Service

Component/
Service

Ontology

requires provides

match

interact

the Web

Client Provider

Fig. 1. A Web-based Development Process for Service-oriented Architectures.

Both introduce standardisation into the architectural transformation process.
We have already emphasised the importance of description and discovery for

the targeted development process. Again, standards determine this context:

– domain-specific notations address the application domain,
– software/service-specific notations address software-related aspects.

An ontology [11, 12] – we have used the term to refer to the combined knowledge
about domain-specific aspects (metadata) and software service aspects (interface
specification) – forms the central description approach.

Developing software systems based on shared repositories of reusable compo-
nents or services requires a different development style compared to the classical
’from-scratch approach [13]. The Web as an open and distributed environment
opens a new dimension to this new style of development. An outline of the devel-
opment process model for the target platform, which summarises the description,
discovery, architectural design, and assembly activities, is presented in Figure 1.
It consists essentially of two core activities that can be supported by ontologies:

– Discovery – the lower part of the diagram that illustrates the marketplace
idea where providers and clients (users) meet.

– Assembly – the upper part of the diagram that illustrates the assembly of
service components to interacting systems.

3 The Case Study – an E-Learning System

Today, the Web is the predominant platform for computer-supported teaching
and learning. Recent developments have seen more interactive media among the
Web resources, allowing interactions between human users and provided services
and also interactions between the services themselves.

We have been involved in the development and extension of a Web-based
teaching and learning environment called IDLE [7] – the Interactive Database

Learning Environment. Recently, we started to convert the architecture of the
system to a Web services-based platform [14]. Our report here is based on our
experience with a prototype that we developed in order to investigate the re-
engineering of systems for the WSF platform.

3.1 The Interactive Database Learning Environment IDLE

IDLE is a Web-based integrated learning and training environment for an under-
graduate course programme. The system provides a wide range of educational
features from audio-supported lectures and animation-based tutorials to active
learning features for authentic database development. Some of the components
are: audio server and audio player, animation and simulation features, a graphical
modelling tool, an execution tool for a database language, a workspace feature
for student projects, a content repository, a feedback feature, an evaluation tool,
and a Web server and other delivery software. The complexity and diversity of
the components requires architectural support in order to develop, extend, and
maintain the system. Explicit interfaces between components have in the past
supported extensions and maintenance of the system [15].

3.2 Learning Technology Standards – LTSA and LOM

Two standards are of relevance for the re-engineering process, addressing archi-
tecture and description aspects.

The Learning Technology Standard Architecture LTSA [8] has been devel-
oped by the IEEE Learning Technology Standards Committee LTSC in order to
provide a framework for the development, evaluation and discovery of learning
technology systems. It provides a basic architecture consisting of process and
storage components and the interactions between them. The LTSA identifies
process components such as coach, learner entity, evaluation, and delivery, and
storage components such as learning resources or learner records. The objective
is to enable sharing and reuse of learning technology components.

Sharing and reuse of educational resources is also the motivation behind the
Learning Object Metadata LOM standard [16]. LOM is a metadata framework
for learning objects that allows these objects to be annotated with basic proper-
ties that are important for instructors and learners, such as content information,
learning goals, target audience and level, etc. Objects can then be made avail-
able to potential users (both learners and instructors). These objects will be
discovered based on their metadata annotations.

3.3 Learning Objects and Architectures

Our objective here is to explore architectural aspects of re-engineering – illus-
trated in the context of Web-based teaching and learning environment (TLE)
design and development. A service-oriented architecture (SOA) shall form the
backbone of the re-engineered system.

A notion of learning objects is central in the case study context. It comprises
content units but also functional components such as delivery or storage.

/HDUQLQJ�
5HVRXUFHV�

/HDUQHU�
5HFRUGV�

&RDFK

/HDUQHU�
(QWLW\

'HOLYHU\ (YDOXDWLRQ

0XOWLPHGLD %HKDYLRXU

,QWHUDFWLRQ�&RQWH[W

/HDUQLQJ

3UHIHUHQFHV
/HDUQHU�,QIR

/HDUQHU�

,QIR

&DWDORJ�

,QIR

4XHU\

/HDUQLQJ

&RQWHQW
/RFDWRU

/RFDWRU
$VV

HVV
PHQ

W

Fig. 2. The Learning Technology Standard Reference Architecture LTSA.

– Learning objects are the unit of discovery for discovery and retrieval sup-
port frameworks such as the LOM standard. Learning objects are here an
expression of sharing and reuse-orientation in TLE development.

– Learning objects are the unit of assembly in larger teaching and learning
environments constructed from smaller units. Learning objects are here an
expression of an architectural approach to TLE development.

Object, component, and service are three terms that are important in our context
[17]. In the context of educational technology, a learning object is a self-contained
learning resource or function that is both a unit of retrieval and a unit of assem-
bly. In the software engineering context, the service notion is more appropriate,
refering to an encapsulated, reusable computational entity. Services are similar
to components in that their properties are described in form of interfaces sepa-
rated from the executable entities. Since composition is an issue here, we expect
services to have component character.

4 Service Description

The philosophy of the Web Services framework WSF is based on an open mar-
ket model, where providers and potential users of services meet. This central
development principle needs to be considered in a re-engineering method. Users
discover suitable services by querying descriptions in repositories provided by
the service providers. We argue that a more abstract form of descriptions than
supported by the WSF through WSDL is needed to discover services adequately
in the context of their domain.

4.1 Description Layers

As a consequence of the duality of service purposes – discovery and assembly –
we have two description dimensions. Both are layers of metadata annotations.

– Domain-specific descriptions address for instance the educational aspects
relating to the learning object usage in the case study domain. This form
of information supports the user (learner or instructor) in discovering and
retrieving services (learning objects) within the terminology of the domain.

– Infrastructure and other software-oriented descriptions address the technical
aspects relating to the service assembly within an architecture. This form
of information supports the developer for instance in integrating a learning
object into a TLE.

In the remainder of this section, we will focus on the first, domain-specific layer.
The technical specifications are important in the context of architectural com-
position and transformation. We will revisit them in Section 5.

4.2 Domain-specific Description and Discovery

Retrieval and discovery is usually supported by a description and a query lan-
guage, and accessible repositories for descriptions and possibly also the services
themselves. We can distinguish closed, database-like repositories and open, e.g.
Web-like repositories. Both differ in their navigation and search support.

The WSF supports these aspects, whereas LOM only provides a descrip-
tion notation (for learning objects in the case study domain). LOM, however,
is an XML-based, domain-specific metadata annotation format addressing edu-
cational properties of learning objects. We envisage LOM-like, domain-specific
annotations as the basis of discovery [18].

LOM defines attributes required to describe a learning object. It classifies
attributes into nine categories addressing for example general, technical, educa-
tional, and lifecycle aspects. The provider of a service (a learning object) de-
scribes the service in terms of domain and infrastructure properties. A potential
user – learner or instructor – then uses a related query language (or just a Web
search engine) to formulate requirements in terms of the properties described.

4.3 Re-engineering for Discovery

Target services of the transformation need to be publishable services. Their
description based on a domain ontology, such as LOM, is essential.

We illustrate the LOM standard briefly using the IDLE system to indicate
the type of annotation that needs to be generated in the re-engineering process:

– General attributes such as title=’Introduction to Databases’, language=’en’,
or description=’an introductory course for computing students addressing
principles, models and languages for database systems’ can be used.

– Technical attributes include format=’text/html’ or format=’audio/mp3’ for
instance. Other technical attributes are size and location.

– Educational attributes include the interactivity type=’active-simulation’ or
’active-exercise’ or ’expositive-audio’. Other educational attributes are learn-
ing resource type, interactivity level, or semantic density.

The discovery of suitable objects is based on this domain-specific annotation
layer, even when a Web services-based architecture is developed. Web services
descriptions (in WSDL; cf. Fig. 3) are only relevant from a technical perspective
when services have to be integrated into applications. Content of learning objects
is the primary search criterion for a potential user. WSDL specifications address
interface and messaging aspects. Consequently, their information is only relevant
if a preselection has been made and a system needs to be assembled.

We have chosen LOM as one possible metadata format. Other standards, or
adaptations to Semantic Web technology, might also be suitable. It is essential to
consider this abstract, domain-specific layer in addition to WSDL descriptions
to support the current trend in semantic Web services discovery.

5 Architecture

Modern object-oriented software systems are usually not monolithic. In the case
study domain, various content objects might be used within a course; a vari-
ety of functions (such as storage or evaluation) support the content objects.
Therefore, consideration of assembly and integration of these components in the
re-engineering process in terms of the target architectural requirements is a cen-
tral task. We will focus here on these more recent systems, ignoring unstructured
and monolithic systems of the past. The re-engineering of the latter has been
dealt with extensively in the literature.

5.1 Coarse-grained Architecture

Architectural Topologies and Reference Architectures. Service-oriented
architectures are usually connected to a centralised control unit. However, peer-
to-peer architectures are also possible. These architectural topologies and more
specifically reference architectures strongly influence the coarse-grained architec-
ture of a service-based system. For instance, the LTSA standard needs to be
considered when defining architectures for Web services supported TLEs.

The LTSA exhibits the characteristics of a services-oriented architecture.
In our terminology, both LTSA components and LTSA storage elements are
learning objects with service character. They are defined in terms of interactions
with their environment, i.e. the LTSA components can be provided in form of
services. The LTSA defines a reference architecture for TLEs that will provide
us with a first re-engineering tool in the architectural transformation.

Object/Service Interface Descriptions. The starting point for the archi-
tectural transformation are interface descriptions for both the legacy and the
re-engineered system. Services in general are described in terms of two different
aspects: domains-specific and software-oriented. The second aspect describes the
infrastructural aspect. This aspect arises if services such as learning objects are
considered as interacting computational entities. An interface description defines
how to access the services provided by the object and how to interact with it.

<message name="LocatorInput">

<part name="body" element="xsd1:Locator"/> </message>

<message name="MultimediaOutput">

<part name="body" element="xsd1:Content"/> </message>

<message name="InteractionContentOutput">

<part name="body" element="xsd1:InteractionContent"/> </message>

<portType name="Delivery">

<operation name="GetContent">

<documentation> Interaction with Learner Entity </documentation>

<input message="tns:LocatorInput"/>

<output message="tns:MultimediaContentOutput"/>

</operation>

<operation name="GetEvalData">

<documentation> Interaction with Evaluation component </documentation>

<input message="tns:LocatorInput"/>

<output message="tns:InteractionContentOutput"/>

</operation>

</portType>

Fig. 3. A WSDL Specification of an LTSA Component (excerpts).

The WSF [1] provides a description language: the Web Services Description
Language WSDL. This XML-based notation provides features to express

– the functionality of services in abstract terms: services are provided through
connection points, called ports, which allow a user application to interact
(send/receive messages to/from) different operations,

– the location and the protocols supported by the service, allowing a user to
actually connect to the service.

LTSA components can be defined in terms of the WSDL. An excerpt from an
LTSA service interface definition in WSDL can be found in Figure 3. It aims to
demonstrate the closeness of the LTSA to component-oriented architectures.

Architectural Transformation. Our aim in the case study is to embed learn-
ing objects from the legacy system into a Web services architecture. LOM an-
notations can contain technical aspects, but they do not give any guideline on
how to integrate and assemble service objects into larger systems. The LTSA
provides a first top-level outline of a services-oriented architecture for TLEs.

We have outlined the main IDLE components above. The architecture of the
system can be described in a number of ways. The architecture of IDLE sys-
tem can be presented in the three tiers interface, server, and database backend.
However, since several components fall into each tier, a refined architecture is
necessary. In terms of the LTSA, we can associate IDLE components to LTSA
components. Examples are the evaluation or delivery components.

The following activities support the architectural transformation:

1. Legacy Architecture Standardisation: In order to support architectural trans-
formation, we have captured the IDLE architecture in terms of the LTSA
reference architecture. This is a modularisation and standardisation step.

2. Architectural Invariant Definition: As pointed out, the LTSA exhibits service
character. Therefore, the LTSA-imposed architecture forms an invariant in
the transformation process that guarantees evolutionary stability.

3. Target Architecture Representation: LTSA components and storage features
can be described and, if implemented, be made available as services in a Web
services architecture; cf. Fig. 3.

Fig. 3 shows how the LTSA can be mapped to the WSF. The LTSA defines
services (on an abstract level) that can be mapped to WSDL port types. Access
to static components, called stores in LTSA, can also be encapsulated by service
interfaces. However, in the case study it becomes clear here that the LTSA
is only a reference architecture, identifying no more than component clusters.
Several IDLE components are part of one LTSA element. In order to support
the development of complex systems, a more fine-granular architectural support
than provided by e.g. the LTSA is needed. Each of the LTSA components is
often implemented through several objects or services.

5.2 Fine-grained Architectures

A more fine-granular approach to architectural transformation is required that
gives a developer more support:

– Firstly, to identify architectural patterns [19] that are suitable in the archi-
tectural transformation of a services-based system. We will discuss different
architectural patterns. Since the focus in Web-based systems is often on the
user interaction with content, the Model-View-Controller MVC paradigm
can be applied.

– Secondly, a Web services description of the service interfaces that supports
the actual assembly and implementation of the system. SOAP toolkits, e.g.
Apache Axis, can then be used to coordinate the service interactions.

Architectural Patterns. Software systems often follow common recurring ar-
chitectural structures – called design patterns [19]. Patterns provide solutions to
reoccurring problems that occur in object-oriented software development in order
to make these maintainable, self-documenting, and reusable through component-
based architectures with clearly defined interfaces. Patterns are usually described
in terms of their underlying architectural structure, but also informal descrip-
tions of their expected usage.

Patterns can guide the architectural transformation on a fine-granular level.

– A typical logical architecture is known as the three-tiered architecture com-
prising an interface component, a server component, and a database backend.
This architecture often needs refinements in the presence of several interface,
server, or backend components.

– An architectural design pattern, focusing on the functionality of components
in user interface design, is the Model-View-Controller MVC paradigm. MVC
is often also referred to as a paradigm or a framework as it is more abstract
than a pattern. The MVC paradigm defines an architectural pattern that
provides for clear separation of concerns within the architecture. Using such
a pattern shields the developer from architectural/design decisions; instead
they can concentrate on the domain problem (e.g. learning aspects) at hand.

– A number of other, small-scale patterns can be identified that are relevant in
the context of educational systems, such as the factory pattern or the proxy
pattern. These also explain structures within larger architectural patterns.

A central objective of a re-engineering method focusing on architectural as-
pects is to identify domain-specific patterns that act as targets for the archi-
tectural transformation. In our case study, we focus on patterns that explain
structures and interactions resulting from the LTSA. We have already mentioned
the three-tiered architecture and the MVC paradigm. These are particularly im-
portant in the educational context where the user is central and needs to be
integrated in complex learning processes supported by the architecture.

These patterns provide fine-grained targets for the architectural transforma-
tion in the re-engineering process. The identification of these pattern in the
legacy system and the definition of the target architecture in terms of these pat-
terns is a central transformation technique. Patterns can become invariants of
the transformation.

Core Patterns. In the following, we introduce a number of central patterns –
called core patterns. We found them relevant for the educational domain, but,
due to their structural properties they can be applied in a wider range of Web
services-based systems. These patterns range over different pattern categories
such as creational, structural, and behavioural; see [19] for more details on these
categories. We will relate these patterns to aspects of the IDLE system.

The following three patterns turned out to be useful to address LTSA-specific
structures:

– The factory pattern is a creational pattern that provides an interface for cre-
ating related or dependent objects without specifying their concrete classes.

The factory pattern can be applied for manipulating a variety of related
persistent stores such as the learners records or adding/retrieving learning
object to/from a databases. The Java database connectivity approach JDBC
for example is based on the factory pattern.

– The proxy pattern is a structural pattern that provides a placeholder for
another object to control access to it.

The implementation of a learner entity can be based on the proxy pat-
tern to access generic learning components across the Internet using Web
services toolkits. This pattern provides for the use of different languages and
platforms on client and server. The proxy pattern abstracts the user from
the creation and decoding of XML messages used in SOAP interactions.

– The serializer pattern allows a developer to efficiently stream objects into
data structures as well as create objects from such data structures.

The serializer pattern matches requirements of the coach and learner entity
component to maintain state over time when the learner wishes to pause the
learning process. The serialiser pattern can convert the appropriate object
into a data stream and store them in a persistent storage area such as in
learner records.

The following two patterns were used to support the MVC paradigm:

– The observer pattern is a behavioural pattern that defines a one-to-many
dependency between objects so that when one object changes its state, all
dependents are notified/updated automatically.

The observer pattern can be used to notify view and controller of updates
in the model, thus de-coupling the individual components. This does however
introduce a new form of coupling in that the view/controller must query the
model state or register interest in events to be broadcast by the model. Both
the view/controller object roles and the model would need to be modified
implying a lack of separation of concerns between the domain model and the
GUI. Veit and Hermann [20] address these issues by using aspect-oriented
programming to realise the ideals of the MVC paradigm.

– The composite pattern is a structural pattern that composes objects into tree
structures representing part-whole hierarchies.

The composite pattern could be used to combine many simple view ob-
jects to create a complex view object. The reuse of the simple view objects
supported by the MVC paradigm should make the assembly of additional
view objects much quicker and simpler.

Patterns and Service-oriented Architectures. Even though patterns have
been formulated based on an analysis of object-oriented systems [19], we have
applied the pattern concept here to a services-oriented context. Principles of en-
capsulation, abstract interfaces, interaction though message passing that char-
acterise object-orientedness are still valid in the services-oriented view.

Some observations are important in a context where, firstly, the user (e.g.
the learner) is of paramount importance and, secondly, the access to material is
provided through navigational features (the Web):

– The separation of the model from navigational and interface concerns is
important. The MVC paradigm does not consider the separation of the nav-
igational structures of an application from the view. A navigational layer is
necessary as proposed in [21]. The LTSA separation into the LTSA compo-
nents Delivery and Learner Entity illustrates this issue.

– Navigational contexts should be defined. These contexts refer to other related
contexts and the nodes that should appear when they are navigated to.

– All content contained in a learning object should be completely independent
from the interface, which will display it. This allows the content information
to be displayed in many different and diverse ways [22].

One of the essential extensions we have made to the MVC pattern in our proto-
type is to introduce a navigational layer as an additional element in the trans-
formation process.

Secondary Patterns. The LTSA defines a reference architecture, which sup-
ports a developer in the first steps of a top-down design process, which can be
extended by the consideration of core patterns. Often, however, a bottom-up de-
velopment style is required. More fine-granular secondary patterns can support
this style more adequately.

– XML is an ideal notation to markup metadata, but also the content itself.
The composite and iterator pattern exists in an XML parser as it provides
generic access to elements of a hierarchical nature.

– The strategy pattern can be used to switch between various methods of evalu-
ation in the LTSA evaluation process. For example, the developer can specify
in an XML file or hotspot which algorithm to use (assuming the algorithms
are prewritten) for student data evaluation. The strategy pattern can also be
used between view and controller object roles. The controller object role uses
the strategy pattern to decide at design or run time which view to use. This
allows the controller to change the way it handles a request dynamically.

– The template method strategy may also be used to implement the switch-
ing behaviour described in the previous paragraph whereby the hotspot is
coded in the subclass to override the implementation in the superclass to suit
the specific domain model. The use of patterns should provide a framework
whereby hotspots are identified as the location of model specific behaviour.
These hotspots must then be configured to implement the domain model.

We found these pattern to be less central in service-oriented architectures than
those that we classified as core patterns. However, they turned out to be useful
in more detailed architectural designs.

5.3 Quality of Service

We have started the transformation of the original architecture onto a Web
services platform by developing a prototype. Our aim was to investigate archi-
tectural transformation issues before addressing the full IDLE system. Several
architectural patterns seem suitable. Nonetheless, a closer investigation and a
possibly refined framework are necessary. Our analysis of patterns such as fac-
tory, proxy, serialiser, observer, etc. was a first step to determine a fine- granular
architecture definition based on reusable structures.

The WSF is often promised as a Web middleware platform for the integra-
tion of various applications. So far, however, quality of service QoS aspects such
as performance of the assembled system have not been addressed in enough
detail [23]. Adding additional layers and discovery and integration mechanisms
increases reusability and improves maintenance aspects, but might affect char-
acteristics such as performance negatively. Consequently, QoS has to be part of
a re-engineering strategy.

Although we have not carried out extensive tests on the re-engineered system,
a number of performance-related issues are clear. The encoding and decoding fol-
lowed by the subsequent transportation of verbose SOAP messages over HTTP
is a considerable overhead when compared to binary RPC mechanisms such as
CORBA. This latency may or may not hinder the user acceptance of the sys-
tem. It is interesting to note, however, that some architectures such as Vinci [24]
have tackled the high latency issues of SOAP over HTTP by using an approach
based on a semi-parsed, pseudo-binary representations of XML documents –
called XTalk. The performance of Vinci is comparable with RPC binary mecha-
nisms based on their test data. This performance does however come at a price,
as unlike a pure Web service- based implementation, Vinci requires a gateway
to process the XTalk messages communicated across the network. Caching of
learning objects, which have a low update frequency, should help improve the
response time from the Web service components. This issue is also currently be-
ing addressed by the World-Wide Web Committee W3C. These considerations
will impact architectural transformation strategies.

This discussion is not yet complete. An open distributed platform such as
the Web is open to failure attacks. Reliability and fault tolerance of components
in assemblies and in particular security are important in Web-based contexts.
Only using secure protocols for transport is not sufficient. A secure architecture
would be needed to obtain secure systems. A detailed discussion of these issues
is, however, beyond the scope of this paper.

6 Conclusions

Our investigation of re-engineering techniques for services-oriented architectures
has identified a number of central requirements:

– coarse- and fine-granular architectural transformation support through ref-
erence architectures and architectural patterns, respectively,

– re-engineering for deployment and also development – providing services for
use is central in the Web services framework,

– consideration of domain-specific standards for description and architecture,
– quality of service aspects such as performance.

We have addressed units of software that have both service and compo-
nent character. They can be annotated with metadata and discovered through
searches based on this metadata. These units are also units of composition in
the development of architectures for Web services-based systems. The notion of
learning objects has captured this type of software unit in the case study context.

Two interface description dimensions reflect the development/deployment
duality. Metadata annotations reflect content-related aspects of an service re-
source. Technical interfaces reflect the interaction and connection properties of
these services as computational entities. We have illustrated that a services-
oriented architecture for Web-services based systems is ideal (supporting flexible
composition, maintenance, extensibility, etc.) if the new paradigm of sharing

and reusing educational resources is adopted. We have investigated and pre-
sented architectural patterns that can support architectural transformation in
complex application domains. Central in this endeavour is a new target develop-
ment process model for these systems focusing on sharing and reuse.

Our intention was to outline central aspects of a re-engineering method for
the Web services platform. Architectures – coarse and fine-granular architectural
transformation – and preparing software components as services that can be
provided – description and development process – have turned out to be central.

We have presented architectural patterns that match system requirements.
We plan to invest more time into the investigation of styles and patterns. We in-
tend to develop domain-specific patterns, which would simplify the re-engineering
process and increase the reusability of the framework even further. More expe-
rience is necessary with respect to management issues such as maintenance and
reuse. Some questions in relation to patterns have remained open. For instance,
aspect-oriented design and programming seem to suggest solutions to particular
problems in separating concerns.

The description framework that we have introduced can be seen as a simple
two-layered ontology. The upper layer describes e.g. a learning object in terms
of educational properties. This layer would normally be used by a learner or
instructor to discover and retrieve a suitable object satisfying particular needs.
The lower layer describes a service (learning object) in terms of the properties
relevant to integrate this object as a service into a Web services-based architec-
ture. We have not pursued this direction here, developing it into an ontological
framework that supports the re-engineering process, as we feel that a number of
practical architectural issues have to be addressed before a more elaborate on-
tology framework can and should be investigated. Consequently, we have turned
our focus on architectural aspects.

Acknowledgements
Our work was supported by the Dublin City University Teaching and Learn-

ing Fund DCU-TLF and the Irish Research Council for Science, Engineering and
Technology IRCSET.

References

1. World Wide Web Consortium. Web Services Framework. http://www.w3.org/
2002/ws, 2003.

2. World Wide Web Consortium. Web Services Architecture Definition Document.
http://www.w3.org/2002/ws/arch, 2003.

3. L. Anido, M. Llamas, M.J. Fernandez, J. Rodriguez, M. Caeiro, and J. Santos. A
Standards-driven Open Architecture for Learning Systems. In Proc. International
Conference on Advanced Learning Technologies ICALT01. IEEE, 2001.

4. D. Sampson, C. Karagiannidis, and F. Cardinali. An Architecture for Web-based
e-Learning Promoting Re-usable Adaptive Educational e-Content. Educational
Technology and Society, 5(2), 2002.

5. R.S. Arnold, editor. Software Re-engineering. IEEE Tutorial. IEEE, 1994.
6. I. Sommerville. Software Engineering - 6th Edition. Addison Wesley, 2001.
7. C. Pahl, R. Barrett, and C. Kenny. Supporting Active Database Learning and

Training through Interactive Multimedia. In Proc. Intl. Conf. on Innovation and
Technology in Computer Science Education ITiCSE’04. ACM, 2004.

8. IEEE Learning Technology Standards Committee LTSC. IEEE P1484.1/D8. Draft
Standard for Learning Technology - Learning Technology Systems Architecture
LTSA. IEEE Computer Society, 2001.

9. N. Medvidovic, D.S. Rosenblum, and R.N. Taylor. An Architecture-Based Ap-
proach to Software Evolution. In ICSE’98 Intl. Workshop on the Principles of
Software Evolution, pages 11–15. 1998.

10. J. Williams and J. Baty. Building a Loosely Coupled Infrastructure for Web Ser-
vices. In Proc. International Conference in Web Services ICWS’2003. 2003.

11. J.F. Sowa. Knowledge Representation - Logical, Philosophical, and Computational
Foundations. Brooks/Cole, 2000.

12. W3C Semantic Web Activity. Semantic Web Activity Statement, 2002.
http://www.w3.org/sw.

13. E. Motta, J. Dominigue, L. Cabral, and M. Gaspari. IRSII: A Framework and
Infrastructure for Semantic Web Services. In D. Fensel, K.P. Sycara, and J. My-
lopoulos, editors, Proc. International Semantic Web Conference ISWC’2003, pages
306–318. Springer-Verlag, LNCS 2870, 2003.

14. C. Pahl and R. Barrett. A Web Services Architecture for Learning Object Discovery
and Assembly. In Proc. of the 13th International World Wide Web Conference
(Poster). 2004.

15. C. Pahl. Managing evolution and change in web-based teaching and learning en-
vironments. Computers and Education, 40(1):99–114, 2003.

16. IEEE Learning Technology Standards Committee LTSC. IEEE P1484.12/D4.0
Draft Standard for Learning Object Metadata (LOM). IEEE Computer Society,
2002.

17. C. Szyperski. Component Software: Beyond Object-Oriented Programming – 2nd
Ed. Addison-Wesley, 2002.

18. D. Fensel and C. Bussler. The Web Services Modeling Framework. Technical
report, Vrije Universiteit Amsterdam, 2002.

19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Design. Addison Wesley, 1995.

20. M. Veit and S. Herrmann. Model-View-Controller and Object Teams: A Perfect
Match Of Paradigms. In Proc. of the 2nd International Conference on Aspect-
Oriented Software Development, AOSD 2003, pages 140–149. ACM, 2003.

21. M.D. Jacyntho, D. Schwabe, and G. Rossi. A Software Architecture for Structuring
Complex Web Applications. In Proc. of the 11th International World Wide Web
Conference. 2002.

22. F. Lyardet, G. Rossi, and D. Schwabe. Using Design Patterns in Educational
Multimedia applications. In Proceedings of ED-Media’98 World Conference on
Educational Multimedia and Hypermedia. 1998.

23. S. Ran. A Framework for Discovering Web Services with Desired Quality of Services
Attributes. In Proc. International Conference on Web Services ICWS’2003. 2003.

24. R. Agrawal, R. Bayardo, D. Gruhl, and S. Papadimitriou. Vinci: A service-oriented
architecture for rapid development of web applications. In Proc. of the Tenth
International World Wide Web Conference. 2001.

