26 research outputs found

    Tracking Odor Plumes in a Laminar Wind Field with Bio-Inspired Algorithms

    Get PDF
    We introduce a novel bio-inspired odor source localization algorithm (surge- cast) for environments with a main wind ïŹ‚ow and compare it to two well-known algorithms. With all three algorithms, systematic experiments with real robots are carried out in a wind tunnel under laminar ïŹ‚ow conditions. The algorithms are compared in terms of distance overhead when tracking the plume up to the source, but a variety of other experimental results and some theoretical considerations are provided as well. We conclude that the surge-cast algorithm yields signiïŹcantly better performance than the casting algorithm, and slightly better performance than the surge-spiral algorithm

    Tracking an Odor Plume in a Laminar Wind Field with the Crosswind-Surge Algorithm

    Get PDF
    We introduce a novel bio-inspired odor source localization algorithm (surge-cast) for environments with a main wind flow and compare it to two well- known algorithms. With all three algorithms, systematic experiments with real robots are carried out in a wind tunnel under laminar flow conditions. The algo- rithms are compared in terms of distance overhead when tracking the plume up to the source, but a variety of other experimentally measured results are provided as well. We conclude that the surge-cast algorithm yields significantly better performance than the casting algorithm, and slightly better performance than the surge-spiral algorithm

    Simulation Experiments with Bio-Inspired Algorithms for Odor Source Localization in Laminar Wind Flow

    Get PDF
    We compare three bio-inspired odor source localization algorithm (casting, surge-spiral and surge-cast) for environments with a main wind flow in simulation. The wind flow is laminar and the simulation setup similar to the setup in the wind tunnel in which we have carried out similar experiments with real robots. The algorithms are compared in terms of success rate and distance overhead when tracking the plume up to the source. We conclude that the algorithms based on upwind surge yield significantly better performance than pure casting

    Understanding the Potential Impact of Multiple Robots in Odor Source Localization

    Get PDF
    We investigate the performance of three bio-inspired odor source localization algorithms used in non-cooperating multi-robot systems. Our performance metric is the distance overhead of the first robot to reach the source, which is a good measure for the speed of an odor source localization algorithm. Using the performance distribution of single-robot experiments, we calculate an ideal performance for multi-robot teams. We carry out simulations in a realistic robotic simulator and provide quantitative evidence of the differences between ideal and realistic performances of a given algorithm. A closer analysis of the results show that these differences are mainly due to physical interference among robots

    Review on Odor Localization

    Get PDF
    In this paper, the importance of odor localization isexplained. The researchers that investigated the experimentsand applications of odor localization using static sensors, mobilesensors (that were integrated in single robot, multi robot, andswarm robot) are described. However, there are some difficultiesfaced by the researchers in applying the mobile robots in the realsituation, such as: the speed of mobile robots are not as fast asthe odor patches transporting and the use of more than onesensor in mobile robot can make noises or errors. In the future,the plume finding in the uncertain environment and thechallenges mentioned above will be the authors’ consideration

    Odor Recognition and Localization Using Sensor Networks

    Get PDF

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    Odor Localization Sub Tasks: A Survey

    Get PDF
    This paper discusses about the sub tasks of odor localization research. Three steps of odor localization, i.e. Plume finding, plume tracking/tracing, and source declaration are explained. The difficulty of plume finding is discussed. Farrell’s Filamentous and Pseudo-Gaussian plume models that have been analyzed by previous researcher are presented. Some approaches used in plume tracking/tracing based on advection/turbulent and the estimation of odors’ distribution are provided. The advantages of source declaration are showed. Some problems occur in plume finding become a great consideration for the future research
    corecore