2 research outputs found

    Analyzing and Learning Movement Through Human-Computer Co-Creative Improvisation and Data Visualization

    Get PDF
    Recent years have seen an incredible rise in the availability of household motion and video capture technologies, ranging from the humble webcam to the relatively sophisticated Kinect sensor. Naturally, this precipitated a rise in both the quantity and quality of motion capture data available on the internet. The wealth of data on the internet has caused a new interest in the field of motion data classification, the specific task of having a model classify and sort different clips of human motion. However, there is comparatively little work in the field of motion data clustering, which is an unsupervised field that may be more useful in the future as it allows for agents to recognize “categories” of motions without the need for user input or classified data. Systems that can cluster motion data focus more on “what type of motion data is this, and what is it similar to” rather than which motion is this. The LuminAI project, as described in this paper, is an example of a practical use for motion data clustering that allows the system to respond to user dance moves with a similar but different gesture. To analyze the efficacy and properties of this motion data clustering pipeline, we also propose a novel data visualization tool and the design considerations involved in its development.Undergraduat

    Human activity recognition with accelerometry: novel time and frequency features

    Get PDF
    Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications
    corecore