35 research outputs found

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Variable Rate Transmission Over Noisy Channels

    Get PDF
    Hybrid automatic repeat request transmission (hybrid ARQ) schemes aim to provide system reliability for transmissions over noisy channels while still maintaining a reasonably high throughput efficiency by combining retransmissions of automatic repeat requests with forward error correction (FEC) coding methods. In type-II hybrid ARQ schemes, the additional parity information required by channel codes to achieve forward error correction is provided only when errors have been detected. Hence, the available bits are partitioned into segments, some of which are sent to the receiver immediately, others are held back and only transmitted upon the detection of errors. This scheme raises two questions. Firstly, how should the available bits be ordered for optimal partitioning into consecutive segments? Secondly, how large should the individual segments be? This thesis aims to provide an answer to both of these questions for the transmission of convolutional and Turbo Codes over additive white Gaussian noise (AWGN), inter-symbol interference (ISI) and Rayleigh channels. Firstly, the ordering of bits is investigated by simulating the transmission of packets split into segments with a size of 1 bit and finding the critical number of bits, i.e. the number of bits where the output of the decoder is error-free. This approach provides a maximum, practical performance limit over a range of signal-to-noise levels. With these practical performance limits, the attention is turned to the size of the individual segments, since packets of 1 bit cause an intolerable overhead and delay. An adaptive, hybrid ARQ system is investigated, in which the transmitter uses the number of bits sent to the receiver and the receiver decoding results to adjust the size of the first, initial, packet and subsequent segments to the conditions of a stationary channel

    Resource Allocation for Interference Management in Wireless Networks

    Get PDF
    Interference in wireless networks is a major problem that impacts system performance quite substantially. Combined with the fact that the spectrum is limited and scarce, the performance and reliability of wireless systems significantly deteriorates and, hence, communication sessions are put at the risk of failure. In an attempt to make transmissions resilient to interference and, accordingly, design robust wireless systems, a diverse set of interference mitigation techniques are investigated in this dissertation. Depending on the rationale motivating the interfering node, interference can be divided into two categories, communication and jamming. For communication interference such as the interference created by legacy users(e.g., primary user transmitters in a cognitive radio network) at non-legacy or unlicensed users(e.g.,secondary user receivers), two mitigation techniques are presented in this dissertation. One exploits permutation trellis codes combined with M-ary frequency shift keying in order to make SU transmissions resilient to PUs’ interference, while the other utilizes frequency allocation as a mitigation technique against SU interference using Matching theory. For jamming interference, two mitigation techniques are also investigated here. One technique exploits time and structures a jammer mitigation framework through an automatic repeat request protocol. The other one utilizes power and, following a game-theoretic framework, employs a defense strategy against jamming based on a strategic power allocation. Superior performance of all of the proposed mitigation techniques is shown via numerical results

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Studies on the performance of some ARQ schemes

    Get PDF
    This thesis consists of a summary part and seven published articles. All the articles are about performance analysis of ARQ schemes. Two of the publications study the performance of an ARQ scheme with packet combining, called the EARQ (extended ARQ) scheme. In the packet combining algorithm, the bitwise modulo-2 sum of two erroneous copies of a packet is computed to locate the errors. The packet combining algorithm involves a straightforward search procedure, the computational complexity of which easily becomes prohibitive. As a solution to this, a modified scheme is proposed, where the search procedure is attempted only when there are at most Nmax 1s at the output of the modulo-2 adder. In one article, time diversity was utilized, whereas space diversity reception was considered in the other work. The remaining five publications study the throughput performance of adaptive selective-repeat and go-back-N ARQ schemes, where the switching between the transmission modes is done based on the simple algorithm proposed by Y.-D. Yao in 1995. In this method, α contiguous NACKs or β contiguous ACKs indicate changes from 'good' to 'bad' or from 'bad' to 'good' channel conditions, respectively. The numbers α and β are the two design parameters of the adaptive scheme. The time-varying forward channel is modelled by two-state Markov chains, known as Gilbert-Elliott channel models. The states are characterized by bit error rates, packet error rates or fading parameters. The performance of the adaptive ARQ scheme is measured by its average throughput over all states of the system model, which is a Markov chain. A useful upper bound for the achievable average throughput is provided by the performance of an (assumed) ideal adaptive scheme which is always in the 'correct' transmission mode. The optimization of α and β is done based on minimizing the mean-square distance between the actual and the ideal performance curves. Methods of optimizing the packet size(s) used in the adaptive selective-repeat scheme are also proposed.reviewe

    Adaptive multiple symbol decision feedback for non-coherent detection.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.Non-coherent detection is a simple form of signal detection and demodulation for digital communications. The main drawback of this detection method is the performance penalty incurred, since the channel state information is not known at the receiver. Multiple symbol detection (MSD) is a technique employed to close the gap between coherent and non-coherent detection schemes. Differentially encoded JW-ary phase shift keying (DM-PSK) is the classic modulation technique that is favourable for non-coherent detection. The main drawback for standard differential detection (SDD) has been the error floor incurred for frequency flat fading channels. Recently a decision feedback differential detection (DFDD) scheme, which uses the concept of MSD was proposed and offered significant performance gain over the SDD in the mobile flat fading channel, almost eliminating the error floor. This dissertation investigates multiple symbol decision feedback detection schemes, and proposes alternate adaptive strategies for non-coherent detection. An adaptive algorithm utilizing the numerically stable QR decomposition that does not require training symbols is proposed, named QR-DFDD. The QR-DFDD is modified to use a simpler QR decomposition method which incorporates sliding windows: QRSW-DFDD. This structure offers good tracking performance in flat fading conditions, while achieving near optimal DFDD performance. A bit interleaved coded decision feedback differential demodulation (DFDM) scheme, which takes advantage of the decision feedback concept and iterative decoding, was introduced by Lampe in 2001. This low complexity iterative demodulator relied on accurate channel statistics for optimal performance. In this dissertation an alternate adaptive DFDM is introduced using the recursive least squares (RLS) algorithm. The alternate iterative decoding procedure makes use of the convergence properties of the RLS algorithm that is more stable and achieves superior performance compared to the DFDM

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    Towards reliable communication in LTE-A connected heterogeneous machine to machine network

    Get PDF
    Machine to machine (M2M) communication is an emerging technology that enables heterogeneous devices to communicate with each other without human intervention and thus forming so-called Internet of Things (IoTs). Wireless cellular networks (WCNs) play a significant role in the successful deployment of M2M communication. Specially the ongoing massive deployment of long term evolution advanced (LTE-A) makes it possible to establish machine type communication (MTC) in most urban and remote areas, and by using LTE-A backhaul network, a seamless network communication is being established between MTC-devices and-applications. However, the extensive network coverage does not ensure a successful implementation of M2M communication in the LTE-A, and therefore there are still some challenges. Energy efficient reliable transmission is perhaps the most compelling demand for various M2M applications. Among the factors affecting reliability of M2M communication are the high endto-end delay and high bit error rate. The objective of the thesis is to provide reliable M2M communication in LTE-A network. In this aim, to alleviate the signalling congestion on air interface and efficient data aggregation we consider a cluster based architecture where the MTC devices are grouped into number of clusters and traffics are forwarded through some special nodes called cluster heads (CHs) to the base station (BS) using single or multi-hop transmissions. In many deployment scenarios, some machines are allowed to move and change their location in the deployment area with very low mobility. In practice, the performance of data transmission often degrades with the increase of distance between neighboring CHs. CH needs to be reselected in such cases. However, frequent re-selection of CHs results in counter effect on routing and reconfiguration of resource allocation associated with CH-dependent protocols. In addition, the link quality between a CH-CH and CH-BS are very often affected by various dynamic environmental factors such as heat and humidity, obstacles and RF interferences. Since CH aggregates the traffic from all cluster members, failure of the CH means that the full cluster will fail. Many solutions have been proposed to combat with error prone wireless channel such as automatic repeat request (ARQ) and multipath routing. Though the above mentioned techniques improve the communication reliability but intervene the communication efficiency. In the former scheme, the transmitter retransmits the whole packet even though the part of the packet has been received correctly and in the later one, the receiver may receive the same information from multiple paths; thus both techniques are bandwidth and energy inefficient. In addition, with retransmission, overall end to end delay may exceed the maximum allowable delay budget. Based on the aforementioned observations, we identify CH-to-CH channel is one of the bottlenecks to provide reliable communication in cluster based multihop M2M network and present a full solution to support fountain coded cooperative communications. Our solution covers many aspects from relay selection to cooperative formation to meet the user’s QoS requirements. In the first part of the thesis, we first design a rateless-coded-incremental-relay selection (RCIRS) algorithm based on greedy techniques to guarantee the required data rate with a minimum cost. After that, we develop fountain coded cooperative communication protocols to facilitate the data transmission between two neighbor CHs. In the second part, we propose joint network and fountain coding schemes for reliable communication. Through coupling channel coding and network coding simultaneously in the physical layer, joint network and fountain coding schemes efficiently exploit the redundancy of both codes and effectively combat the detrimental effect of fading conditions in wireless channels. In the proposed scheme, after correctly decoding the information from different sources, a relay node applies network and fountain coding on the received signals and then transmits to the destination in a single transmission. Therefore, the proposed schemes exploit the diversity and coding gain to improve the system performance. In the third part, we focus on the reliable uplink transmission between CHs and BS where CHs transmit to BS directly or with the help of the LTE-A relay nodes (RN). We investigate both type-I and type-II enhanced LTE-A networks and propose a set of joint network and fountain coding schemes to enhance the link robustness. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature
    corecore