19 research outputs found

    A comparison of forensic evidence recovery techniques for a windows mobile smart phone

    Get PDF
    <p>Acquisition, decoding and presentation of information from mobile devices is complex and challenging. Device memory is usually integrated into the device, making isolation prior to recovery difficult. In addition, manufacturers have adopted a variety of file systems and formats complicating decoding and presentation.</p> <p>A variety of tools and methods have been developed (both commercially and in the open source community) to assist mobile forensics investigators. However, it is unclear to what extent these tools can present a complete view of the information held on a mobile device, or the extent the results produced by different tools are consistent.</p> <p>This paper investigates what information held on a Windows Mobile smart phone can be recovered using several different approaches to acquisition and decoding. The paper demonstrates that no one technique recovers all information of potential forensic interest from a Windows Mobile device; and that in some cases the information recovered is conflicting.</p&gt

    Mobile device forensics: a snapshot

    Get PDF
    In the increasingly dynamic environment of mobile forensics, this paper provides an overview of the capabilities of three popular mobile forensic tools on three mobile phones based on Apple’s iOS, Google’s Android and RIM’s BlackBerry operating systems. The paper identifies where each specific tool is best applied and also describes the limitations of each in accessing contacts, call history, message data (SMS, MMS and emails), media files and other data. New releases of forensic tools and mobile operating systems may change the way the data are acquired and preserved in the future. It is therefore hoped that future research will continue to provide the digital forensics community with the most up-to-date overview of mobile forensics capabilities

    Using open source forensic carving tools on split dd and EWF files.

    Get PDF
    This study tests a number of open source forensic carving tools to determine their viability when run across split raw forensic images (dd) and Expert Witness Compression Format (EWF) images. This is done by carving files from a raw dd file to determine the baseline before running each tool over the different image types and analysing the results. A framework is then written in python to allow Scalpel to be run across any split dd image, whilst simultaneously concatenating the carved files and sorting by file type. This study tests the framework on a number of scenarios and concludes that this is an effective method of carving files using Scalpel over split dd images

    Using smartphones as a proxy for forensic evidence contained in cloud storage services

    Get PDF
    Cloud storage services such as Dropbox, Box and SugarSync have been embraced by both individuals and organizations. This creates an environment that is potentially conducive to security breaches and malicious activities. The investigation of these cloud environments presents new challenges for the digital forensics community. It is anticipated that smartphone devices will retain data from these storage services. Hence, this research presents a preliminary investigation into the residual artifacts created on an iOS and Android device that has accessed a cloud storage service. The contribution of this paper is twofold. First, it provides an initial assessment on the extent to which cloud storage data is stored on these client-side devices. This view acts as a proxy for data stored in the cloud. Secondly, it provides documentation on the artifacts that could be useful in a digital forensics investigation of cloud services

    Improving forensic software tool performance in detecting fraud for financial statements

    Get PDF
    The use of computer forensics is important for forensic accounting practice because most accounting information is in digital forms today. The access to evidence is increasingly more complex and in far greater volumes than in previous decades. The effective and efficient means of detecting fraud are required for the public to maintain their confidence in the reliability of accounting audit and the reputation of accounting firms. The software tools used by forensic accounting can be called into question. Many appear inadequate when faced with the complexity of fraud and there needs to be the development of automated and specialist problem-solving forensic software. In this paper we review the context of forensic accounting and the potential to develop improved support tools. The recommendation is for adopting financial ratio analysis as the basis for an improved fraud detection software

    A New Framework for Securing, Extracting and Analyzing Big Forensic Data

    Get PDF
    Finding new methods to investigate criminal activities, behaviors, and responsibilities has always been a challenge for forensic research. Advances in big data, technology, and increased capabilities of smartphones has contributed to the demand for modern techniques of examination. Smartphones are ubiquitous, transformative, and have become a goldmine for forensics research. Given the right tools and research methods investigating agencies can help crack almost any illegal activity using smartphones. This paper focuses on conducting forensic analysis in exposing a terrorist or criminal network and introduces a new Big Forensic Data Framework model where different technologies of Hadoop and EnCase software are combined in an effort to promote more effective and efficient processing of the massive Big Forensic Data. The research propositions this model postulates could lead the investigating agencies to the head of the terrorist networks. Results indicate the Big Forensic Data Framework model is capable of processing Big Forensic Data

    A New Framework for Securing, Extracting and Analyzing Big Forensic Data

    Get PDF
    Finding new methods to investigate criminal activities, behaviors, and responsibilities has always been a challenge for forensic research. Advances in big data, technology, and increased capabilities of smartphones has contributed to the demand for modern techniques of examination. Smartphones are ubiquitous, transformative, and have become a goldmine for forensics research. Given the right tools and research methods investigating agencies can help crack almost any illegal activity using smartphones. This paper focuses on conducting forensic analysis in exposing a terrorist or criminal network and introduces a new Big Forensic Data Framework model where different technologies of Hadoop and EnCase software are combined in an effort to promote more effective and efficient processing of the massive Big Forensic Data. The research propositions this model postulates could lead the investigating agencies to the head of the terrorist networks. Results indicate the Big Forensic Data Framework model is capable of processing Big Forensic Data

    Knock! Knock! Who Is There? Investigating Data Leakage from a Medical Internet of Things Hijacking Attack

    Get PDF
    The amalgamation of Medical Internet of Things (MIoT) devices into everyday life is influencing the landscape of modern medicine. The implementation of these devices potentially alleviates the pressures and physical demands of healthcare systems through the remote monitoring of patients. However, there are concerns that the emergence of MIoT ecosystems is introducing an assortment of security and privacy challenges. While previous research has shown that multiple vulnerabilities exist within MIoT devices, minimal research investigates potential data leakage from MIoT devices through hijacking attacks. The research contribution of this paper is twofold. First, it provides a proof of concept that certain MIoT devices and their accompanying smartphone applications are vulnerable to hijacking attacks. Second, it highlights the effectiveness of using digital forensics tools as a lens to identify patient and medical device information on a hijacker’s smartphone

    A Bleeding Digital Heart: Identifying Residual Data Generation from Smartphone Applications Interacting with Medical Devices

    Get PDF
    The integration of medical devices in everyday life prompts the idea that these devices will increasingly have evidential value in civil and criminal proceedings. However, the investigation of these devices presents new challenges for the digital forensics community. Previous research has shown that mobile devices provide investigators with a wealth of information. Hence, mobile devices that are used within medical environments potentially provide an avenue for investigating and analyzing digital evidence from such devices. The research contribution of this paper is twofold. First, it provides an empirical analysis of the viability of using information from smartphone applications developed to complement a medical device, as digital evidence. Second, it includes documentation on the artifacts that are potentially useful in a digital forensics investigation of smartphone applications that interact with medical devices

    Android Anti-forensics: Modifying CyanogenMod

    Full text link
    Mobile devices implementing Android operating systems inherently create opportunities to present environments that are conducive to anti-forensic activities. Previous mobile forensics research focused on applications and data hiding anti-forensics solutions. In this work, a set of modifications were developed and implemented on a CyanogenMod community distribution of the Android operating system. The execution of these solutions successfully prevented data extractions, blocked the installation of forensic tools, created extraction delays and presented false data to industry accepted forensic analysis tools without impacting normal use of the device. The research contribution is an initial empirical analysis of the viability of operating system modifications in an anti-forensics context along with providing the foundation for future research.Comment: Karlsson, K.-J. and W.B. Glisson, Android Anti-forensics: Modifying CyanogenMod in Hawaii International Conference on System Sciences (HICSS-47). 2014, IEEE Computer Society Press: Hawai
    corecore