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Summary. We introduce a novel bio-inspired odor source localization algorithm
(surge-cast) for environments with a main wind flow and compare it to two well-
known algorithms. With all three algorithms, systematic experiments with real
robots are carried out in a wind tunnel under laminar flow conditions. The algo-
rithms are compared in terms of distance overhead when tracking the plume up to the
source, but a variety of other experimentally measured results are provided as well.
We conclude that the surge-cast algorithm yields significantly better performance
than the casting algorithm, and slightly better performance than the surge-spiral
algorithm.

1 Introduction

With the advances in robotics and chemicals sensor research in the last decade,
odor sniffing robots have become an active research area. Notably the local-
ization of odor sources would allow for very interesting robotic applications,
such as search and rescue operations, safety and control operations on air-
ports or industrial plants, and humanitarian demining [19] [4] [15] [7]. Many
of these applications are time-critical, i. e. odor sources should be found as
fast as possible. But as the structure of plumes in the air is intermittent in
both time and space [20], tracking plumes is a challenging problem.

In recent work [14], we have shown through experiments with real robots
that the surge-spiral algorithm [5] [6] [2] [3] is faster and more reliable than
casting [11] [10] [21] [13] [12] [1] [9] in laminar wind flow. This result was
insofar surprising, as the casting algorithm got much more attention by the
research community up to date.

In this paper, we introduce a third algorithm (referred to as the surge-cast

algorithm) which belongs to the same category of odor source localization al-
gorithms as the two previous algorithms (surge-spiral and casting). All three
algorithms are combinations of strategies used by silkworm moths, and there-
fore bio-inspired. Silkworm moths use the following plume tracking behaviors
[17] [18]:
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• Upwind surge: straight upwind movement as long as the moth is in the
plume;

• Casting: counter-turning (zig-zagging) to reacquire the plume right after
losing track of it;

• Spiraling1: an irregular, spiral-like movement to reacquire the plume if
casting did not succeed.

While the casting algorithm is directly derived by the second behavior, the
surge-spiral algorithm is a combination of the first and the third behavior. The
new surge-cast algorithm is a combination of upwind surge and casting, which
is exactly the behavior of a moth that does not lose the plume completely. To
our knowledge, such an algorithm has never been tested on real robots before.

We carried out systematic experiments with a real robot in a wind tunnel
under laminar flow conditions, with the goal to compare these algorithms in
terms of plume tracking performance. In this paper, we present and discuss
these results.

Note that we only consider plume tracking (i. e. following the plume to-
wards the source) and intentionally omit plume finding (i. e. randomized or
systematic search until the plume is found) and source declaration (i. e. declar-
ing that the source is in close vicinity). This allows us to make assertions about
the plume tracking performances of the algorithms.

The remainder of this paper is structured as follows. In Section 2 we for-
mally present the three algorithms discussed in this paper. The experimental
setup and the robotic platform are introduced in Section 3. Finally, we discuss
the results in Section 4 and conclude in Section 5.

2 Algorithms

All three algorithms discussed in this paper are bio-inspired and a combination
of upwind surge, casting, and spiraling [17]. The algorithms use only binary
odor information, that is, they either perceive the odor or do not perceive

any odor, but ignore different concentrations levels. Commonly, the measured
concentration is thresholded to obtain this binary value, but more elaborate
processing could be used as well.

Finally, all three algorithms need a wind sensor to measure the wind di-
rection. As molecules are mainly transported by advection, this piece of in-
formation is very valuable, and – as we will show later – as important as the
odor sensor. The wind speed is ignored.

Since we are only interested in the plume tracking behavior, the robot
starts in the plume, and declares failure if it gets too far away from it. This
allows us to rule out arena geometry effects, which could greatly influence the
results (e. g., high variance introduced by randomized search techniques).

1 In [17] referred to as “irregular turning”.
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Similarly, source declaration is done by a supervisor (ideal source declara-
tion) and therefore does not affect the results.2 Experiments are considered
successful if the robot has come in physical vicinity of the source.

2.1 The Surge-Cast Algorithm

The new algorithm we introduce here is a combination of upwind surge and
cross-wind casting. It is similar to the surge-spiral algorithm (see below), with
the spiral being replaced by cross-wind movement.

A robot in the plume moves straight upwind until it loses the plume for a
distance dlost. It then tries to reacquire the plume by moving cross-wind for
a set distance (dcast), first on one side and then on the other. To maximize
the chances of hitting the plume in the first cross-wind movement, the robot
measures the wind direction to estimate from which side it left the plume.

The wind direction is measured when the robot switches from upwind
surge to casting and when it switches back to upwind surge, as indicated in
Figure 1.

Fig. 1. Sketch of the surge-cast algorithm. The stars indicate where the wind di-
rection is measured.

2.2 The Casting Algorithm

The casting algorithm is very similar the one described by Li et al. [11]. As
shown in Figure 2, a robot in the plume moves upwind with an angle β until
it is out of the plume for a certain distance, denoted dlost. Once the plume is
lost, the robot turns and moves crosswind until it hits an odor packet, and
then moves upwind with angle β again.

The wind direction is measured each time the robot switches to plume
reacquisition, and when it encounters the plume again.

2 On the real robots, this is done using IR sensors detecting a specific colored patch
on the floor. See Section 3 for further details on the setup.
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Fig. 2. Sketch of the casting algorithm. The stars indicate where the wind direction
is measured.

2.3 Surge-Spiral

The surge-spiral algorithm is similar to Hayes’ algorithm presented in [5],
except that here we focus exclusively on its use for plume tracking. Hence, we
have a single spiral gap parameter.

A robot in the plume moves straight upwind until it loses the plume for
a distance dlost. It then tries to reacquire the plume by moving along an
Archimedes spiral with gap size dgap. Unlike [5], we start our spiral in upwind
direction, as drawn in Figure 3.

The wind direction is measured when the robot switches from upwind
surge to spiraling, and when it switches back to upwind surge.

Fig. 3. Sketch of the surge-spiral algorithm. The star indicates where the wind
direction is measured.

3 Real Robot Experiments

3.1 Experimental Setup

The experiments were carried out in a 16m long and 4m wide wind tunnel.
The setup was exactly the same as described in our previous paper [14], except



Tracking Odor Plumes with Bio-Inspired Algorithms 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

x [m]

Odor profile (baseline corrected)

y 
[m

]
Fig. 4. Odor profile in the arena. Each measurement point is an average over about
20 seconds. The grid has a resolution of 30 cm in x-direction, and 5 cm in y-direction.
The odor was measured at the height of the robot’s odor sensor board using the
traversing system of the wind tunnel.

that the arena was enlarged to approximately 15m by 3.5m. In the following
paragraph, we briefly repeat the most important figures.

The wind field in the wind tunnel was laminar at roughly 1 m/s speed.
The ethanol odor plume was therefore a straight line (see Figure 4), and the
concentration peaks were slightly decreasing as the plume moves downwind. A
constant amount a ethanol vapor was released by means of a pump. To reduce
the turbulence created by the odor source, the pump was placed outside of
the arena and connected with a tube to the source outlet. Nevertheless, the
outlet created some turbulence right downwind the source, which sometimes
disturbed the laminar wind flow in that area. The starting area was 14 meters
downwind from the outlet, as depicted in Figure 5.

Fig. 5. Schematic drawing of our arena (not to scale).

3.2 Robotic Platform

The robot used in the experiments was a Khepera III robot (K-Team SA,
Switzerland) equipped with an odor sensor and a wind sensor board, as de-
picted in Figure 6 (a).
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(a) (b)

Fig. 6. (a) The Khepera III robot with the wind sensor and the odor sensor board.
(b) Upwind view of the wind tunnel, with the robot in front and the odor source in
the back.

The odor sensor was a MiCS-5521 volatile organic compound (VOC) sen-
sor, which has a very fast response time (≈ 0.1 s). This sensor reacts to a
wide range of organic compounds in the air, with an sensitivity to ethanol
comparable to that of a human’s nose (≈ 10ppm). To take advantage of the
sensors low response time, air was taken in and released with a small pump.

The wind sensor board was based on 4 thermistors placed around a star-
shape obstacle. Once calibrated, a probabilistic model allowed the robot to
infer the wind direction with an accuracy of roughly 10o.

3.3 Experiments

We ran 20 experiments for each of the following configurations:

Algorithm Parameter

A Casting β = 10o

B Casting β = 20o

C Casting β = 30o

D Surge-spiral dgap = 0.58 m

E Surge-cast dcast = 0.72 m
F Surge-cast dcast = 0.43 m
G Surge-cast dcast = 0.14 m

The forward speed of the robot (on straight lines) was approximately
10.6 cm/s and the plume lost distance was set to dlost = 40 cm for all exper-
iments. The plume threshold was determined before each run by measuring
the response of the sensor to fresh air in the wind tunnel.

In each run, the robot was released in the odor at a position about
14.5m downwind from the target area, and the corresponding algorithm was
launched. If the robot reached the target area around the odor outlet (de-
termined with the floor sensors), the run was considered successful. During
the run, the trajectory (using odometry) and the odor concentration were
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recorded. Distance and upwind distance were derived from the trajectory,
and the duration of each run was measured on a host computer.

4 Results and Discussion

Table 1 shows the mean values of the data recorded during the experiments.
Besides the success ratio, the most interesting of these values is the ratio
between the traveled distance (dt) and the upwind distance (du), which is
plotted in Figure 7. This value indicates what distance the robot had to drive
in order to come 1 m closer to the source, and is therefore bigger or equal to 1.
Furthermore, a selection of runs of all three algorithms is plotted in Figure 8.

The surprisingly good result of configuration A should be taken with a
grain of salt, since the wheel diameter difference produced some bending of
the trajectory (see Figure 8) which worked in favor of the algorithm. Without
this effect, one would expect the success rate of this configuration to be very
low [14].

At first glance, it is clear that the surge-cast algorithm introduced here
outperforms casting and is at least as good as the surge-spiral algorithm. The
overlapping confidence intervals do not allow us to make a statistical judgment
about the configurations D, E and F, but simple theoretical considerations
allow us to say that surge-cast has the potential to find the source in shorter
distance.

The current implementation of surge-cast is less robust than surge-spiral.
This is mainly the case for configuration G, in which the cross-wind distance is
clearly too small. However, one should bear in mind that the algorithm gives
up after unsuccessful cross-wind movement, instead of switching to spiraling
(as moths do) or increasing the cross-wind distance.

Table 1. Mean values (except for the success ratio) of all configurations. The dis-
tance overhead is the traveled distance divided by the upwind distance ( dt

du
).

Configuration A B C D E F G

Success ratio 0.9 1 0.85 1 0.86364 0.9 0.4
Distance overhead [m/m] 1.1638 1.4323 1.6256 1.1429 1.1211 1.102 1.0585

Traveled distance [m] 17.08 21.08 23.90 16.65 16.36 16.08 15.33
Time to target [s] 179.9 231.2 263.3 161.2 165.4 162.1 152.0
Ratio in plume 78.8 % 63.3 % 58.1 % 82.0 % 83.4 % 84.7 % 86.9 %
Upwind speed [m/s] 0.083 0.064 0.056 0.091 0.089 0.090 0.096
Mean robot speed [m/s] 0.096 0.091 0.091 0.103 0.099 0.099 0.101



8 Thomas Lochmatter and Alcherio Martinoli

A B C D E F G
1

1.1

1.2

1.3

1.4

1.5

1.6

Traveled distance dt / upwind distance du

Ra
tio

 [m
/m

]

 

 
Casting
Surge−spiral
Surge−cast

Fig. 7. Traveled distance dt / upwind distance du (mean with 95 % confidence
interval for normal data). Only successful runs were included in the analysis. Lower
values are better.

5 Conclusion

As our experimental results reveal, odor source localization algorithms based
on upwind surge (surge-cast or surge-spiral) are significantly faster than pure
casting — at least in laminar wind flow. This is not surprising from a theoret-
ical perspective, as the robot makes large advancements towards the source
during upwind surge. Silkworm moths [17] and other animals use casting pri-
marily for plume reacquisition rather than for plume tracking. (Casting as
plume tracking is used by ants following a pheromone trail on the ground
[17]. However, ants just need to sway their head left and right to scan the
pheromone on the ground - the back part of the body goes almost straight.)

Among the plume reacquisition strategies, casting seems to be slightly
faster, but less robust than spiraling. Even though the combination of casting
and spiraling that moths are using [17] has not been tested in this paper, the
available results suggest that this is a very efficient and robust strategy.

In future work, we will test the algorithms in turbulent flow and/or me-
andering plume conditions. In addition, we will introduce obstacles along the
arena, both to generate turbulence and to hinder the robot from moving along
a straight line up to the source.
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Fig. 8. Sample trajectories with odor concentration shading. The bars below the
plots indicate the translation from shading to concentration (measured in arbitrary
units). Note that straight trajectories are bent because of a tiny difference (0.08
mm) in wheel diameter between the left and the right wheel. The plume threshold
was set to 100 units above the baseline concentration value indicated on the left side
of the colored bar. (a, b) Successful runs of the casting algorithm. (c) Successful,
but unlucky run of the surge-spiral algorithm. (d) Successful, but unlucky run of
the surge-cast algorithm.
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plumes: Strategies inspired by insect orientation to pheromone. Adaptive Be-
havior, 9(3-4):143–170, 2001.

12. Wei Li, Jay A. Farrell, Shuo Pang, and Richard M. Arrieta. Moth-inspired chem-
ical plume tracing on an autonomous underwater vehicle. IEEE Transactions
on Robotics, 22(2):292–307, April 2006.

13. Achim J. Lilienthal, Denis Reiman, and Andreas Zell. Gas source tracing with
a mobile robot using an adapted moth strategy. In Autonome Mobile Systeme
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