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Perceptual Texture Similarity Estimation:  
An Evaluation of Computational Features 

 Xinghui Dong, Junyu Dong, and Mike J. Chantler 

Abstract—Estimation of texture similarity is fundamental to many material recognition tasks. This study uses fine-grained 

human perceptual similarity ground-truth to provide a comprehensive evaluation of 51 texture feature sets. We conduct two 

types of evaluation and both show that these features do not estimate similarity well when compared against human agreement 

rates, but that performances are improved when the features are combined using a Random Forest. Using a simple two-stage 

statistical model we show that few of the features capture long-range aperiodic relationships. We perform two psychophysical 

experiments which indicate that long-range interactions do provide humans with important cues for estimating texture similarity. 

This motivates an extension of the study to include Convolutional Neural Networks (CNNs) as they enable arbitrary features of 

large spatial extent to be learnt. Our conclusions derived from the use of two pre-trained CNNs are: that the large spatial extent 

exploited by the networks’ top convolutional and first fully-connected layers, together with the use of large numbers of filters, 

confers significant advantage for estimation of perceptual texture similarity. 

Index Terms— Evaluation, features, perceptual similarity, similarity measures, texture similarity.  

————————————————   �   ———————————————— 

1 INTRODUCTION

EXTURE has been an extremely popular subject in 
computer vision over the last fifty years [56], [57], [75], 

[82] but surprisingly, the task of texture similarity estima-
tion, as judged by human observers, has not received as 
much attention as classification [91] or segmentation [61].  

It is often characterised as “a spatial organisation of a 
set of basic elements or primitives” [63]. Recently, “order-
less” techniques [118], [134] have been successfully ex-
ploited in Convolutional Neural Networks (CNNs) in 
order to remove higher-level positional data, however, 
their convolutional layers still compute local spatial statis-
tics. A wide variety of texture features have thus been 
designed, or learnt, that encode different types of spatial 
statistics. These tend to be either of 2nd- or higher order, 
as 1st-order statistics do not encode pixel location infor-
mation. 

Examples of popular features that capture 2nd-order 
statistics include those based on the biologically motivat-
ed Linear-Nonlinear-Linear (LNL) and similar models 
[48], [70], [81]. These have evolved from small sets of 
hand-crafted filters [71] to being the basis for the CNNs 
that are so successful today [24], [108]. Naturally if the 
positional data of the local filters is retained (as per-
formed implicitly in CNNs), or they are locally combined 
in some way (e.g. quadrature filters [99]) then phase in-
formation can be exploited. 

In addition, there are many approaches that are de-
signed to capture complex local patterns in which their 

local higher-order statistics (HOS) and phase data are 
critical, e.g. [92]. These include features explicitly de-
signed to analyse regular and near-regular textures [73], 
[74], [76], [78] in which wallpaper symmetries have 
shown to be an important part of human perception [68]. 
Others include the trace transform [64], co-occurrence 
matrices [57] and texton-based approaches [72], [122].  

In general, therefore, existing texture features estimate 
local and global 2nd-order statistics, or local HOS. How-
ever, we have come across few that utilise longer-range 
HOS, which are known to be used by the human visual 
system (HVS) [46], [98], [113]. An exception is CNNs as 
their fully-connected layers have access to positional data. 

Hence the goals of this paper are to analyse the spatial 
extent and statistical nature of existing feature sets, to 
investigate their performance using human-derived simi-
larity data, and compare their performance with CNNs.  

1.1 Related Work 

As stated above there is no agreement as to a formal defi-
nition of texture [56], [60] however, the term has been 
extensively used in a number of research disciplines.  

Human vision researchers have used it to describe a 
wide variety of stimuli used in both psychophysical and 
neuroscience studies. They vary from the seemly simplis-
tic binary textures [46], [63] through to more complex 
images that explore characteristics such as symmetry [30], 
[68] and HOS [42]. The former for instance have been 
used to investigate dipole statistics and Julesz’s famous 
conjecture hypothesised that humans cannot distinguish 
between textures with identical 2nd-order statistics. He 
later proved this false and went on to develop a “texton” 
based approach in order to identify discriminatory fea-
tures [63]. In addition, natural texture images, e.g. Bro-
datz’s [19], have been used extensively for studies of hu-
man perception of texture properties [27], [60], [103]. 
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In contrast computer vision researchers have devel-
oped many feature sets and systems designed to perform 
such tasks as segmentation, classification and retrieval. 
They often characterise texture as referring to the spatial 
organisation of a set of primitives [33], [75], [117], [121] 
similar to Juesz [63] in many ways. This idea of a set of 
texture primitives coupled with placement rules has been 
extended by Liu and colleagues to cover near-regular tex-
tures in which lattice-based geometric,  colour, and light-
ing distortions can be captured  (and synthesised) in or-
der to characterise texture [74], [76], [78].  

1.1.1 Previous Reviews and Surveys 

While there have been numerous papers published pro-
posing new texture features, surveys that have provided 
wide reviews of such features are scarcer.  

Haralick [56] provided one of the earliest surveys of 
models of feature extraction, dividing them into structur-
al and statistical approaches. Van Gool [121] used the 
same classification to survey feature measures for texture 
segmentation, while Reed and du Buf [104] reviewed a 
large number of approaches specifically for unsupervised 
segmentation. Tuceryan and Jain [117] examined geomet-
ric, random field, fractal, and signal processing models 
for the tasks of segmentation and classification. Ojala et al. 
[90] compared features for classification using their dis-
tributions, while Randen and Husøy [102] evaluated 
many filter-based features using a pixel-wise texture clas-
sification task. Xie and Mirmehdi [130] proposed a taxon-
omy of texture measures and used this to review a “gal-
axy” of features, and Dana [33] summarised traditional 
and deep learning based computational models used for 
four texture tasks. Most recently Liu et al. [75] surveyed a 
large number of feature sets focusing on those presented 
over the last 20 years and suited to the purposes of classi-
fication, segmentation, synthesis, and shape from texture.  

Of these studies, none evaluate features explicitly for 
the purposes of texture similarity estimation. This may 
well be due to the lack of texture databases with associat-
ed sets of perceptual texture similarity data.  

1.1.2 Evaluation against Perceptual Judgements 

Human perceptual judgements have been used as 
ground-truth to evaluate a wide variety of computer al-
gorithms. For instance, observers’ rankings have been 
used to evaluate search engine performance [13], [58], [87]; 
while Eitz et al. [41] used a 7-point Likert scale to gather 
perceived similarity between sketches and images, and 
Zhang and colleagues employed 2AFC and JND assess-
ments of distortions of images caused by six types of arte-
fact [133]. In addition, large numbers of human judge-
ments have also been used for assessing bidirectional tex-
ture functions [47], computational image saliency [16], 
[116] and visual realism [44]. 

However, the direct use of human studies for evalua-
tion of texture features is less common. This is particular-
ly the case when we consider research that employs fine-
grained judgements 1  using a larger number of response 
 

1 By “fine-grained” we simply mean the case where three or more catego-
ries (or ordinal or ratio data) are used to represent pair-wise similarity.  

alternatives, e.g. a 7-point Likert scale rather than the 
more common binary sets of categories using, for instance, 
“similar” and “dissimilar”. Lin et al. [73] examined the 
correlation between observers’ ratings judged on a 4-
point scale of the quality of near-regular texture synthesis 
[78]. Cimpoi et al. [28] used Amazon Mechanical Turk to 
label 5,640 texture images with multiple perceptual prop-
erties, while Sharan et al. [107] asked mTurkers to label 
distorted images with material categories. Matthews et al. 
[84] asked observers to perform two-alternative pair-wise 
comparisons of specific texture qualities. Zujovic [136] de-
veloped a “Visual Similarity by Progressive Grouping” 
(ViSiProG) procedure to generate similarity matrices from 
which they extracted disjoint clusters, while Pappas et al. 
[95] used the same clusters to analyse the performance of 
nine similarity metrics (focusing on structural types). 
However, they only used the (binary) intra-cluster similari-
ty. Payne et al. [97] and Santini and Jain [105] compared 
human and computational rankings of 100 textures. 

Other researchers have sought to develop features that 
estimate particular perceptual texture properties. For in-
stance Tamura et al. [114] used pair-wise comparison of 
six perceptual properties to estimate interval scales which 
they used to assess computational measures. Other au-
thors have also used these data to perform similar as-
sessments [50] or have used ranking methods to assess 
the effectiveness of texture features designed to measure 
perceptual properties [8], [12]. 

Perceptual texture dimensions have been researched 
by Cho et al. [27], Rao and Lohse [103], and Heaps and 
Handel [60] with the latter concluding that texture simi-
larity is context dependent, and that a dimensional model 
is not appropriate.  

Finally, while Clarke et al. [29] did not evaluate compu-
tational features against perceptual judgements per se, they 
did compare two sets of fine-grained perceptual similarity 
data with each other. They collected 1000 pairs-of-pairs 
judgements and compared these against pair-wise similari-
ties for 334 Pertex [3] textures estimated using Isomap di-
mensionality reduction [115] applied to the results of free-
grouping by 30 human observers [54] (see Section 3.3.2). 

Thus, while a number of studies have assessed the abil-
ity of features and measures to estimate human-perceived 
texture similarity, none of the papers described above use 
such data to compare more than a handful of feature sets at 
a time. An exception to this is provided by two short pa-
pers by Dong et al. [37], [38]. The contribution here, be-
yond [37] and [38], is described below. 

1.2 Contribution of this Survey 

In comparison to the papers reviewed above, and com-
pared to [37] and [38], this paper adds an in-depth survey 
of the 51 texture feature sets and a detailed analysis of 
their spatial extent and order of statistics used. It evalu-
ates the results more extensively and provides additional 
significance testing. It describes the ground-truth data 
and evaluation methods more thoroughly, and it investi-
gates the importance of long-range interactions in more 
detail. In addition, it examines the performance of Ran-
dom Forest regressors [18] and adds an evaluation of 
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CNN using two types of neural layers, convolutional and 
fully-connected, obtained from two pre-trained networks.  

The contributions are therefore as follows. (1) We ana-
lyse 51 traditional feature sets in detail in terms of their 
statistical nature and spatial extent. (2) We show that a 
multi-resolution approach is significantly better than using 
single resolutions for these features. (3) We use two types 
of “fine-grained”, ordinal similarity human ground-truth 
in two separate evaluation protocols. (4) We provide a 
detailed description of the use of the Block Randomised 
experiment to investigate the effect of long-range interac-
tions on human perception and show that such interactions 
are important in human similarity judgements. (5) We 
show that the combination of all 51 feature sets in a Ran-
dom Forest regressor [18] produces significantly better re-
sults than any individual feature set. Finally (6) we show 
that features derived from two different pre-trained CNNs 
outperform the traditional features, including the case 
when they are combined using a Random Forest. 

1.3 Organisation of this Survey 

The computational texture features are reviewed in Sec-
tion 2 while Section 3 describes the selection of the texture 
database and its ground-truth. Section 4 introduces two 
different evaluation protocols corresponding to the two 
experiments reported in Sections 5 and 6. Section 7 inves-
tigates the importance of long-range interactions to hu-
man texture perception, CNN features are assessed in 
Section 8, and conclusions are presented in Section 9. 

2 COMPUTATIONAL TEXTURE FEATURES 

Many computational texture features have been proposed 
over the last fifty years [57], [75], [104], [117], [121], [130]. 
However, none have provided a uniform treatment of 
features based on the order and spatial extent of their 
statistical properties. Our motivation in providing such a 
survey here is: (1) 1st-order statistics do not encode spa-
tial relationships and can therefore be conveniently ig-
nored; (2) 2nd-order statistics, particularly in the form of 
the autocorrelation function or power spectrum, are well 
understood and often used to represent periodic and reg-
ular textures; and (3) complex aperiodic structures can be 
encoded in higher order statistics (HOS) [93] (including 
phase spectra [94]) and in our experience provide signifi-
cant challenges to computational similarity estimation. 
We therefore use a simple two-stage statistical model to 
provide a uniform means of comparison of the feature 
sets examined here. 

2.1 A Two-Stage Statistical Model 

For texture classification [91] and retrieval [82], feature 
extraction is often implemented in two stages: the first 
(Stage I) is used to compute local statistics, while the sec-
ond (Stage II) often aggregates these to provide global, 
image-wide features. We use this simple two-stage model 
to simplify analysis of features’ statistical properties and 
spatial supports. This viewpoint does not limit our choice 
to feature sets designed purely from a statistical view-
point, nor prevent us from employing other categorisa-
tion methods. 

Note that where intermediate values are calculated we 
merge such processing into Stage II. In the case of seg-
mentation algorithms [61] we compute simple global, 
Stage II, features from their feature maps. 

2.2 Long-Range Interactions 

Throughout this paper we refer “long-range” interactions. 
By this we mean 2nd- and higher-order pixel dependen-
cies that occur over image distances of 20 pixels or more. 
We have chosen this value as many texture features do 
not compute HOS at such ranges. In contrast, 2nd-order 
statistics such as those encoded in the autocorrelation 
function can be used to capture image-wide, periodic, 
regular patterns at relatively low cost. Periodicities can be 
further classified using 17 different “Wallpaper Groups” 
that can be thought of as using placement rules to posi-
tion “tiles”, where the rules are generated from combina-
tions of four basic operations: translation, rotation, reflec-
tion and glide-reflection [30], [68], [78]. “Semi-regular” 
versions of these patterns can be generated (or analysed) 
by either deforming the underlying lattice or introducing 
intensity (colour) variations to corresponding pixels 
across tiles [78]. Liu and colleagues developed the G-A 
Score, derived with human assistance for lattice genera-
tion [76], which neatly quantifies such deviations from 
regular periodic patterns and therefore provides two 
measures of long-range HOS. 

2.3 The Feature Sets 

A feature set was selected for investigation if (1) it is pop-
ular in the literature; (2) its source code is published or it 
can be straightforwardly implemented according to the 
original publication; (3) the features can be automatically 
extracted without manual assistance; and (4) it can be 
applied to any texture. We ignored variants that were 
reported to produce similar results. We did not include 
any global phase features as we believe that phase un-
wrapping is still an open problem [131]. However, we did 
include local phase based methods, including Joint Statis-
tics of Complex Wavelet (JSCW) [99] and Local Phase 
Quantisation (LPQ) [92].   

The above provided 46 feature sets. To these we added 
three Canny [22] and two further Sobel [112] feature sets 
to complement GMAGGDIRSOBEL [90]. In total 51 fea-
ture sets were investigated. We refer to these as “conven-
tional” feature sets. Random Forest regressors and CNN 
implementations are discussed in Sections 6.7 and 8. 

2.3.1 Feature Set Coverage 

In order to provide insight as to the coverage and diversi-
ty of the feature sets selected, we have categorised these 
according to an existing taxonomy. Tuceryan and Jain 
[117] and Xie and Mirmehdi [130] both provided eloquent 
categorisations and here we use the four categories pro-
posed in [130]. These comprise signal processing based, sta-
tistical, structural and model-based approaches. Further-
more, we have additionally divided the features into his-
togram and non-histogram based approaches (Table 1 
parts (a) and (b)).  
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2.3.2 Signal Processing Based Features (♦) 

These features are often obtained using the local “energy” 
(e.g. variance estimation) of linear filter responses. They 
have many names, e.g. LNL, FRF (Filter-Rectify-Filter), 
etc., and have been used by both computer vision and 
vision science communities [70]. They map onto our two-
stage model: the linear filtering process is regarded as the 
first stage while global feature extraction, typically vari-
ance estimation is treated as the second stage.  

The majority of these features are designed and im-
plemented in either the frequency or spatial domains. 
Such filters include: eigenfilters [9]; discrete cosine trans-
form [89]; Laws’ masks [71]; and the Gabor (wavelet) fil-

ters [17], [48], [61], [82]. Filters can also be used together 
in order to encode various textures [122], for instance, the 
Ring and Wedge filters [31], the LM filter bank [72], the S 
filter bank [106], and the RFS or MR8 filter banks [122]. In 
addition, filters used in a quadrature configuration, e.g. 
Joint Statistics of Complex Wavelet (JSCW) [99], are de-
signed to extract local phase information.  

Providing that (1) the filters are linear, and (2) the “en-
ergy” estimator computes variance, then the features can 
be transformed from the frequency domain to the spatial 
domain (and back) using Parseval’s theorem [96]. This 
allows us to (1) compare feature sets in a single domain in 
order to analyse spatial extent, and (2) it enables us to 
conclude that many of the signal processing based fea-

TABLE 1 

SUMMARY OF 51 COMPUTATIONAL TEXTURE FEATURE SETS: (A) HISTOGRAM-BASED AND (B) NON-HISTOGRAM-BASED. 

Identifier Full Name Year Ref. Tasks Categ. Statistical Property Effective Spatial Extent 

SAC Centre-Symmetric Auto-correlation 1995 [59] C ♠ 2nd 3×3 

SRAC Centre-Symmetric Rank-Order Auto-correlation 1995 [59] C ♠ 2nd 3×3 

SVR Centre-Symmetric Variance Ratio 1995 [59] C ♠ 2nd 3×3 

VAR Rotation Invariant Local Variances 2002 [91] C ♠ Higher 5×5 (Radius = 2) 

GDIRCANNY Canny Gradient Direction Distributions N/A N/A PC ♥ Higher 9×9 

GDIRSOBEL Sobel Gradient Direction Distributions N/A N/A PC ♥ Higher 3×3 

GMAGCANNY Canny Gradient Magnitude Distributions N/A N/A PC ♥ Higher 9×9 

GMAGGDIRCANNY Joint Distributions of Canny GMAG and GDIR N/A N/A PC ♥ Higher 9×9 

GMAGGDIRSOBEL Joint Distributions of Sobel GMAG and GDIR 1996 [90] C ♥ Higher 3×3 

GMAGSOBEL Sobel Gradient Magnitude Distributions N/A N/A PC ♥ Higher 3×3 

LBPBASIC Basic Local Binary Patterns (LBP) 2009 [11] C ♥ Higher 3×3 

LBPDF Local Derivative Filters Based LBP 2009 [11] C ♥ Higher 3×3 

LBPHF Local Binary Pattern Histogram Fourier 2009 [10] C ♥ Higher 5×5 (Radius = 2) 

LBPRIU2 Rotation-Invariant Uniform LBP 2002 [91] C ♥ Higher 5×5 (Radius = 2) 

LBPRIU2&VAR Joint Distributions of LBPRIU2 and VAR 2002 [91] C ♥ Higher 5×5 (Radius = 2) 

LDP Local Derivative Patterns 2010 [132] C ♥ Higher 3×3 

LDPSE Spatially Enhanced LDP 2010 [132] C ♥ Higher 3×3 

RI-LPQ Rotation-Invariant Local Phase Quantisation 2008 [92] C ♥ Higher 9×9 

VZ-MR8 Varma & Zisserman’s MR8 Textons 2005 [122] C ♥ Higher 5×5 (Effective Filter Size) 

VZ-MRF Varma & Zisserman’s Markov Random Field Textons 2009 [123] C ♥ Higher 19×19 

VZ-NBRHD Varma & Zisserman’s Neighbourhood Textons 2009 [123] C ♥ Higher 19×19 

(a) Histogram-Based 

DCT Discrete Cosine Transform Based Channel Filters 1992 [89] S ♦ 2nd * 

EIGENFILTER Eigen Filters 1983 [9] S ♦ 2nd * 

GABORBOVIK Bovik’s Localised Gabor Filters 1990 [17] S ♦ 2nd * 

GABORENERGY Gabor Energy Filters 1989 [48] S ♦ 2nd * 

GABORJFFD Dyadic Gabor Filter Bank (Frequency Domain) 1991 [61] S ♦ 2nd * 

GABORJFSD Dyadic Gabor Filter Bank (Spatial Domain) 1991 [61] S ♦ 2nd * 

GABORMM Manjunath & Ma’s Gabor Wavelet Filter Bank 1996 [82] R ♦ 2nd * 

JSCW Joint Statistics of Complex Wavelet 2000 [99] PC ♦ Higher 17×17 

LAWS Laws’ Masks 1980 [71] S ♦ 2nd * 

LM Leung & Malik’s Filter Set (Bank) 2001 [72] PS ♦ 2nd * 

MR8 Maximum Response Filter Set 2005 [122] PS ♦ 2nd * 

RFS Root Filter Set 2005 [122] PS ♦ 2nd * 

RING & WEDGE Ring and Wedge Filters 1985 [31] S&C ♦ 2nd * 

S Schmid’s Filter Set 2001 [106] PS ♦ 2nd * 

ACF Autocorrelation Functions 2003 [50] R ♠ 2nd * 

CVM Covariance Matrices 1996 [77] S ♠ 2nd * 

GLADH Absolute Grey Level Difference Histograms 1976 [129] C ♠ 2nd 9×1 

GLCM Grey Level Co-occurrence Matrices 1973 [57] C ♠ 2nd 9×1 

GLSDH Signed Grey Level Difference Histograms 1986 [119] C ♠ 2nd 9×1 

GLSDSH Signed Grey Level Difference and Sum Histograms 1986 [119] C ♠ 2nd 9×1 

GLSH Grey Level Sum Histograms 1986 [119] C ♠ 2nd 9×1 

GLGLM Grey Level Gap Length Matrices 1994 [125] PC ♠ Higher Length of Longest Gap 

GLH Grey Level Histogram 2009 [130] PC ♠ 1st * 

GLRLM Grey Level Run Length Matrices 1975 [51] C ♠ Higher Length of Longest Run 

MSA Multi-scale Autoconvolution 2005 [101] C ♠ 3rd * 

SRDM Surrounding Region Dependence Method 1999 [66] C ♠ 2nd 7×7 

TT The Trace Transform 2001 [64] C ♠ 2nd Length of Longest Trace Line 

FRACTALDIMENSION Fractal Dimension 1993 [25] S ♣ 2nd 17×17 

GMRF Gaussian Markov Random Field 1985 [26] C ♣ Higher 5×3 

MRSAR Multi-resolution Simultaneous Autoregressive 1992 [83] S&C ♣ Higher 19×19 

(b)  Non-Histogram-Based 

(1) “S”, “C” and “R” denote segmentation, classification and retrieval tasks; (2) “PS” and “PC”: these feature sets can potentially be used for segmentation and classification 
tasks respectively; (3) ♦, ♠, ♥ and ♣: signal processing based, statistical, structural and model-based features; (4) *: these feature sets work over the whole image; (5) M and N: 
the height and width of an image; and (6) bold fonts (in Column “Identifier”) indicate feature sets which have been revised compared with the original algorithm. 
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tures that we have examined (excepting JSCW) only uti-
lise 2nd-order, power spectrum information and do not 
exploit HOS (see Table 1). Note that we only used the 
power spectra of the response matrices obtained using 
Localised Gabor Filters (GABORBOVIK) [17]. For all sig-
nal processing based features, excepting JSCW [99], the 
original post-processing on response matrices (normally 
comprising local variance estimation) was discarded and 
replaced by a global variance estimator (the square opera-
tion was applied to each response matrix and the mean 
was computed from each squared response matrix across 
the whole image).  

Thus, due to the fact that the power spectrum cannot 
retain aperiodic image structure [94], the majority of the 
features discussed here are only able to capture periodic 
patterns. An exception is JSCW [99] which uses quadra-
ture filters to estimate local phase information. However, 
the spatial extent of JSCW are 17×17 pixels, and thus they 
do not encode long-range aperiodic image structure either. 

2.3.3 Statistical Features (♠) 

1st-, 2nd- and higher order statistical features have been 
used to describe the distribution of grey levels. Popular 

1st-order statistics include the mean of grey levels and the 
grey level histogram but it should be noted that such sta-
tistics do not capture spatial relationships.  

In contrast 2nd-order features characterise the relation-
ship between pairs of pixels defined by their relative posi-
tion. Grey level co-occurrence matrices (GLCM) [57] pro-
vide one of the most classical feature sets of this type. 
Another similar approach is the use of absolute grey level 
difference histograms (GLADH) [129]. The histograms of 
the signed grey level differences (GLSDH), the grey level 
sum (GLSH) and the combination of these (GLSDSH) 
were further investigated by Unser [119]. Kim et al. [66] 
also designed a surrounding region dependence method 
(SRDM). Perceptual texture properties were explicitly 
modelled using the autocorrelation function (ACF) in [50] 
which, by the Wiener-Khinchin theorem, is known to be 
directly related to the power spectrum. Trace transform 
(TT) features [64] generally only compute 1st- and 2nd-
order statistics on trace lines. Harwooda et al. [59] intro-
duced local centre-symmetric covariance feature sets, in-
cluding two local centre-symmetric auto-correlations with 
linear and rank-order versions (SAC and SRAC), a related 
covariance measure (SCOV) and a variance ratio (SVR). 
Ojala et al. [91] augmented Local Binary Patterns (LBP) 
with local variance estimators (VAR). A local covariance 
matrix based feature set (CVM) was also proposed by Liu 
and Madiraju [77]. Differing the original covariance ma-
trix features, the mean and standard deviation were com-
puted from each regional descriptor matrix and were 
combined into a feature vector. 

Higher order statistics characterise pixel relationships 
netween three or more pixels. For instance grey level run 
length matrix (GLRLM) [51] and grey level gap length 
matrix (GLGLM) [125], encode more complex spatial pat-
terns. Rahtu et al. [101] proposed an affine invariant im-
age transform, i.e. multi-scale autoconvolution (MSA), 
which calculates statistics based on point triplets.  

Generally, computing 2nd or higher order statistics 
that capture information additional to the ACF is expen-
sive. Hence these types of features are not often calculat-
ed over larger spatial support (see Table 1). Thus, it is rare 
to have processing that encodes long-range aperiodic im-
age structure incorporated into these features. 

2.3.4 Structural Features (♥) 

Structural features generally assume that textures com-
prise spatial primitives (e.g. textons [63]) that are placed 
according to spatial placement rules [56], [124].  

Julesz introduced the concept of textons [63] which has 
been incorporated into the design of many features [72], 
[106], [122], [123] and is used in “Bag-of-Words” (BoW) 
techniques, e.g. [109]. The occurrence frequency of textons 
is often exploited by such approaches and thus histogram 
comparison is often used with local structural features. 
Thus similar use of gradient magnitudes and directions 
[90]; local binary patterns (LBP) [10], [11], [91]; local de-
rivatives [132]; and local phase information [92]; can all be 
considered as using the same basic approach as texton-
based methods. In addition for gradient-based features, 
joint distributions (edge direction and magnitude) are 
often used. For example for the Sobel [112] operator 
(GMAGGDIRSOBEL) [90] we extracted histograms of 
gradient magnitudes (GMAG), and gradient directions 
(GDIR) for both Canny [22] and Sobel [112] edge detec-
tors. In addition, we also used the joint distributions for 
Canny (GMAGGDIRCANNY). See Table 1(a). (Note that 
these gradient-based feature sets can also be classified as 
signal processing as they use filter responses). 

As regards the two-stage model, we consider Stage I to 
comprise texton generation and labelling, and Stage II to 
cover histogram generation. Thus, 2nd- and higher order 
statistics are only captured in Stage I which typically only 
operates over small spatial extents. Thus, higher order 
statistics are only calculated on relatively small local re-
gions and hence, these structural features cannot encode 
long-range aperiodic image information. 

2.3.5 Model-Based Features (♣) 

Spatial process models’ parameters are often used to de-
scribe textures. We have selected fractals [25], multi-
resolution simultaneous autoregressive (MRSAR) models 
[83] and Markov Random Fields (MRF) [26] here, due to 
their popularity and availability.  

For fractals we use the implementation provided by 
Smith and Burns [111] and computed variances of four 
fractal dimension estimates as the features. MRF were 
implemented as in [26], while for MRSAR we used its 
non-rotation-invariant version [83]. Due to the computa-
tional complexity of the latter the largest spatial extent 
that we employed was 19×19 pixels. The mean and stand-
ard deviation were computed from the model coefficients 
and error matrices estimated at each neighbourhood level 
and combined into a single feature vector. 

For the three model-based feature sets used in this re-
search, 2nd- and higher order statistics are only comput-
ed on relatively small local neighbourhoods and thus, 
once again, they cannot be used to capture long-range 
aperiodic image structure. 
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2.3.6 Feature Implementation Notes 

We used the original source code for the features listed in 
Table 1 as far as practicable. If the source code was not 
available, we used the implementations by other authors 
or implemented it according to the publication. Parame-
ters were set to those reported for optimal performance. 
Further tuning the parameters of a feature set or feature 
selection was avoided as much as possible. 

2.4 Texture Measures Based on CNNs 

In contrast to the conventional features described above, 
the majority of which have been explicitly designed by 
their proposers, CNNs learn their filters directly from data. 
Several of these pre-trained CNNs have been used to esti-
mate similarity for texture synthesis and image generation. 
Gatys et al. [52] used Gram matrices computed from the 
convolutional layers of a CNN [108] as texture descriptors. 
Texture generation was performed by maximising the 
similarity between the Gram matrices of the original image 
and those of the generated image. In addition, Ustyuzha-
ninov et al. [120] used this type of similarity data to assess 
the quality of synthesised textures. Dosovitskiy and Brox 
[39] further introduced a set of loss functions based on the 
similarity calculated between CNN features which were 
extracted from the original and generated images. Berg-
mann et al. [15] built on Gatys’ work to tackle periodic 
textures using generative adversarial networks (GANs) 
that provide manifolds on which texture distances can be 
measured, however, they did note that the approach can 
drop modes. Cimpoi et al. [28] used VGG-M [24] and 
VGG-VD-19 [108] models for recognition of textures in 
cluttered environments; found that this approach pro-
duced state-of-the-art results; and that CNN features 
transfer across domains without the need for adaptation.  

We have therefore used these pre-trained CNNs (VGG-
M [24] and VGG-VD-19 [108]) and compared their per-
formances against the 51 “conventional” feature sets de-
scribed above. The results for these networks, in a variety 
of configurations, are separately described in Section 8. 

2.5 Summary of Selected Texture Feature Sets 

Table 1 summarises feature sets in terms of tasks, catego-
ry, the highest order statistical property, and the maximal 
effective spatial extent (used for computing HOS). With 
respect to these feature sets we found that: (1) the signal 
processing features examined do not exploit the phase 
data but only use power spectra, with the exception of 
JSCW [99] which calculates higher order statistics on local 
neighbourhoods; and (2) the statistical, structural and 
model-based features, excepting three: GLGLM [125], 
GLRLM [51], and MSA [101], do not compute higher or-
der statistics at long ranges, i.e. > 19×19 pixels.  

In general, long-range periodic image structure, e.g. 
regular or near-regular texture [76], can be modelled us-
ing image-wide 2nd-order statistics (e.g. power spectra) 
or thewhile long-range aperiodic image structure can on-
ly be encoded using long-range HOS, and hence only a 
few of the 51 feature sets considered encode these data.  

We note that the G-A Score [76] which has been used 
extensively for near-regular texture synthesis and recur-
ring pattern discoveries, captures longer-range HOS. 

However, we have not selected it for inclusion here due 
to the challenges of developing an auto-lattice detection 
algorithm for textures that do not have obvious lattice, or 
near-regular structures. See Fig. 10, rightmost images of 
rows 1, 3 and 4 for examples (rows numbered from top).  

3 SELECTING DATABASE AND GROUND-TRUTH 

In this section we present the motivations for selecting the 
database used here, and for completeness we describe 
how the associated sets of ground-truth were derived.  

3.1 Texture Database Selection 

We identified three criteria for selection of the database. 
The first two concern illumination and viewpoint condi-
tions as variation in either can affect human perception 
and the outputs of texture features. For instance direc-
tional illumination of Lambertian surface textures is 
known to act as a directional filter of the ACF [23]. We 
therefore wanted to remove these possible confounding 
factors and required texture images used to be acquired 
under constant viewpoint and constant illumination. 
Naturally, for real-world applications both of these fac-
tors should be controlled or accounted for [23], [34], [88]. 

Our third criterion concerned ground-truth, i.e. the 
availability of “human-judged texture similarity”. That is 
the judgement of a typical observer, ��,�, as to the similar-
ity of textures �, and �. We would like such data to be 
fine-grained with (��,� ∈ ℚ 
� ℝ), as finer-grained similar-
ity data provides a more discriminating assessment. 

Table 2 summarises 12 published texture databases ac-
cording to the number of textures and our three criteria (for 
more details, please refer to the supplementary material). It 
can be seen that only the Pertex database [3] satisfies all 
three criteria and thus it was selected for use.  

The surprising result exposed in Table 2 is that only the 
Brodatz [19] and Pertex [3] databases are available with fine-
grained ground-truth. Hence before describing the Pertex 
database we first explore below why only binary similarity 
data are commonly available with texture databases. 

3.1.1 Characteristics of Common Ground-Truth 

The majority of computer vision texture databases have 
been collected for testing classification [91], segmentation 
[17], [61] and retrieval [65], [82] algorithms.  

For texture classification assessment, ground-truth is 
often provided as class labels, and so only binary similari-

TABLE 2 
SUMMARY OF 12 PUBLISHED TEXTURE DATABASES. 

Texture 
Database 

Number of 
Textures 

Constant 
Illumination 

Constant 
Viewpoint 

Perceptual 
Similarity 
Available 

Brodatz [19] 112 × × √ 
CUReT [34] 61 √ √ × 

KTH-TIPS [4] 10 √ √ × 

KTH-TIPS2 [4] 11 √ √ × 

Meastex [111] 69 × × × 

Outex [91] 320 √ √ × 

Pertex [3] 334 √ √ √ 
PhoTex [2] 64 √ √ × 

RegTex [73] 43 × × × 

STex [5] 476 × × × 

UIUCTex [6] 25 × √ × 

VisTex [1] 167 × × × 

 



DONG ET AL.: PERCEPTUAL TEXTURE SIMILARITY ESTIMATION: AN EVALUATION OF COMPUTATIONAL TEXTURE FEATURES 7 

 

ty, ��,� ∈ �����	�����, ���������	������  can be obtained. 
Similarly, for segmentation, the data that can be derived 
is also binary: ��,� ∈ �����	����
�, ���������	����
�� . 
Texture retrieval experiments on the other hand often use 
non-overlapping sub-images derived from perceptually 
homogeneous parent images. Retrieval performance is 
based upon how many of a query’s siblings are retrieved. 
Thus again, the similarity data that can be derived are bi-
nary: ��,� ∈ ��������, ���������� . More rarely, ranking of 
texture retrievals are compared, as this requires human 
experiments to determine ground-truth and is therefore 
not often used (see Section 1.1.2).   

Hence for the tasks discussed above, binary similarity 
data are often sufficient and can normally be obtained rel-
atively cheaply compared with, for instance, pair-wise 
magnitude estimation. However, we believe that the use of 
such binary data does not provide a very stringent test of a 
feature set’s ability to estimate texture similarity and that 
fine-grained data should be used where possible. This is 
one of the major reasons as to why we selected Pertex [3]. 

3.2 Pertex Textures - Overview 

Pertex [3] provides greyscale, 1024×1024 pixel, images of 
334 textures captured under constant illumination and 
viewing conditions. To provide the reader with visual 
summary of textures contained in the database we per-
formed a simple hierarchical clustering [49]. This used the 
similarity matrix, 8D-ISO [29], described the next section. 
Fourteen clusters were obtained by “cutting” the dendro-
gram at a dissimilarity of 0.34 which in the authors’ opin-
ion provided most insight as to the type and range of tex-
tures. Fig. 1 shows samples from the resulting clusters to-
gether with the dendrogram of the agglomerative cluster-
ing. It can be seen that Pertex includes a range of semi-
structured, unstructured, directional and isotropic textures. 

3.3 Pertex Ground-Truth 

One of the reasons that we selected Pertex [3] is because of 

the availability of two types of fine-grained similarity 
data. As the two evaluation protocols that we use in Sec-
tions 5 and 6 are closely based on these data, we describe 
both sets in detail below. 

3.3.1 Ground-Truth Set 1: Similarity Matrix (8D-ISO) 

The first ground-truth set is a matrix of pair-wise similarity 
estimates, 8D-ISO ∈ ��������,	due to the work of Clarke et 
al. [29]. Clarke et al. used Isomap [115] to reduce the di-
mensionality of data derived from an experiment per-
formed by Halley [3], [54] to eight dimensions. In Halley’s 
experiment 30 observers formed groups of textures that 
they considered “similar”. The estimate 	of the similarity, ��,� ∈ ℚ, between textures a and b is defined as the ratio of 
(1) the number of the observers who have placed a and b 
into the same group, to (2) the total number of observers.  

Fig. 2 compares plots of (a) Halley’s original similarity 
matrix and (b) Clarke’s 8D-ISO similarity matrix. It can be 
seen that Halley’s matrix is sparser, containing many zero 
entries, which is likely due to the use of only 30 human 
observers. We chose to use Clarke’s 8D-ISO similarity ma-
trix as (1) Pearson’s correlation coefficients (calculated be-
tween the original similarity matrix and the Isomap ver-

  
(a) Halley’s (b) Clarke’s (8D-ISO) 

Fig. 2. Plots of the two 334x334 perceptual similarity matrices 
available for Pertex [3]. (a) is as obtained directly from Halley’s 
free-grouping experiment [54], while (b) shows the dimensionality 
reduced 8D-ISO data later derived by Clarke et al. [29]. The 
brightness of a point denotes the similarity ��,�  of two textures 
and they are ordered by the results of agglomerative clustering in 
order to make clusters more obvious.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Dendrogram (cut at 0.337) obtained from the 8D-ISO similarity matrix [29], along with two representative textures [3] of each cluster. 
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sions) increase slowly after eight dimensions [36], (2) re-
duction to an 8D sub-manifold can be considered to pro-
vide a smoothing of inter-observer variation, and (3) be-
cause Clarke et al. showed that it agrees well with the sec-
ond set of ground-truth [29]. Fig. 2(b) shows that the intra-
cluster similarity is still retained while the inter-cluster sim-
ilarity is not as sparsely represented as before. We attribute 
the denser similarity matrix to the fact that the Isomap 
analysis is able to extrapolate the intrinsic relationship be-
tween the entities of the similarity matrix when it is ap-
plied to the original similarity matrix [54].  

3.3.2 Ground-Truth Set 2(a): Human Pair-of-Pairs 
Judgements (���� ! ) 

Clarke et al. [29] derived a set of Pair-Of-Pairs Judge-
ments (POPJ) by directly performing a Pair-Of-Pairs (POP) 
experiment with 20 observers. We use the symbol 
���� !  to refer to these data. In his experiment two pairs 
of textures ���, ��, �", ��� were simultaneously presented 
to the observer (see Fig. 3). Observers were required to 
decide which pair, ��, �� or �", ��, comprised the two tex-
tures which they considered to be most similar to each 
other. Due to the time cost of the experiment (around 2 
hours per observer for 1000 trials) and resulting potential 
observer fatigue, only 1000 pairs-of-pairs (out of approx-
imately 334� possible combinations) were used. The 1000 
pairs-of-pairs were randomly selected with the restriction 
that � % � and " % �. Once the experiment was complete, 
the ���� !  dataset was directly generated. Entry ���� ! &��, ��, �", �� was assigned the value of 1 if 11 or 
more observers thought that pair	��, �� was more similar 
than pair �", ��. The value of -1 was assigned for the re-
verse case, and for ties a value of 0 was assigned. 

3.3.3 Ground-Truth Set 2(b): Pair-of-Pairs Data 
Derived from the 8D-ISO Similarity Matrix (����'(!) 
We used the human-derived 8D-ISO matrix [29] (see Sec-
tion 3.3.1) to produce a second source of pair-of-pairs 
ground-truth. This used the same 1000 pairs-of-pairs tex-
tures as Set 2(a) above, but for each pair-of-pairs ���, ��, �", ���, we obtained similarities ��,�  and �),* ∈ 8D-
ISO and used them to generate: 

����ISO&��, ��, �", �� . / 1, ��,� 1	 �),*0, ��,� .	 �),*31, ��,� 4 �),* 	. (1) 

Ground-truth 2(b) both enables comparison with the hu-
man pair-of-pairs ground-truth 2(a), and enables assess-
ment of the computational features against 8D-ISO for 
this subset of data (the 1000 pairs-of-pairs) and in this 
format. 

3.4 Summary 

In conclusion, therefore, we used the Pertex [3] database 

due to (1) its coverage of texture types, (2) its use of con-
sistent viewing and image capture conditions, and (3) the 
availability of its fine-grained human-derived ground-truth. 
This ground-truth was used in three forms: Set 1, the 8D-
ISO similarity matrix derived from a free-grouping exper-
iment [54]; Set 2(a), the pair-of-pairs ����POP comparisons 
derived directly from human pair-of-pairs judgements 
[29]; and Set 2(b), ����'(! , containing information de-
rived from the 8D-ISO [29] coded in a pair-of-pairs format. 

 4 TEXTURE FEATURE EVALUATION PROTOCOLS 

This section describes the two evaluation protocols (see 
Fig. 4) that we use to assess the texture features reviewed 
in Section 2. Both use ordinal relationships based on the 
two ground-truth sets. Set 1 is a similarity matrix. How-
ever, rather than compare similarity matrices directly, 
which can present difficulties for interpretation by users 
and choices of metric, we chose to compare retrieval rank-
ings derived from the similarity matrices. In contrast Set 2 
comprises pairs-of-pairs judgements and so for these 
ground-truth we computed the corresponding results from 
the computational similarity matrices and compared these 
directly. In both cases (Sets 1 and 2) the ground-truth 
could not be computed from pair-wise binary similarity 
data and therefore we consider them fine-grained.  

Sections 4.2 and 4.3 describe the two assessment proto-
cols for these two sets of ground-truth. However, first we 
present the method that we use to generate the multi-
resolution Computational Similarity matrices 67 that are 
used in both these protocols. 

4.1 Generating Multi-resolution Computational 
Similarity Matrices 

Many of the feature sets listed in Table 1 only compute 
HOS over small, local regions (as generated in Stage I of 
the model). It is therefore not uncommon for texture 
analysis systems to use a multi-resolution scheme de-

ALGORITHM 1: THE ALGORITHM FOR COMPUTING SIMILARITY MATRICES 

(1) Each texture image is decomposed into five Gaussian pyramid sub-

bands corresponding to resolutions 1024×1024, 512×512, 256×256, 

128×128 and 64×64; 

(2) Each sub-band is individually normalised to have an average intensity of 

0 and standard deviation of 1 in order to remove the influence of 1st- 

and 2nd-order grey level (moment) statistics; 

(3) Feature extraction is performed to obtain a feature vector from each sub-

band separately, and all five feature vectors are also combined into an 

additional “multi-resolution” feature vector. Thus, in total six feature 

vectors are derived for each texture; 

(4) A pair-wise distance matrix 89  is computed from all 334 sub-band 

images at each pyramid level or in the multi-resolution case. Each 89 

is normalised to the range of [0, 1] and is then converted into a similari-

ty matrix 79  according to 79 . 1.0 3 89 . Hence, six computational 

similarity matrices are obtained for each feature set. 

     
(a)         (b)   (c)         (d) 

Fig. 3. A pair of pairs set of textures: observers are required to indi-
cate which pair ��, �� or �", �� look more similar.  

Fig. 4. The pipeline of the proposed evaluation protocols. 
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signed to allow the features to exploit larger spatial extent. 
It is also likely that the human visual system processes 
images using multiple resolutions [67]. Thus, in order to 
allow a fair assessment of the features, we employ a 
Gaussian pyramid [20] multi-resolution approach [99]. 
This generates Computational Similarity (CS) matrices for 
each of the feature sets �; ∈ ��<, �= … �?<�  at six different 
image resolutions, � ∈ � 1024×1024, 512×512, 256×256, 
128×128, 64×64, Multi� (where Multi refers to all resolu-
tions combined). They are each generated from their cor-
responding Distance Matrices (DM) as described in Algo-
rithm 1. Each Distance Matrix contains all pair-wise dis-
tances(��,� ∈ ℝ ∀ �, � ∈ ��<, �= … �����) between all textures 
t. The Chi-square (A=) statistic is used to calculate distance 
values for n-dimensional histogram-based features:  

��,� = <
= ∑ (CD(E)F CD(G))H

CD(E)ICD(G)
JKL< . (2) 

While the Euclidean distance is used for other feature sets: 

��,� = M∑ (�K(a) −  �K(b))=JKL<
H

. (3) 

The resulting 6×51 Computational Similarity matrices 
67 ∈ ℝ���×��� are used in both Protocols I and II. 

4.2 Protocol I: Texture Retrieval Based Evaluation 

Inspired by the use of human ordinal data for the evalua-
tion of the performance of search engines [13], [58], [87], 
we employ a texture retrieval based evaluation protocol. 
This allows us to compare the use of computational and 
human-derived similarity matrices in an applicable task: 
the retrieval of the top N textures in response to the 
presentation of one of the 334 textures as a query image. 
Note that these rankings could not be produced unam-
biguously if binary pair-wise similarities were used. 

The top N textures are derived from a similarity ma-
trix (7 ∈ ℝ���×���) by extracting the row (or column) con-
taining the query image q, and ordering the remaining 333 
textures according to their similarities to q. We compared 
all 334 rankings obtained from the human-derived 8D-
ISO similarity matrix [29], against the corresponding rank-
ings obtained from each of the 6×51 Computational Simi-
larity matrices, for P ∈ �10, 20, 40, 60� . The comparisons 
were performed using the two measures described below. 

4.2.1 Performance Measures: G and M 

We chose to use the performance measures G [43] and M 
[13] to assess ranking performance. These measures can 
compare two rankings which contain different elements 
and consider not only the number of the relevant items 
retrieved, but also the ranking positions of these elements. 
Thus, we believe that they provide a more informed 
measure than more commonly used metrics, such as Pre-
cision [8], Recall [8], Normalised Precision [79], and Nor-
malised Recall [79]. The G measure [43] is defined as: 

S = 1 −  ∑ (|UV(;)FUWXY(;)|)Z[\] I∑ [(_I<)FUV(;)]abZ[\] I∑ [(_I<)FUWXY(;)]abZ[\]
_(_I<) , (4)

where c is the number of relevant images in P retrieved 
images, cd(�) is the rank of the i-th image retrieved by a 
computational feature set, and c'(!(�) is the rank of the i-
th image retrieved using the 8D-ISO similarity matrix [29].  

The M measure [13] was motivated by the observation 

that identical (exactly same in elements and ranks) or 
nearly-identical rankings of the top P  images are more 
important to humans than those among lower placed im-
ages. Using the same notation as in Equation (4), M is 
defined as: 

9 = 1 −  ∑ (e ]
ZV([)F ]

ZWXY([)e)Z[\] I∑ ( ]
ZV([)F ]

af])abZ[\] I∑ ( ]
ZWXY([)F ]

af])abZ[\]
= ∑ (]

[a[\] F ]
af]) . (5)

4.2.2 Comparison Process 

The evaluation process is conducted as described in Algo-
rithm 2. Thus, for the retrieval evaluation described in 
Section 5 it produces 6×51×4 pairs performance measures, 
�S, 9�. That is it produces performance measures at each 
of six resolutions, for each of 51 feature sets and for each 
of four values of N.  

4.3 Protocol II: Pair-of-Pairs Based Evaluation 

The second type of ground-truth (Set 2) comprises two 
sets of pairs-of-pairs judgements (���� !  and  ����'(!). 
As it is easy to derive equivalent data from Computation-
al Similarity (CS) matrices we chose to examine the agree-
ment rate between these data and the human-derived 
ground-truth. 

4.3.1 Generating Pair-of-Pairs Judgements (����d) 
from Computational Similarity Matrices (67) 

We generated 1000 pairs-of-pairs ���, ��, �", ���  judge-
ments (corresponding directly to the 1000 trials per-
formed in the human ���� !  experiment [29]) from each 
of the 6×51 Computational Similarity matrices. That is, for 
each Computational Similarity matrix (67), we extracted 
the similarities ��,� and �),* ∈ 67 , corresponding to each 
of the 1000 g��, ��, �", ��h trials. These were used to gener-
ate 6×51 sets of “computational pairs-of-pairs judgements” 
(����d) using Equation (1). That is for each of the 51 fea-
ture sets listed in Table 1, a total six sets of ����d  are ob-
tained (one for each of the five single pyramid resolutions 
and one for the multi-resolution scheme). 

4.3.2 Comparing Computational and Human-Derived 
Pair-of-Pairs Judgements 

We use Agreement Rate (AR) to refer to the normalised 
agreement, over 1000 trials, between computational and 
human-derived pair-of-pairs judgements. Thus for each 
feature set, at each resolution, and for each of the two 
ground-truth sets ���� !  and  ����'(! we compute AR:  

(1) Compute agreement between computational and hu-
man-derived pair-of-pairs judgements at trial i: 

ALGORITHM 2: THE ALGORITHM FOR TEXTURE RETRIEVAL EVALUATION 

For each computational feature set, � ∈ �51 feature sets�;   each resolution 

� ∈ �1024 × 1024, 512 × 512, 256 × 256, 128 × 128, 64 × 64, 9�����; and each 

retrieval set size, P ∈ �10, 20, 40, 60�; do: 

(i) For each query texture, r ∈ �334 �����s textures� and with r excluded 

from the retrieval set; 

        (a) Use the 8D-ISO similarity matrix to obtain the ranked list (c'(!) of 

the first N textures; 

        (b) Use the computational similarity matrix 67C,u ,  to derive the 

ranked list (cd) of the top N textures; 

        (c) Compute the G and M scores for comparing the two ranked lists: 

c'(! and cd ; 

(ii) Average the G and M scores over all 334 query textures and use 

these averages as performance metrics; 
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      v�w�����(�) = (����H(�) == ����C(�))? 1: 0, (6) 

where: ����| ∈ ����� ! , ����'(!�; 

(2) Calculate the agreement rate (AR): 

wc = ∑ '}~�u��*(;)]���[\]
<��� . (7) 

In this paper, we use a percentage (%) to denote agree-
ment rates.  

4.4 Comparing Protocols I and II 

We note that for Protocol I (retrieval) only the top N most 
similar textures are retrieved, and it is therefore likely 
that this approach tests intra-cluster similarities more 
than inter-cluster similarities (these clusters are shown in 
Fig. 1). However, the pair-of-pairs evaluation protocol ex-
amines both intra-cluster and inter-cluster similarities. 

5 RESULTS OF PROTOCOL I: TEXTURE RETRIEVAL 

BASED EVALUATION 

In this experiment we use Protocol I to compare the per-
formance of the computational feature sets with human-
derived ground-truth to discover whether or not certain 
feature sets or feature categories generally perform better 
than their counterparts and to determine what the effect 
of resolution has. 

5.1 Highest Scoring Feature Sets 

Table 3 reports the highest G and M scores achieved by 
the 51 feature sets, for each of four different retrieval set 
sizes and at each of six different resolutions, when the 
ground-truth 8D-ISO [29] is used. From this it can be seen 
that there is no single “best” feature for all resolutions. 
However, perhaps the most significant result is that even 
for the case providing the highest G and M scores (of 0.41 
and 0.27 for MRSAR [83]) the average proportion of the 
number of the relevant textures retrieved was only 48%.  

5.2 Effect of the Image Resolution 

We examine the effect of the resolution on texture retriev-
al performance. We first test the significance of the effect 
on the G and M scores, and then empirically investigate 
the effect of the multi-resolution scheme. 

5.2.1 The Significance of Resolution 

Since we were not interested in the interactions between 
the G and M scores, we performed two factorial repeated-
measures ANOVAs [45] on the G and M scores separately. 
The family-wise error needs to be controlled by adjusting 
the level of significance for each ANOVA to ensure that 
the overall Type I error rate (∂) throughout both ANO-
VAs stays at 0.05. Hence, ∂ = 0.025 was used as the Bon-
ferroni correction [45]. The results of Mauchly’s test [45], 
[85] applied to the G scores show that the assumption of 
sphericity is violated for the main effect of the resolution, 
A=(14) = 186.38, P = 0.00. Degrees of freedom were cor-
rected using Greenhouse-Geisser estimates of sphericity 
[53] (� = 0.46). The results show that resolution has a sig-
nificant effect on G scores, F(2.28, 114.03) = 41.87, P = 0.00. 
The Mauchly’s test performed on M scores shows that the 
assumption of sphericity was also violated A=(14) = 169.54, 
P = 0.00. Degrees of freedom were corrected using Green-
house-Geisser estimates of sphericity (� = 0.45). A signifi-
cant main effect of resolution on M scores is also observed, 
F(2.25, 112.46) = 51.77, P = 0.00. In both cases (G and M) 
contrasts [45] reveal that the multi-resolution scheme per-
forms better than any of the individual resolutions. The 
superiority of the multi-resolution approach is also ap-
parent in Fig. 5 which shows the 97.5% confidence 
bounds of both G and M scores. 

5.2.2 Improvement over Original Resolution 

In a further investigation of the effect of resolution, we 
examined the individual G and M scores obtained using 
the 51 feature sets with the original 1024×1024 images, 
against their performances at the five other resolutions 
� ∈ �64 × 64, 128 × 128, 256 × 256, 512 × 512, 9����� . Ta-

TABLE 4 
NUMBERS OF FEATURE SETS WHOSE G OR M SCORES WERE 

ENHANCED USING THE RESOLUTIONS � ∈ {64×64, 128×128, 
256×256, 512×512, MULTI} COMPARED WITH THE SCORES 

OBTAINED USING THE ORIGINAL RESOLUTION OF 1024×1024.  

N Measure 
Resolution 

512×512 256×256 128×128 64×64 Multi 

10 
G 42 40 30 14 47 

M 38 44 29 11 46 

20 
G 42 40 31 14 47 

M 41 43 31 12 46 

40 
G 44 41 34 20 48 

M 44 43 32 13 46 

60 
G 45 44 38 23 49 

M 44 43 32 16 46 

Bold digits indicate the largest numbers of the enhanced feature sets. 

TABLE 3 
BEST FEATURE SETS FOR TEXTURE RETRIEVAL.  

N Measure 
Resolution 

1024×1024 512×512 256×256 128×128 64×64 Multi 

10 

G 
VZ-NBRHD VZ-MRF VZ-MRF LBPBASIC LBPBASIC LBPHF 

0.21 0.21 0.20 0.20 0.16 0.23 

M 
VZ-NBRHD VZ-MRF VZ-MRF LBPBASIC LBPBASIC LBPBASIC 

0.19 0.20 0.19 0.18 0.13 0.20 

20 

G 
VZ-NBRHD VZ-MRF MRSAR LBPBASIC LBPBASIC MRSAR 

0.25 0.25 0.24 0.24 0.20 0.28 

M 
VZ-NBRHD VZ-MRF VZ-MRF LBPBASIC LBPBASIC LBPHF 

0.20 0.21 0.20 0.20 0.15 0.22 

40 
G 

VZ-NBRHD VZ-MRF MRSAR MRSAR MRSAR MRSAR 

0.30 0.30 0.32 0.32 0.28 0.36 

M 
VZ-NBRHD VZ-MRF VZ-MRF LBPBASIC LBPBASIC MRSAR 

0.22 0.23 0.22 0.22 0.18 0.25 

60 

G 
RING & WEDGE RFS MRSAR MRSAR MRSAR MRSAR 

0.35 0.36 0.38 0.38 0.34 0.41 

M 
VZ-NBRHD VZ-MRF MRSAR LBPBASIC MRSAR MRSAR 

0.24 0.25 0.24 0.24 0.20 0.27 
 
This table shows the best performing feature sets for Protocol I applied to 

assessing the ability of 51 Computational Similarity matrices to retrieve 

N textures (from 334) for 4 values of N, and 6 resolutions, r (here “Multi” 

means multi-resolution). Bold digits indicate the best G or M scores. 

      
     (a) Mean G scores                             (b) Mean M scores 

Fig. 5. Means and 97.5% confidence bounds of the G and M
scores calculated over the 51 feature sets, at each resolution and 
for each retrieval size, P ∈ �10, 20, 40, 60�. These figures show the 
superiority of the multi-resolution approach.  
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ble 4 reports the numbers of feature sets that were superi-
or at each of these resolutions compared with the original 
1024×1024. It shows that the performances of at least 46 
(out of the 51) feature sets were boosted by using the mul-
ti-resolution scheme and that this improvement was 
greater than for each of the other four resolutions. 

5.2.3 Comparing Computational Features Using the 
Multi-resolution Scheme 

Given that the multi-resolution approach provided the 
best retrieval results, we decided to investigate the asso-
ciated individual performances of the feature sets. Fig. 6 
shows the G and M scores derived for � = Multi for all 51 
feature sets. This again shows MRSAR [83] to be the high-
est scoring feature set when 60 textures were retrieved, 
but in addition shows that there is considerable variation 
between features. 

5.3 Summary of the Texture Retrieval Evaluation 

From the above it can be concluded that the multi-
resolution, pyramid, approach clearly gives the best re-
sults when employing Protocol I. However, even when 
only considering the best performances obtained using 
the multi-resolution approach, (1) the orders of textures 
in computational and perceptual rankings differ consid-
erably, and (2) no more than one half of retrieved textures 
are relevant. In other words, even the performance of the 
best feature set (MRSAR [83]) using multi-resolution is 
still considerably below what might be expected from 
texture features that often reported to achieve over 90% 
success rates in classification [83], [91], [122], [123] and 
segmentation [61] tasks. 

6 RESULTS OF PROTOCOL II: PAIR-OF-PAIRS 

BASED EVALUATION 

In this section we use Protocol II to assess the capabilities 
of the computational feature sets to estimate two sets of 
pair-of-pairs ground-truth: ���� !  (obtained directly 
from experiment [29]) and ����'(!  (obtained by free-
grouping [54] followed by Isomap [115] analysis). Specifi-
cally, we investigate: (1) whether any of the feature sets 
achieve performances near ground-truth; (2) whether 
there is a universally “best” feature set or feature category 
that works across resolutions; and (3) the optimal resolu-
tion. Finally, we investigate how the feature sets perform 
in combination by using Random Forest regressors [18], 
and additionally investigate the performance of two im-
age quality assessment measures. 

6.1 Best Performance of Feature Sets 

Fig. 7 (a) shows the agreement rates (%) obtained using 
the ���� !  judgements. The highest agreement rate 66.5% 
was obtained using LM [72] at the resolution of 128×128 
pixels, while the lowest agreement rate 46.0% was de-
rived using SRDM [66] at the resolution of 512×512 pixels. 
Fig. 7 (b) shows agreement rates (%) for the ����'(!  
ground-truth. It can be seen that the highest agreement 
rate, 60.7%, was obtained using MRSAR [83] while the 
lowest agreement rate of 46.5% was derived using JSCW 
[99] at the resolution of 64×64 pixels. 

Compared with agreement between the two sets of 
human judgements (red bold dash-dot line), the agree-
ment rates of the 51 feature sets vary over a relatively 
small range. This result indicates that common properties 
may be exploited by these feature sets, e.g. the calculation 
of local region HOS as discussed in Section 2.5. But as the 
performance of each feature set varies significantly within 

 
(a) G scores for 51 feature sets using multi-resolution 

 
(b) M scores for 51 feature sets using multi-resolution 

Fig. 6. Multi-series bar chart of the G and M scores obtained using 
Protocol I with 51 feature sets and P ∈ �10, 20, 40, 60�. Note that 
only the multi-resolution approach (r = Multi) was used here. These 
results show that even at the best resolution, none of the feature 
sets perform as well as might be expected. 

 

(a) Agreement rates (���� !  ground-truth) 

 
(b) Agreement rates (����'(! ground-truth) 

Fig. 7. Agreement rates (%) for the two different types of ground-
truth obtained using 51 feature sets and at six different “resolu-
tions”. The black bold dashed lines show average agreement rates: 
(a) 57.7% and (b) 53.6% (computed across 51 feature sets and six 
resolutions). For reference, the top red bold dash-dot line in each 
graph shows the agreement between the two ground-truth data 
sets (73.9%).  
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this range we cannot reliably determine the “best” feature 
set that reliably works across the six resolutions. 

Moreover, the average agreement rates obtained for 
the two different types of ground-truth across all feature 
sets and resolutions are 57.7% ( ���� ! ) and 53.6% 
(����'(!). This is considerably below the 73.9% agree-
ment rate between the two ground-truth sets. (We attrib-
ute differences between ground-truth to either use of dif-
ferent observer groups or method). 

Thus, the most obvious observation from this analysis 
is that the performance of the feature sets differs consid-
erably from that of human observers.  

6.2 Average Performance across Resolutions 

In order to remove the effect of the resolution, average 
agreement rates and 95% confidence bounds were com-
puted across six resolutions for each feature set (Fig. 8). 
When ���� !  judgements were used (Fig. 8(a)), MRSAR 
[83] outperformed its counterparts with an agreement 
rate of 63.3% while the worst performance, 48.0%, was 
obtained using SVR [90]. Similarly, when ����'(!  judge-
ments were used (see Fig. 8(b)), MRSAR [83] obtained the 
highest agreement rate, 58.4%, and SVR [90] was outper-
formed by its counterparts at an agreement rate of 50.6%. 

However, while these results indicate that MRSAR may 
be the best performing feature, its 95% bound overlaps 
with those of the following feature sets. Hence, again we 
cannot treat it as being reliably the best feature set overall.  

6.3 Effect of Image Resolution 

Fig. 9 shows agreement rates aggregated over the resolu-

tions � ∈ �1024 × 1024, 512 × 512, 256 × 256, 128 × 128,
64 × 64, 9�����  for both sets of ground-truth ( ���� !  
and ����'(! ). In both cases the original resolution �  = 
1024×1024 is outperformed by resolutions that allow 
greater spatial extent to be exploited by Stage I processing.  

To test the significance of this effect, we performed 
two one-way repeated-measures ANOVAs [45]. Mau-
chly’s test [45], [85], indicated that the assumption of 
sphericity was violated (A=(14) = 78.63 and A=(14) = 64.39, 
P = 0.00) when ���� !  and ����'(!  were used as 
ground-truth respectively. Degrees of freedom were cor-
rected using Greenhouse-Geisser estimates of sphericity 
(�  = 0.62 and 0.65 respectively). The results show that 
agreement rates were significantly affected by resolution 
in both cases: F(3.11, 155.71) = 15.97 and F(3.25, 162.66) = 
9.61, P = 0.00. 

The post hoc tests performed using the Bonferroni cor-
rection reveal that the agreement rates derived at � ∈
�256×256, 128×128, 64×64, Multi� were significantly dif-
ferent from those obtained at the original 1024×1024 reso-
lution, P < 0.05. However, there was no significant differ-
ence detected between the four resolutions, P = 1.00. 
These results held for both sets of ground-truth. Table 5 
shows the number of feature sets whose pair-of-pairs 
predictions were improved. 

In conclusion, therefore, as the significance tests for 
both pair-of-pairs ground-truth indicate that we should 
use one of � ∈ �256×256, 128×128, 64×64, Multi}, and as 
multi-resolution proved significantly better in the retriev-
al evaluations (Protocol I), we believe that the multi-

 
(a) ���� !  ground-truth 

 
(b) ����'(! ground-truth 

Fig. 8. Average agreement rates (%) for 51 feature sets (sorted in 
an ascending order) and their 95% confidence bounds, for six reso-
lutions. The black bold dashed lines show the average agreement 
rates 57.7% and 53.6% (calculated over the 51 feature sets and six 
resolutions. For reference, the top red bold dash-dot line in each 
graph shows the agreement between the two ground-truth data 
sets (73.9%).  

         
          (a) ���� !  ground-truth                (b) ����'(! ground-truth 

Fig. 9. The effect of resolution: average agreement rates and 95% 
confidence bounds are shown for each of six resolutions computed 
over the 51 feature sets. The black bold dashed lines indicate over-
all averages: 57.7% (a) and 53.6% (b). 

TABLE 5 
NUMBERS OF FEATURE SETS WHOSE AGREEMENT RATE WAS 

ENHANCED USING THE RESOLUTIONS � ∈ {64×64, 128×128, 
256×256, 512×512, MULTI} COMPARED WITH THAT OB-

TAINED USING THE ORIGINAL RESOLUTION OF 1024×1024, 
TOGETHER WITH TWO SETS OF GROUND-TRUTH. 

Resolution 512×512 256×256 128×128 64×64 Multi 
���� !  31 34 40 38 49 
����'(! 27 37 39 39 43 

 

TABLE 6 
SPEARMAN’S CORRELATION COEFFICIENTS (�, � = 0.05) AND 

P VALUES: (COLUMNS 2-7) BETWEEN THE TWO SETS OF 

CURVES IN FIGS. 7 (A) AND (B); AND (COLUMN 8) BETWEEN 

THE TWO CURVES IN FIGS. 8 (A) AND (B). 

 1024×1024 512×512 256×256 128×128 64×64 Multi Mean 

� 0.58 0.49 0.56 0.85 0.82 0.70 0.61 

P-Val 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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resolution approach should be investigated before others. 

6.4 Comparing Results Obtained: Set 2(a) vs 2(b) 

Table 6 shows the results testing the correlations between 
agreement rates obtained using ground-truth Set 2(a), 
���� !  against those obtained using Set 2(b), ����'(!  
(for six resolutions and the means across these resolu-
tions). It shows that the results obtained for the 51 feature 
sets are closely correlated (P < 0.05) with each other 
across the two ground-truth sets at all resolutions. It also 
indicates that the two sets of human perceptual data are 
consistent with each other. 

6.5 Worst Human and Feature Disagreements 

To give some insight as to the worst errors of the feature 
sets, we show the four pairs-of-pairs that caused the 
“worst” disagreements in Fig. 10. We determined the 
“worst” pairs-of-pairs by selecting ones in which (1) the 
disagreements between at least 30 of the 51 feature sets 
disagreed with the majority human decision; and (2) the 
observers in the free-grouping experiment [54] agreed 
with the majority decision in the pair-of-pairs experiment 
[29]. These were then sorted in descending order of the 
average disagreement between humans and features. (For 
more details, see Appendix E in [36]). 

6.6 Test of Image Quality Assessment Measures 

Additionally, at this stage we tested two classical image 
quality measures: SSIM [126] and MS-SSIM [127] as they 
are designed to assess the similarity of two images ��, ��. 
Their outputs were used directly to calculate ��,� . Note 
that for MS-SSIM we used the default parameters includ-
ing five scales [127]. Table 7 reports the agreement rates 
derived using these two measures. As can be seen, these 
results are inferior to the agreement rate of 73.9% com-
puted between the two pair-of-pairs ground-truth sets. 

6.7 Random Forest Regression 

The use of Protocols I and II showed that, individually, 
none of the feature sets achieved agreement rates similar 

to that obtained between the two human-derived ground-
truth sets. Thus it was decided to investigate the perfor-
mance of the union of these feature sets � . ��< ∪ �=…�?<� 
using Random Forest regression [18]. 

We used three-fold cross-validation to train the regres-
sors to predict similarity values ( �̂�,� given normalised 
feature vectors �′&� and �′&�. Protocol II was used to 
assess the resultant similarity values.  

Feature vectors were pre-processed using two-step 
normalisation [28]. For each texture image (t) each feature 
vector, �;&� ∈ ��<&�, �=&�…	�?<&��,  was �=  normalised. 
These were concatenated into a single feature vector �&� . ��<&� ∪ �=&�… �?<&��  which was further �=  nor-
malised to provide a final feature vector �′&t) for each of 
the 334 Pertex [3] textures.2.  

Training and test data were produced by randomly 
partitioning Pertex [3] into three subsets of A, B and C, 
comprising 111, 111 and 112 textures respectively, and cre-
ating three corresponding submatrices of 8D-ISO ∈�������� [29]. Restricted by the hardware, however, only 
one submatrix (A, B or C) was used in each fold for training 
while the remaining two were used for testing.  

The regressors resulting from each fold were used to 
predict the similarities �̂�,� and �̂),* for all the texture pairs g��, ��, �", ��h  contained in ground-truth ���� ! . Agree-
ment rates were calculated as described in Protocol II using 
this	ground-truth. This was performed using 20, 50, 100 
and 200 trees, and for six resolutions: � ∈ �1024×1024, 
512×512, 256×256, 128×128, 64×64, Multi�. 

Table 8 shows the agreement rates of the Random For-
est regressors [18]. The best mean performance (across the 
three folds) is 67.8±2.4%. This performance is superior to 
the best result, 66.5%, produced by the 51 feature sets, but 
still lower than the agreement rate (73.9%) of the two 
ground-truth sets (���� !  and ����'(!. 

Our conclusion, therefore, is that while employing a 
wide variety of texture features may be advantageous, it 
does not guarantee optimal performance. 

6.8 Summary of the Pair-of-Pairs Evaluation 

This section has reported the results obtained using Pro-
 

2Although the normalisation of feature vectors is not necessary for ran-
dom forests as they do not compute the distance between feature vectors, 
we conducted this operation for the fair comparison with other classifiers 
(see supplemental material). 

TABLE 7 
AGREEMENT RATES (%) OBTAINED USING THE SSIM [126] 

AND MS-SSIM [127] QUALITY MEASURES.  

Measure SSIM MS-SSIM 

Resolution 1024×1024 512×512 256×256 128×128 64×64 Multi ������� 56.6 60.8 60.7 49.7 53.1 40.4 ������� 53.8 57.3 58.1 49.6 53.1 44.1 
 

   

   

   

   
     Greater similarity as judged     Greater similarity as judged by 

             by humans and 4 CNNs           at least 30 conventional feature sets  

Fig. 10. The top four worst pair-of-pairs results in which the majority 
of human observers considered that the left pairs are more similar 
while at least 30 of the 51 conventional feature sets did not. Note 
that only the central quarters of textures are shown. (Also note that 
the CNN results are discussed in Section 8). 

TABLE 8 
AVERAGE AGREEMENT RATES (%) OBTAINED USING RANDOM 

FORESTS WITH 20, 50, 100 OR 200 TREES COMPARED WITH 

THE HUMAN-DERIVED GROUND-TRUTH: ���� ! .  

Num. of Trees 1024×1024 512×512 256×256 128×128 64×64 Multi 

20 66.6±0.8 66.6±1.5 66.9±2.2 66.3±1.6 61.0±1.3 66.3±2.4 

50 67.3±1.6 67.8±2.4 66.8±1.7 66.2±1.6 62.9±1.5 66.8±2.7 

100 65.9±2.0 67.8±2.5 66.5±2.7 66.2±1.5 63.4±1.6 67.7±1.3 

200 66.8±1.9 67.0±1.9 67.7±2.1 65.9±0.8 63.1±2.3 67.2±1.9 
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tocol II with two sets of ground-truth each containing 
1000 pairs-of-pairs judgements. They suggest (1) that the 
two data sets are consistent, (2) that the best results using 
individual feature sets are achieved using a multi-
resolution scheme, and (3) that even employing large 
numbers of feature types using a Random Forest does not 
guarantee optimal similarity estimation. 

7 INVESTIGATING THE IMPORTANCE OF LONG-
RANGE INTERACTIONS TO TEXTURE SIMILARITY 

The analysis presented in Section 2 (Table 1) shows that 
the majority of the 51 feature sets examined do not en-
code long-range aperiodic image structure. In contrast 
humans are thought to be able to utilise long-range inter-
actions [46], [98], [113]. We therefore hypothesise that the 
poor performance of the feature sets reported above, may 
be due to features not using this type of data, even when 
a multi-resolution pyramid is employed. 

Classical receptive-field models are thought to account 
for local perceptual effects; however, they are not suited 
for explaining global effects [113]. Similarly, the relation-
ships between the perception and centre-surround antag-
onism of retinal receptive fields are thought to be limited 
to sensing short-range interactions. However, it is known 
that humans are able to utilise long-range interactions for 
other tasks [46], [98], [113]. Furthermore, such interactions 
have been used as geometric constraints to guide texture 
synthesis [14], [73], [74], [76], [78]. In particular, it has 
been shown that these data are important to perceptual 
texture synthesis quality assessment [73]. Recently, 
Kohler et al. [68] found that the patch-based feature set 
[123] cannot represent the parametric dependence of the 
responses to rotation symmetry. This representation re-
quires a series of higher-order ventral stream areas, V4, 
VO1, and lateral occipital complex (LOC).  

The above implies that humans do use longer-range 
interactions and that this information may be important 
in the judgement of texture similarity. We therefore con-
ducted two studies to investigate this further. Study I was 
designed to understand if humans use long-range interac-
tions in texture similarity judgement (pair-of-pairs com-
parison [29]) tasks. Study II investigated whether or not 
agreement rates, between feature sets and humans, in-
crease when long-range interactions are removed from 
(or at least reduced in) texture images. 

7.1 Block Randomisation 

The obvious approach for both studies is to design stimuli 
(textured images) that contain only short-range interac-
tions, and then to add long-range interactions in a con-
trolled manner. Unfortunately this is difficult, if not im-
possible to do, affecting local characteristics and thereby 
introducing confounding factors. However, we can re-
move, or at least scramble, long-range interactions in ex-
isting textures by partitioning the image into small blocks 
and then randomising their positions. Unfortunately the 
boundary between two randomised blocks introduces 
new short-range interactions which could affect human 
perception. This is likely to be the case even if we use tex-
ture synthesis [40] to make the “boundary area” change 

gradually. Thus, in order to remove (or at least reduce) 
long-range interactions while inhibiting perceived changes 
in short-range interactions, we first overlay the texture 
image with a green grid and then randomise the position 
of blocks as shown in Fig. 11. Note that Field et al. [46] 
used the concept of the “association field” to explain how 
continuity may be encoded by a visual system and 
showed that humans can still recognise the pattern in an 
image even if a grid has been imposed on top of it. Thus, 
we believe that “Block Randomised” images provide a 
way of creating effective experimental stimuli with and 
without long-range interactions.  

7.2 Study I 

This study investigated whether or not reducing long-
range interactions, using Block Randomisation affects 
humans’ pair-of-pairs judgements. We performed the 
study in two sessions: Session I used Block Randomised 
images (Fig. 11(c)) while, as a control, Session II used 
purely Blocked images (Fig. 11(b)). For this we selected 
the 80 pairs-of-pairs texture combinations (out of 1000 
���� !  trials [29]) that had produced the “worst” disa-
greements between computational features and humans. 
(See Section 6.5 for a definition of “worst” in this context). 

7.2.1 Study I: Design 

Stimuli: All original texture images were blocked with a 
green grid. The reasons for using green rather than other 
psychological primary colours are that (1) it is more com-
fortable [7] and hence impairs human perception less; and 
(2) it makes the grid easy to discriminate from the grey 
texture. The thickness of the grid was three pixels and  
the size of the blocks was 19×19 which is the largest spa-
tial extent used by the majority of the 51 feature sets for 
computing higher order statistics (see Table 1).  

Observers: Ten observers with normal or corrected-to-
normal vision were used. None of these observers had 
attended the original pair-of-pairs experiment [29]. All 
observers signed a consent form before they performed 
the experiments. Each observer was given a 5 GBP Ama-
zon voucher after they completed. 

Procedure: Session I (using Block Randomised images) 
was conducted at least one week earlier than the control 
(Session II which used Blocked images) in order to reduce 
learning effects. The 80 trials were shown in random or-
der to each observer in each stage. Throughout all 80 tri-
als, observers were simultaneously presented two texture 
image pairs (left and right) and were then required to 
decide which pair was more similar. 

   
(a) 

Original 
(b) 

Blocked 
(c) 

Block Randomised 

Fig. 11. An original Pertex [3] image (a) shown “Blocked” in (b) and 
then “Block Randomised” in (c). Note that the long-range interac-
tions are easily perceived in (a) and (b) but not (c). 
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Tools: All stimuli were shown on a calibrated NEC 
LCD2090UXi monitor at the resolution of 512×512 pixels. 
The monitor has a resolution of 1600×1200 pixels and pix-
el dimensions are 0.255mm×0.255mm (100 dpi). Thus, the 
size of all stimuli was 130.56mm×130.56mm when shown 
on the monitor. Besides, the monitor was linearly cali-
brated with gamma = 1 by a Gretag-MacBeth Eye-One, 
with a maximum luminance of 120cd/m=. 

Environment: The distance between observers and the 
monitor was approximately 50 cm, providing an angular 
resolution of around 17 cycles per degree. Hence, the 
stimuli subtended an angle of 14.89° in the vertical direc-
tion. The eyes of the observers were located approximate-
ly along the axis of the centre of the screen. Both experi-
ments were conducted in a dark room with opaque, black 
curtains and matte walls. 

  

7.2.2 Study I: Results 

For Session I, Block Randomised, agreement rates, 
wcU(
�), for each observer 
� ∈ �1,2, … 10�, were calculat-
ed using Equation (6) and the relevant ���� !  data [29]. 
The agreement rates wc�(
�)  for Session II (Blocked) 
were calculated in the same manner. The means and 95% 
confidence bounds of wcU and wc� are shown in Fig. 12. 

7.2.3 Study I: Analysis 

The K-S test [69], [110] was used to test the normality of 
the agreement rates: wc�  and wcU . In addition, this test 
was applied to the difference between wc� and wcU as the 
t-test between wc�  and wcU  was dependent. The results 
are reported in Table 9. It indicates that the three sets of 
data follow the normal distribution. 

A dependent t-test [62] (� = 0.05) was performed on 
the two sets of data: wc� and wcU. The result shows a sig-
nificantly higher agreement (with the original pair-of-
pairs experiment [29]) when non-randomised, but 
Blocked images, were used (M = 59.88, SE = 2.17) com-
pared with the use of Block Randomised images (M = 
46.00, SE = 1.48), t(9) = 12.008, P = 0.000, r = 0.970. 

This finding, together with Fig. 12, suggests that reduc-
ing long-range interactions using block randomisation, 
significantly reduces the agreement with the original pair-
of-pairs judgements indicating that long-range interac-
tions are important to texture perception. 

7.3 Study II  

In this study we investigated the effect of removing long-
range interactions from images, on pair-of-pairs predic-
tions obtained using the 51 computational feature sets. 

We used the 80 “worst” pairs-of-pairs, at each of the 
six resolutions. We calculated agreement rates between 
texture features calculated on, and human judgements 
obtained using, Block Randomised images (wcU). These 
were compared against the 80 relevant agreement rates 
obtained using the original non-randomised texture im-
ages (as described in Section 6, i.e. a subset of ���� ! ).  

Spearman’s correlation coefficients [45] computed be-
tween the two sets of agreement rates are: -0.035, 0.134, 
0.160, 0.224, 0.379 and 0.071 (P = 0.806, 0.350, 0.275, 0.114, 
0.006 and 0.620) for the resolutions: 1024×1024, 512×512, 
256×256, 128×128, 64×64, and Multi, respectively.  

This result suggests that the two sets of agreement 
rates do not correlate well. Furthermore, compared with 
the results obtained in Section 6 the Block Randomised 
agreement rates wcU , increased on average from 
31.3%±0.1 to 54.6%±0.1. Thus, for this dataset we con-
clude that humans agree more with computational fea-
tures when they cannot exploit the long-range interac-
tions originally contained in the textures. 

7.4 Summary 

The results of Study I suggest that Block Randomisation 
does affect human perception of long-range interactions, 
and that it is therefore likely that humans exploit long-
range interactions for judging texture similarity. Fur-
thermore, as (1) the majority of the 51 feature sets do not 
exploit long-range aperiodic interactions and (2) Study II  
showed that Block Randomisation increased agreement 
rates between these feature sets and humans, it seems 
probable that this increase has occurred because we have 
removed (or at least reduced) long-range interactions. 
Therefore, we conclude that long-range interactions are 
important to human estimation of texture similarity. 

8 EXAMINATION OF CNN FEATURES 

Motivated by the large spatial extents and large numbers 
of filters that can be exploited by CNNs, we examined the 
performance of features provided by two pre-trained 
models: VGG-M [24] and VGG-VD-19 [108]. For simplici-
ty, only the pair-of-pairs comparison evaluation method 
was used (Protocol II). 

8.1 CNN Spatial Extent and Statistics 

CNNs conveniently divide into two types of processing. 
Stage I can be considered as the convolutional (Conv) 
layers. It has been found that some of these layers enable 
improved predictions of macaque V1 responses to natural 
images to be provided [21] and they have been found to 
be selective to 2nd-order statistics [55]. This is not surpris-
ing as each layer typically performs convolutional filter-
ing, Relu and optional pooling which can be considered 
as a specialisation of the popular LNL [81] or “back-
pocket” [70] model. Hence, Stage I provides a hierarchy 
of localised, and at least 2nd-order statistical processing. 
We use the term “at least” here as positional information 

 
Fig. 12. Study I results: Means and 95% confidence bounds of the 
agreement rates: wc� (left) and wcU (right) compared with the origi-
nal results reported in Section 6. 

TABLE 9 
RESULTS OF THREE KOLMOGOROV-SMIRNOV (K-S) TESTS.  

K-S Test Statistic df Sig. (P) Is Normal? 

wc� 0.135 10 0.200 Yes 

wcU 0.221 10 0.180 Yes 

wc� − wcU  0.247 10 0.086 Yes 

Blocked Block Randomised
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is implicitly encoded in these layers. 
We consider the fully-connected (FC) layers as Stage II. 

These can exploit the explicitly localised 2nd-order out-
puts of the top convolutional layer and its implicit posi-
tional coding, to provide processing of potentially image-
wide 2nd- and higher order statistical features.  

The number of Stage I filters and their maximum spa-
tial extent, for the six different layers of VGG-VD-19 [108] 
that we used are shown in Table 10. This shows that the 
effective spatial extent of the Conv features is much 
greater than those listed in Table 1. 

8.2 Conv and FC Features 

In order to attribute any improvement in results to the 
large spatial extent of the Stage I features or the potential-
ly image-wide higher order statistics of Stage II, we sepa-
rately computed Conv and FC features.  

Conv features were computed as both global and local 
means of each feature map extracted from six convolu-
tional layers in VGG-VD-19. The use of global means was 
motivated by the common structure of conventional tex-
ture features [82], [83] and because they reduce the di-
mensionality of the final feature vectors. Thus the implicit 
positional information was ignored in “global mean Conv 
features” (i.e. only 2nd-order statistics were exploited). In 
contrast, for “local mean Conv features”, means were cal-
culated from each spatial cell in a convolutional layer and 
concatenated to form a single feature vector. Thus the 
local mean Conv feature vectors retain positional infor-
mation whereas global mean Conv feature vectors do not. 

The FC features were extracted from the first fully-
connected layer: FC6. They therefore had potential to 
process both image-wide 2nd-order and HOS. 

Both types of features were �= normalised and the Eu-
clidean distance were used to compute similarity matrices 
using the method described in Section 4.1. Since these FC 
features can only be extracted from 224×224 images, 
256×256 texture images were utilised.  

8.3 Performance of the Conv Features 

For comparison purposes, we tested six convolutional 
layers of VGG-VD-19 (Conv1_1, Conv2_1, Conv3_1, 
Conv4_1, Conv5_1 and Conv5_4) [108]. Agreement rates 
were calculated for both global and local mean features 
using Protocol II and the 1000 ���� !  judgements [29]. 
These agreement rates, together with the receptive field 
size and number of filters for each layer, are reported in 
Table 10. It shows that the local mean Conv features per-
formed slightly better on average than their global mean 
counterparts at the cost of using a longer feature vector. 

However, the key points arising from these results are 

(1) that the power of Conv features to estimate texture 
similarity rises with the size of the receptive field and the 
number of filters, and (2) that the best single “conven-
tional” feature set (LM [72] which achieved 66.5%) and 
the best Random Forest [18] performance (67.8±2.4%, 
mean across three folds) were outperformed by the best 
CNN features (Conv5_4 at 73.0% and 73.2%). 

8.4 FC vs. Conv Features 

Fully-Connected (FC) agreement rates were computed in 
the same manner as for Conv features (i.e. Protocol II us-
ing ���� !  [29] ground-truth) but used two pre-trained 
networks: VGG-M [24] and VGG-VD-19 [108]. They are 
shown in Table 11 together with agreement rates of: the 
global mean Conv features; the best single feature set: 
VAR [91] and best Random Forest [18] result obtained 
using the same 256×256 resolution. 

Significance testing CNN and VAR results using 
McNemar’s test [86] shows that the former significantly 
outperform the latter (� = 0.00). Similarly, testing fully-
connect (FC) VGG-M results against Random Forest on  
the same resolution 256×256 images (Section 6.7) shows 
that the former significantly outperforms the latter  
(� = 0.00). There was no significant difference detected 
between FC and Conv features. 

Thus while the best agreement rate (74.3%) was 
achieved using the FC features from network VGG-M, 
and while this is indicative of promising performances, it 
is not conclusive that fully-connected versions are better 
than their purely convolutional counterparts.  

However, it is clear that these CNN features outper-
form their conventional counterparts either when the lat-
ter are tested individually or together using a Random 
Forest [18]. As an illustration of their capability we exam-
ined their performance for the four pairs-of-pairs shown 
in Fig. 10. Each row of this figure shows pairs-of-pairs for 
which at least 30 of the conventional feature sets disagreed 
with the humans, while in contrast, all four CNN feature 
sets agreed. We attribute the general improved perfor-
mance of the CNN features to (1) the large receptive fields 
of: 139×139 and 252×252 pixels for VGG-M and VGG-VD-
19 respectively and (2) the large number of filters em-
ployed (512).  

9 CONCLUSIONS 

We evaluated the ability of 51 popular texture feature sets, 
computed at multiple resolutions, to estimate two forms 
of perceptual texture similarity. These ground-truth pro-
vide a more stringent assessment of human similarity 
estimation than is often the case as they were derived 
using pair-of-pairs [29] and free-grouping [54] experi-

TABLE 10 
THE RECEPTIVE FIELD SIZE AND NUMBER OF FILTERS OF SIX 

CONVOLUTIONAL LAYERS OF VGG-VD-19 [108], AND THE 

AGREEMENT RATES (%) OBTAINED USING THE LOCAL MEAN 

AND GLOBAL MEAN FEATURES THAT ARE EXTRACTED FROM 

THESE LAYERS WHEN COMPARED AGAINST ���� ! .  

LAYER CONV1_1 CONV2_1 CONV3_1 CONV4_1 CONV5_1 CONV5_4 
RECEPTIVE FIELD  3×3 10×10 24×24 68×68 156×156 252×252 

NUM. OF FILTERS 64 128 256 512 512 512 

GLOBAL MEANS 51.6 59.2 61.0 69.6 71.8 73.0 

LOCAL MEANS 51.5 63.8 62.0 69.5 72.3 73.2 

 

TABLE 11 
AGREEMENT RATES (%) OBTAINED USING THE CNN [24], 

[108] FEATURES, VAR [91] AND, THE BEST RANDOM FOREST 

REGRESSOR, COMPARED WITH ���� !  JUDGEMENTS. 

FC Conv (Global Means) VAR [91] RF 

VGG-M VGG-VD-19 VGG-M VGG-VD-19 256×256 256×256 

74.3 72.8 70.9 73.0 63.2 67.7±2.1 

Results for the “FC6” features (derived from the FC6 fully-connected layer) 

and the global mean “Conv” features (derived from the last convolutional 

layer) for both of the pre-trained CNNs (VGG-M and VGG-VD-19). 
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ments. A multi-resolution approach was shown to pro-
vide the best overall performance, however, all feature 
sets were shown to perform significantly less well than 
the agreement rate obtained between the two types of 
ground-truth (73.9%). When the 51 feature sets were 
combined using a Random Forest [18] approach, results 
improved to a best average of 67.8%, however this was 
still significantly below the agreement rate of the two 
human-derived ground-truth sets. 

As analysis of these feature sets showed that few ex-
ploit long-range HOS, we investigated the effect of re-
moving long-range interactions from textures. The results 
showed that the computational features agreed signifi-
cantly better with human observers when long-range in-
teractions were removed. We therefore conclude: 
(1) that long-range interactions are important for human 

judgement of texture similarity (this is reinforced by 
Sharan et al. [107] who showed that it was difficult for 
humans to identify material categories when shown 
globally scrambled but locally preserved images) and  

(2) that the computational features do not exploit these 
data well. 
In contrast to most conventional features, Convolu-

tional Neural Networks (CNNs) provide the capability to 
learn large numbers of filters from large datasets and 
compute image-wide statistics of almost arbitrary order. 
Given the size of our two ground-truth sets we elected to 
investigate the performances of two pre-trained CNNs [24], 
[108]. Such networks provide two types of features: Conv 
features derived from the convolutional layers (which can 
provide estimates of 2nd-order statistics over relatively 
large spatial extent) and FC features derived from the first 
fully-connected layer (which provide potentially image-
wide 2nd- and higher order statistics). Our results showed 
that both the Conv and the FC features provided superior 
performance to the conventional features whether these 
conventional features were used individually or in com-
bination in the Random Forest [18]. This is a complemen-
tary result to that of Zhang et al. [133] which showed that 
CNN-based approaches improved estimation of human 
perception of image patch distortion. 

In summary our findings are as follows. 
(1) Using fine-grained perceptual texture similarity 

ground-truth we showed that a multi-resolution ap-
proach provides significantly higher retrieval scores, 
but that no overall “best” feature set could be dis-
cerned. 

(2) Using 51 feature sets in a Random Forest we showed 
that this approach significantly improved results over 
using individual feature sets, suggesting that variety 
of feature is important. 

(3) As others have found [46], [73], [98], [113] we estab-
lished, using Block Randomisation, that long-range in-
teractions are important to human perception of tex-
ture similarity, but that many of the conventional 
computational features tested do not exploit long-
range HOS. 

(4) We showed that using CNN features derived from 
two pre-trained networks provided significantly better 
results than either (1) or (2). This is most likely due to 

the large number of pre-trained filters employed and 
the potentially image-wide spatial support of features 
derived from the top layers. 
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