22 research outputs found

    Node placement in Wireless Mesh Networks: a comparison study of WMN-SA and WMN-PSO simulation systems

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Simulated Annealing (SA) for solving node placement problem in wireless mesh networks, called WMN-SA. Also, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO. In this paper, we compare two systems considering calculation time. From the simulation results, when the area size is 32 × 32 and 64 × 64, WMN-SA is better than WMN-PSO. When the area size is 128 × 128, WMN-SA performs better than WMN-PSO. However, WMN-SA needs more calculation time than WMN-PSO.Peer ReviewedPostprint (author's final draft

    Investigation of fitness function weight-coefficients for optimization in WMN-PSO simulation system

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Particle Swam Optimization for solving node placement problem in wireless mesh networks, called WMN-PSO. In this paper, we use Size of Giant Component (SGC) and Number of Covered Mesh Clients (NCMC) as metrics for optimization. Then, we analyze effects of weight-coefficients for SGC and NCMC. From the simulation results, we found that the best values of the weight-coefficients for SGC and NCMC are 0.7 and 0.3, respectively.Peer ReviewedPostprint (author's final draft

    Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented the Linearly Decreasing Vmax Method (LDVM) for our WMN-PSO simulation system. In this paper, we implement a new replacement method for mesh routers called Rational Decrement of Vmax Method (RDVM). We use Size of Giant Component (SGC) and Number of Covered Mesh Clients (NCMC) as metrics for optimization. From the simulation results, we found that RDVM converges faster to best solution than LDVM.Peer ReviewedPostprint (author's final draft

    A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions

    Get PDF
    In this paper, we compare the performance of Distributed Coordination Function (DCF) and Enhanced Distributed Channel Access (EDCA) for normal and uniform distributions of mesh clients considering two Wireless Mesh Network (WMN) architectures. As evaluation metrics, we consider throughput, delay, jitter and fairness index metrics. For simulations, we used WMN-GA simulation system, ns-3 and Optimized Link State Routing. The simulation results show that for normal distribution, the throughput of I/B WMN is higher than Hybrid WMN architecture. For uniform distribution, in case of I/B WMN, the throughput of EDCA is a little bit higher than Hybrid WMN. However, for Hybrid WMN, the throughput of DCF is higher than EDCA. For normal distribution, the delay and jitter of Hybrid WMN are lower compared with I/B WMN. For uniform distribution, the delay and jitter of both architectures are almost the same. However, in the case of DCF for 20 flows, the delay and jitter of I/B WMN are lower compared with Hybrid WMN. For I/B architecture, in case of normal distribution the fairness index of DCF is higher than EDCA. However, for Hybrid WMN, the fairness index of EDCA is higher than DCF. For uniform distribution, the fairness index of few flows is higher than others for both WMN architectures.Peer ReviewedPostprint (author's final draft

    Optimizing infrastructure placement in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) are a promising flexible and low cost technology to efficiently deliver broadband services to communities. In a WMN, a mesh router is deployed at each house, which acts both as a local access point and a relay to other nearby houses. Since mesh routers typically consist of off-the-shelf equipment, the major cost of the network is in the placement and management of Internet Transit Access Points (ITAP) which act as the connection to the internet. In designing a WMN, we therefore aimed to minimize the number of ITAPs required whilst maximizing the traffic that could be served to each house. We investigated heuristic and meta-heuristic approaches with an efficient combination of move operators to solve these placement problems by using single and multi-objective formulations. Many real-world optimisation problems involve dealing with multiple and sometimes conflicting objectives. A multi-objective approach to optimize WMN infrastructure placement design with three conflicting objectives is presented: it aims to minimize the number of ITAPs, maximize the fairness of bandwidth allocation and maximize the coverage to mesh clients. We discuss how such an approach could allow more effective ITAP deployment, enabling a greater number of consumers to obtain internet services. Two approaches are compared during our investigation of multi-objective optimization, namely the weighted sum approach and the use of an evolutionary algorithm. In this thesis we investigate a multi-objective optimization algorithm to solve the WMN infrastructure placement problem. The move operators demonstrate their efficiency when compared to simple Hill Climbing (HC) and Simulated Annealing (SA) for the single objective method

    Solving mesh router nodes placement problem in Wireless Mesh Networks by Tabu Search algorithm

    Get PDF
    Wireless Mesh Networks (WMNs) are an important networking paradigm that offer cost effective Internet connectivity. The performance and operability of WMNs depend, among other factors, on the placement of network nodes in the area. Among the most important objectives in designing a WMN is the formation of a mesh backbone to achieve high user coverage. Given a number of router nodes to deploy, a deployment area and positions of client nodes in the area, an optimization problem can be formulated aiming to find the placement of router nodes so as to maximize network connectivity and user coverage. This optimization problem belongs to facility location problems, which are computationally hard to solve to optimality. In this paper we present the implementation and evaluation of Tabu Search (TS) for the problem of mesh router node placement in WMNs. The experimental evaluation showed the efficiency of TS in solving a benchmark of instances.Peer ReviewedPostprint (author's final draft

    Improvement at Network Planning using Heuristic Algorithm to Minimize Cost of Distance between Nodes in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMN) consists of wireless stations that are connected with each other in a semi-static configuration. Depending on the configuration of a WMN, different paths between nodes offer different levels of efficiency. One areas of research with regard to WMN is cost minimization. A Modified Binary Particle Swarm Optimization (MBPSO) approach was used to optimize cost. However, minimized cost does not guarantee network performance. This paper thus, modified the minimization function to take into consideration the distance between the different nodes so as to enable better performance while maintaining cost balance. The results were positive with the PDR showing an approximate increase of 17.83% whereas the E2E delay saw an approximate decrease of 8.33%
    corecore