6,070 research outputs found

    Texture Mixer: A Network for Controllable Synthesis and Interpolation of Texture

    Full text link
    This paper addresses the problem of interpolating visual textures. We formulate this problem by requiring (1) by-example controllability and (2) realistic and smooth interpolation among an arbitrary number of texture samples. To solve it we propose a neural network trained simultaneously on a reconstruction task and a generation task, which can project texture examples onto a latent space where they can be linearly interpolated and projected back onto the image domain, thus ensuring both intuitive control and realistic results. We show our method outperforms a number of baselines according to a comprehensive suite of metrics as well as a user study. We further show several applications based on our technique, which include texture brush, texture dissolve, and animal hybridization.Comment: Accepted to CVPR'1

    Example based texture synthesis and quantification of texture quality

    Get PDF
    Textures have been used effectively to create realistic environments for virtual worlds by reproducing the surface appearances. One of the widely-used methods for creating textures is the example based texture synthesis method. In this method of generating a texture of arbitrary size, an input image from the real world is provided. This input image is used for the basis of generating large textures. Various methods based on the underlying pattern of the image have been used to create these textures; however, the problem of finding an algorithm which provides a good output is still an open research issue. Moreover, the process of determining the best of the outputs produced by the existing methods is a subjective one and requires human intervention. No quantification measure exists to do a relative comparison between the outputs. This dissertation addresses both problems using a novel approach. The dissertation also proposes an improved algorithm for image inpainting which yields better results than existing methods. Firstly, this dissertation presents a methodology which uses a HSI (hue, saturation, intensity) color model in conjunction with the hybrid approach to improve the quality of the synthesized texture. Unlike the RGB (red, green, blue) color model, the HSI color model is more intuitive and closer to human perception. The hue, saturation and intensity are better indicators than the three color channels used in the RGB model. They represent the exact way, in which the eye sees color in the real world. Secondly, this dissertation addresses the issue of quantifying the quality of the output textures generated using the various texture synthesis methods. Quantifying the quality of the output generated is an important issue and a novel method using statistical measures and a color autocorrelogram has been proposed. It is a two step method; in the first step a measure of the energy, entropy and similar statistical measures helps determine the consistency of the output texture. In the second step an autocorelogram is used to analyze color images as well and quantify them effectively. Finally, this disseratation prsesents a method for improving image inpainting. In the case of inpainting, small sections of the image missing due to noise or other similar reasons can be reproduced using example based texture synthesis. The region of the image immediately surrounding the missing section is treated as sample input. Inpainting can also be used to alter images by removing large sections of the image and filling the removed section with the image data from the rest of the image. For this, a maximum edge detector method is proposed to determine the correct order of section filling and produces significantly better results

    A subjective evaluation of texture synthesis methods

    Get PDF
    This paper presents the results of a user study which quantifies the relative and absolute quality of example-based texture synthesis algorithms. In order to allow such evaluation, a list of texture properties is compiled, and a minimal representative set of textures is selected to cover these. Six texture synthesis methods are compared against each other and a reference on a selection of twelve textures by non-expert participants (N = 67). Results demonstrate certain algorithms successfully solve the problem of texture synthesis for certain textures, but there are no satisfactory results for other types of texture properties. The presented textures and results make it possible for future work to be subjectively compared, thus facilitating the development of future texture synthesis methods

    High quality texture synthesis

    Get PDF
    Texture synthesis is a core process in Computer Graphics and design. It is used extensively in a wide range of applications, including computer games, virtual environments, manufacturing, and rendering. This thesis investigates a novel approach to texture synthesis in order to significantly improve speed, memory requirements, and quality. An analysis of texture properties is created, to enable the gathering a representative dataset, and a qualitative evaluation of texture synthesis algorithms. A new algorithm to make non-repeating texture synthesis on-the-fly possible is developed, tested, and evaluated. This parallel patch-based method allows repeatable sampling without cache, without creating visually noticeable repetitions, as confirmed by a perceptive objective study on quality. In order to quantify the quality of existing algorithms and to facilitate further development in the field, desired texture properties are classified and analysed, and a minimal set of textures is created according to these properties to allow subjective evaluation of texture synthesis algorithms. This dataset is then used in a user study which evaluates the quality of texture synthesis algorithms. For the first time in the field of texture synthesis, statistically significant findings quantify the quality of selected repeatable algorithms, and make it possible to evaluate new improved methods. Finally, in an effort to make these findings applicable in the British tile manufacturing industry, the developed texture synthesis technology is made available to Johnson Tiles

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation
    • …
    corecore