8 research outputs found

    Digital Elevation Models: Terminology and Definitions

    Get PDF
    Digital elevation models (DEMs) provide fundamental depictions of the three-dimensional shape of the Earth’s surface and are useful to a wide range of disciplines. Ideally, DEMs record the interface between the atmosphere and the lithosphere using a discrete two-dimensional grid, with complexities introduced by the intervening hydrosphere, cryosphere, biosphere, and anthroposphere. The treatment of DEM surfaces, affected by these intervening spheres, depends on their intended use, and the characteristics of the sensors that were used to create them. DEM is a general term, and more specific terms such as digital surface model (DSM) or digital terrain model (DTM) record the treatment of the intermediate surfaces. Several global DEMs generated with optical (visible and near-infrared) sensors and synthetic aperture radar (SAR), as well as single/multi-beam sonars and products of satellite altimetry, share the common characteristic of a georectified, gridded storage structure. Nevertheless, not all DEMs share the same vertical datum, not all use the same convention for the area on the ground represented by each pixel in the DEM, and some of them have variable data spacings depending on the latitude. This paper highlights the importance of knowing, understanding and reflecting on the sensor and DEM characteristics and consolidates terminology and definitions of key concepts to facilitate a common understanding among the growing community of DEM users, who do not necessarily share the same backgroun

    Digital Elevation Models: Terminology and Definitions

    Get PDF
    Digital elevation models (DEMs) provide fundamental depictions of the three-dimensional shape of the Earth’s surface and are useful to a wide range of disciplines. Ideally, DEMs record the interface between the atmosphere and the lithosphere using a discrete two-dimensional grid, with complexities introduced by the intervening hydrosphere, cryosphere, biosphere, and anthroposphere. The treatment of DEM surfaces, affected by these intervening spheres, depends on their intended use, and the characteristics of the sensors that were used to create them. DEM is a general term, and more specific terms such as digital surface model (DSM) or digital terrain model (DTM) record the treatment of the intermediate surfaces. Several global DEMs generated with optical (visible and near-infrared) sensors and synthetic aperture radar (SAR), as well as single/multi-beam sonars and products of satellite altimetry, share the common characteristic of a georectified, gridded storage structure. Nevertheless, not all DEMs share the same vertical datum, not all use the same convention for the area on the ground represented by each pixel in the DEM, and some of them have variable data spacings depending on the latitude. This paper highlights the importance of knowing, understanding and reflecting on the sensor and DEM characteristics and consolidates terminology and definitions of key concepts to facilitate a common understanding among the growing community of DEM users, who do not necessarily share the same background

    From Accessibility and Exposure to Engagement: A Multi-scalar Approach to Measuring Environmental Determinants of Children’s Health Using Geographic Information Systems

    Get PDF
    A growing body of research suggests that increasing the accessibility to health-related environmental features and increasing exposure to and engagement in outdoor environments leads to positive benefits for the overall health and well-being of children. Additionally, research over the last twenty-five years has documented a decline in the time children spend outdoors. Outdoor activity in children is associated with increased levels of physical fitness, and cognitive well-being. Despite acknowledging this connection, problems occur for researchers when attempting to identify the child’s location and to measure whether a child has made use of an accessible health-related facility, or where, when and for how long a child spends time outdoors. The purpose of this thesis is to measure children’s accessibility to, exposure to, and engagement with health-promoting features of their environment. The research on the environment-health link aims to meet two objectives: 1) to quantify the magnitude of positional discrepancies and accessibility misclassification that result from using several commonly-used address proxies; and 2) to examine how individual-level, household-level, and neighbourhood-level factors are associated with the quantity of time children spend outdoors. This will be achieved by employing the use of GPS tracking to objectively quantify the time spent outdoors using a novel machine learning algorithm, and by applying a hexagonal grid to extract built environment measures. This study aims to identify the impact of positional discrepancies when measuring accessibility by examining misclassification of address proxies to several health-related facilities throughout the City of London and Middlesex County, Ontario, Canada. Positional errors are quantified by multiple neighbourhood types. Findings indicate that the shorter the threshold distance used to measure accessibility between subject population and health-related facility, the higher the proportion of misclassified addresses. Using address proxies based on large aggregated units, such as centroids of census tracts or dissemination areas, can result in vast positional discrepancies, and therefore should be avoided in spatial epidemiologic research. To reduce the misclassification, and positional errors, the use of individual portable passive GPS receivers were employed to objectively track the spatial patterns, and quantify the time spent outdoors of children (aged 7 to 13 years) in London, Ontario across multiple neighbourhood types. On the whole, children spent most of their outdoor time during school hours (recess time) and the non-school time outdoors in areas immediately surrounding their home. From these findings, policymakers, educators, and parents can support children’s health by making greater efforts to promote outdoor activities for improved health and quality of life in children. This thesis aims to advance our understanding of the environment and health-link and suggests practical steps for more well-informed decision making by combining novel classification and mapping techniques

    Vers un système de projection icosaédral hiérarchique global sans distorsions pour cartographie Web

    Get PDF
    Les systèmes de projection cartographique adaptés aux services de cartographie web, suscitent encore de nombreuses questions de recherche. La majorité des services de cartographie Web (ex. Google Maps, Bing Maps) utilise la Projection Web Mercator(WMP), mais cette dernière présente de grandes distorsions systématiques notamment dans les régions nordiques. Il nous est alors paru nécessaire de développer une autre méthode permettant de projeter la surface du globe avec un minimum de distorsion. Notre approche s’inspire de la projection myriahedrale qui suppose que chaque face du myriahedron est suffisamment petite de telle sorte que les distorsions soient négligeables. La méthode proposée consiste à explorer une nouvelle approche de tessellation de la surface du globe et qui permet de projeter la surface du globe sur les faces de la tessellation et à plusieurs niveaux de détails. Cela permet de compenser la faiblesse des méthodes de tessellations existantes utilisées dans la cartographie Web. Cette tessellation utilise un icosaèdre comme modèle géométrique de base avec une densité de partitionnement des faces de l’icosaèdre entre les niveaux de récursivité égale à 4.La méthodologie proposée consiste en quatre étapes successives: a) la construction d'une structure hiérarchique qui résulte de la subdivision récursive des faces de l'icosaèdre ; b) la définition d’un système de projection approprié à la tessellation icosaédrique; c) la projection des données géospatiales de la sphère terrestre sur chaque face de l’icosaèdre; d) le dépliage de la tessellation icosaédrique résultante sur un plan en utilisant des algorithmes de calcul du plus court chemin afin de maintenir le voisinage autour du point d’intérêt. Nous présenterons les étapes de développement et d’implémentation du système proposé et les résultats obtenus dans le cadre de ce projet de recherche. L’étude comparative avec d’autres systèmes de projection montre que notre approche minimise mieux les déformations par tout sur le globe et surtout dans les régions nordiques.Map projection systems adapted to web mapping services still raise many research questions. The majority of web mapping services (ex. Google Maps, Bing Maps) use Web Mercator Projection (WMP) which introduces large systematic distorsionsin spatial data especially in polar rigions. Therefore, it is necessary to develop an alternative method for projecting these regions with minimal distortions. Our approach is inspired of myriahedral projections which assume that each face of a myriahedron is small enough so that the distortions are negligible. Here, in this research work we propose a new approach for the tessellation of the surface of the globe and the projectionof the spatial information from the glob to the faces of the tessellation at differentlevels of details. This compensates for the weakness of the methods used for tessellation in the existing web mapping systems. The proposed tessellation is created based on an icosahedron with a partitioning density of the faces equal to 4. The proposed methodology consists of four stages: a) constructing of a hierarchical structure resulting the recursive subdivision of the faces of the icosahedron, while maintaining topological relationships between the triangles in each level of detail; b) defining of an appropriate projection system to the icosahedral tessellation; c) projecting of geospatial data of the terrestrial sphere on each face of the icosahedron; d) unfolding the resulting icosahedral tessellation on a plane around a point of interest. Here we present different stages of development and implementation of the proposed system and the results obtained in the framework of this research project. The comparative study with other projection systems shows that our approach allows to better minimize different distortions every where on the globe and specially in the polar rigions

    Growth and Guidance: A Study of Neuron Morphology and How it is Modified by Fractal and Euclidean Electrodes In Vitro.

    Get PDF
    For well over a century, neuroscientists have been studying the inherent ties between neuronal morphology and functionality. Santiago Ramón y Cajal, in his work that ultimately awarded him a Nobel Prize in 1906, established that neurons function as the fundamental unit of the nervous system. Ramón y Cajal himself recognized the relationship between neuronal form and function by proposing the wiring economy principle, which states that the nervous system’s complex network of neurons is efficiently wired in a way that minimizes wiring length. The research within this dissertation works towards the goal of optimizing the design of the electrode-neuron interface of medical implants by building upon Ramón y Cajal’s foundational ideas and integrating them with the techniques of fractal analysis.The dissertation begins by addressing the question of how electrode geometry impacts the morphology of the networks of neurons and glia interfacing with the electrode. This was done by interacting dissociated mouse retinal cell cultures in vitro with vertically aligned carbon nanotube (VACNT) electrodes grown on a silicon dioxide (SiO2) substrate and patterned into Euclidean and fractal geometries. The VACNT-SiO2 material system was shown to perform exceptionally well at guiding neurons onto the VACNTs and glia onto the surrounding SiO2. Furthermore, the electrode geometries that performed the best at supporting a healthy network of neurons and glia were those that balanced providing a large VACNT electrode area with maintaining connectedness in the surrounding SiO2 surface and allowing it to interpenetrate the VACNT electrode. Following these in vitro experiments, three-dimensional models of pyramidal neurons from the CA1 region of the rat hippocampus were reconstructed using confocal microscopy. The fractal properties of the neurons and how these relate to their functionality were then analyzed. It was then demonstrated that the natural, fractal behavior of the neurons, though limited in its scaling range, was sufficient to provide the neurons with an optimal balance between connectivity and building and operating costs. The dissertation concludes by reviewing the results of these studies, providing directions for future work, and discussing the implications regarding electrode design. This dissertation includes previously published co-authored material

    On the application of theoretical multi-dimensional coherence spectroscopy techniques to discrete quantum systems

    Get PDF
    Multi-dimensional coherence spectroscopy (MDCS) is a powerful technique that allows insight about the energy dynamics of quantum systems, on the timescale in which they occur. This work focuses on the application of this technique to predict quantum noise characteristics of some known systems. It begins with an explanation of what noise is, and follows with a derivation of the equations used throughout the rest of the work. Chapter 3 explores the possibility of determining the spatial correlations of noise, via the use of the Bloch-Redfield equation - which quantifies the degree of correlation as a continuous variable - on a photosynthetic-inspired model. Not only is there a possibility to determine the degree of spatial correlation in the noise, it shows that the secular approximation – where small perturbations on the coherent dynamics of the system are discarded – is not valid when considering multi-dimensional (MD) spectra. The techniques are applied to the nitrogen-vacancy centre in chapter 4, with a focus on the temperature-dependent noise processes associated with the system. A prediction is made that this temperature-dependent noise – and the associated averaging processes – should be visible when conducting MDCS on the nitrogen-vacancy centre. Utilising noise, instead of suppressing it, is investigated in chapter 5, via the use of the decoherence probe system. In this set up, the noise experienced by a probe is measured, and a map is created. This chapter shows that not only does MDCS remove ambiguity in measuring a single probe, but when moving to a dual-probe system, it is possible to estimate the dipole orientation of quantum systems in the environment
    corecore