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Abstract

We compare three bio-inspired odor source localization

algorithm (casting, surge-spiral and surge-cast) for envi-

ronments with a main wind flow in simulation. The wind

flow is laminar and the simulation setup similar to the setup

in the wind tunnel in which we have carried out similar ex-

periments with real robots [13]. The algorithms are com-

pared in terms of success rate and distance overhead when

tracking the plume up to the source. We conclude that the

algorithms based on upwind surge yield significantly better

performance than pure casting.

1 Introduction

With the advances in robotics and chemicals sensor re-

search in the last decade, odor sniffing robots have become

an active research area. Notably the localization of odor

sources would allow for very interesting robotic applica-

tions, such as search and rescue operations, safety and con-

trol operations in airports or industrial plants, and human-

itarian demining [18] [5] [15] [8]. Many of these applica-

tions are time-critical, i. e. odor sources should be found

as fast as possible. Moreover, as the structure of plumes in

the air is intermittent in both time and space [19], tracking

plumes is a challenging problem.

In recent work [14] [13], we have shown through exper-

iments with real robots that the surge-spiral [6] [7] [2] [4]

and the surge-cast [13] algorithms are faster and more reli-

able than pure casting [10] [9] [20] [12] [11] [1] in laminar

wind flow. This result was insofar surprising, as the casting

algorithm got much more attention by the research commu-

nity up to date.

In this paper, we present simulation results for the same

algorithms to support our findings with the real robots. Run-

ning the algorithms in simulation allowed us to carry out

many more experiments of a wider range of algorithmic

parameter configurations. In particular, we carried out ex-

periments with varying upwind angle (casting), spiral gap

(surge-spiral), cast distance (surge-cast), wind sensor accu-

racy and plume lost distance.

The experiments were run in Webots [16], a realistic

robotic simulator, enhanced with a plume simulation based

on the filament propagation model proposed by Farrell et

al. [3]. The setup and conditions are kept close to those

in the wind tunnel used for the real-robot experiments [13],

which allows us to compare the real-robot and simulation

experiments.

Note that we only consider plume traversal (i. e. follow-

ing the plume towards the source) and intentionally omit

plume finding (i. e. randomized or systematic search until

the plume is found) and source declaration (i. e. declaring

that the source is in close vicinity), to prevent those two

phases from interfering in the results.

The remainder of this paper is structured as follows. In

Section 2 we formally present the three algorithms used in

this paper. The simulator and the odor propagation model

are introduced in Section 3. Finally, we discuss the results

in Section 4 and conclude in Section 5.

2 Algorithms

All three algorithms used in this paper are bio-inspired

and a combination of upwind surge, casting, and spiraling

[17]. The algorithms use only binary odor information, that

is, they either perceive the odor or do not perceive any odor,

but ignore different concentrations levels. Commonly, the

measured concentration is thresholded to obtain this binary

value, but more elaborate processing could be used as well.

Finally, all three algorithms need a wind sensor to mea-

sure the wind direction. As molecules are mainly trans-

ported by advection, this piece of information is very valu-

able. The wind speed is ignored.
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Since we are only interested in the plume traversal be-

havior, the robot starts in the plume, and declares failure if

it gets too far away from it. This allows us to rule out arena

geometry effects, which could greatly influence the results

(e. g., high variance introduced by randomized search tech-

niques).

Similarly, source declaration is done by a supervisor

(ideal source declaration) and therefore does not affect the

results. Experiments are considered successful if the robot

has come in physical vicinity of the source.

2.1 The Casting Algorithm

The casting algorithm is very similar the one described

by Li et al. [10]. As shown in Figure 1, a robot in the plume

moves upwind with an angle β (relatively to the currently

measured wind direction) until it is out of the plume for

a certain distance, denoted dlost. Once the plume is lost,

the robot turns and moves cross-wind until it hits an odor

packet, and then moves upwind with angle β again.

The wind direction is measured each time the robot

switches to plume reacquisition, and when it encounters the

plume again.

Figure 1. Sketch of the casting algorithm.
The stars indicate where the wind direction
is measured.

2.2 The Surge-Spiral Algorithm

The surge-spiral algorithm is similar to Hayes’ algorithm

presented in [6], except that here we focus exclusively on its

use for plume tracking. Hence, we have a single spiral gap

parameter.

A robot in the plume moves straight upwind until it loses

the plume for a distance dlost. It then tries to reacquire the

plume by moving along an Archimedes spiral with gap size

dgap. Unlike [6], we start our spiral in upwind direction, as

drawn in Figure 2.

The wind direction is measured when the robot switches

from upwind surge to spiraling, and when it switches back

to upwind surge.

Figure 2. Sketch of the surge-spiral algo-

rithm. The star indicates where the wind di-
rection is measured.

2.3 The Surge-Cast Algorithm

The surge-cast algorithm [13] is a combination of up-

wind surge and cross-wind casting. It is similar to the surge-

spiral algorithm, with the spiral being replaced by cross-

wind movement.

A robot in the plume moves straight upwind until it loses

the plume for a distance dlost. It then tries to reacquire the

plume by moving cross-wind for a set distance (dcast), first

on one side and then on the other. To maximize the chances

of hitting the plume in the first cross-wind movement, the

robot measures the wind direction to estimate from which

side it left the plume.

If the robot did not reacquire the plume by casting, the

run is considered unsuccessful. In a real application, the

robot would probably switch back to plume finding behav-

ior, or try to reacquire the plume with a larger cast distance

or with spiraling.

The wind direction is measured when the robot switches

from upwind surge to casting and when it switches back to

upwind surge, as indicated in Figure 3.

Figure 3. Sketch of the surge-cast algorithm.

The stars indicate where the wind direction is
measured.



3 Simulation Experiments

We are using Webots [16] for the experiments. Webots is

a commercial realistic robotic simulator, which ships with

a calibrated model of the Khepera III robot that we used

for the real-robot experiments [13]. The simulation envi-

ronment (Figure 5) was augmented with a wind and odor

propagation model, and the robot model was extended with

the corresponding sensors to measure the odor concentra-

tion and a wind direction (Figure 4). The simulation time

step, ∆t, was set to 32ms.

3.1 Experimental Arena

The experimental arena is a rectangular area of 16m

length and 4m width, which corresponds roughly to the di-

mensions of the wind tunnel. At 1m from one end of the

arena, a circular odor source of radius 12 cm is placed. The

robot is placed at roughly 14.5m downwind from that spot.

3.2 Advection Model

A constant wind field of 1m/s was used. This corre-

sponds to a constant laminar flow which is comparable to

the one used for the real-robot experiments in the wind tun-

nel [13]. In the coordinate system indicated in Figure 5, the

wind vector at position u, a(u), can be written as

a(u) =





1
0
0



 (1)

3.3 Odor Propagation Model

The odor propagation model closely resembles the

filament-based model proposed by Farrell et al. [3]. This

model is easy to implement and requires only a very lim-

ited amount of CPU power. Yet, it generates an intermittent

plume which is similar to the real plume in the wind tunnel

[13].

Odor is thereby simulated as a set of filaments (i =
0, ..., N ), each containing a constant amount s = 8.3 · 109

of molecules or particles. Each filament is defined by its

position, pi,t, and its width, wi,t.

In each time step, the position of a filament is updated

according to the wind flow and a stochastic process:

pi,t+∆t = pi,t + a(pi,t)∆t + vp (2)

The stochastic component vp is a vector of three indepen-

dent Gaussian random variables, N(0, σ2
p), with standard

deviation σp = 0.1m.

To model molecular dispersion, filaments become wider

with time while their peak concentration decreases. The

width of a filament evolves as

wi,t+∆t = wi,t +
γ

2wi,t

with γ = 4 · 10−7 (3)

The odor source releases 100 such filaments per second

with an initial width of wi,0 = 10 cm and an initial posi-

tion which is uniformly distributed over circular area of the

source. This yields a plume which is comparable to the real

plume in the wind tunnel.

3.4 Odor Sensor Model

The odor concentration at time t and position u is calcu-

lated as the sum over the concentration contribution of all

filaments,

Ct(u) =

N
∑

i=0

ci,t(u) (4)

and each filament i contributes

ci,t(u) =
s

w3
i,t

exp

(

|u − pi,t|

w2
i,t

)

(5)

to the concentration. Hence, the concentration decays ex-

ponentially with increasing distance from the center of a

filament.

The virtual odor sensor reports this concentration Ct(u)
without adding any additional noise, as the perceptual noise

related to the chemical-to-electrical transduction is negligi-

ble even on the real platform. Furthermore, since the con-

centration is anyway thresholded and filtered through dlost
by the algorithms in use here, a precise calibration of the

odor propagation and odor sensor model is not required.

3.5 Wind Direction Sensor Model

The wind sensor reports a noisy wind measurement,

as(u) = a(u) + va (6)

where va is a vector with samples of a zero-mean normal

distribution (N(0, σ2
a)). Since the wind field is constant in

all our simulations, the reported value in world coordinates

is simply

as(u) =





1
0
0



+





N(0, σ2
a)

N(0, σ2
a)

N(0, σ2
a)



 (7)

This vector is rotated into the local reference system of the

robot to account for the robot’s pose.



Figure 4. Simulated Khepera III robot
equipped with an odor sensor (small cylinder
on top of the robot) and a wind sensor (big

cylinder). The hexagons in the air represent
odor filaments.

Figure 5. Simulated environment in Webots.

3.6 Experiments

We analyzed three parameters for each of the three algo-
rithms, totaling to 9 sets of experiments:

Algorithm Specific parameter σa dlost
A Casting variable 10 cm 61.4 cm

B Casting β = 25
o variable 61.4 cm

C Casting β = 25
o 10 cm variable

D Surge-spiral variable 10 cm 61.4 cm

E Surge-spiral dgap = 22.2 cm variable 61.4 cm

F Surge-spiral dgap = 22.2 cm 10 cm variable

G Surge-cast variable 10 cm 61.4 cm

H Surge-cast dcast = 27 cm variable 61.4 cm

I Surge-cast dcast = 27 cm 10 cm variable

Each set consists of 9 choices for the variable parame-

ter with 50 independent runs each. In each run, the robot

was released in the odor at a position about 14.5m down-

wind from the target area, and the corresponding algorithm

was launched. If the robot reached the odor source, the run

was considered successful. If the robot touched an arena

wall, the run was aborted and declared unsuccessful. Dis-

tance and upwind distance were derived from the trajectory,

recorded during the run.

The forward speed of the robot (on straight lines) was

10.6 cm/s and therefore same as with the real-robot exper-

iments in the wind tunnel. The plume threshold was set to

c = 100.
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Figure 6. Successful sample runs of all three

algorithms (configurations A, D and G). The
bars below the plots indicate the concentra-
tion shading.

4 Results and Discussion

In the following paragraphs, we discuss the results for

each of the three algorithms. Sample runs for three chosen

parameter configurations are shown in Figure 6.

We compare the success ratio and the distance overhead

of the runs. The latter is calculated as the traveled distance

divided by the upwind distance ( dt

du

) and represents an ex-

cellent measure for the performance of a plume traversal

algorithm.

4.1 Casting

The results for the casting algorithm are displayed in

Figure 7. The upwind angle has a major influence on the

performance. Small angles yield a low distance overhead,

but also a low success rate. In our setup, only configurations

with β > 20o resulted in acceptable success rates.
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Figure 7. Results obtained with the casting al-
gorithm. The error bars indicate the 95 %

confidence interval for the mean (assuming
normally distributed data). A: With varying
upwind angle (β). B: With varying plume lost

distance (dlost). C: With varying noise on the
wind sensor reading (σa). The last bar is omit-

ted because of the small number of success-
ful runs.
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 D: Surge−spiral with varying spiral gap
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 E: Surge−spiral with varying plume lost distance
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 F: Surge−spiral with varying wind sensor noise
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Figure 8. Results obtained with the surge-spiral

algorithm. The error bars indicate the 95 %

confidence interval for the mean (assuming
normally distributed data). D: With varying
spiral gap (dgap). E: With varying plume lost

distance (dlost). F: With varying noise on the
wind sensor reading (σa).
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Figure 9. Results obtained with the surge-cast

algorithm. The error bars indicate the 95 %

confidence interval for the mean (assuming
normally distributed data). G: With varying
cast distance (dcast). H: With varying plume

lost distance (dlost). I: With varying noise on
the wind sensor reading (σa).

A similar behavior can be observed for the plume lost

distance: on one end of the scale, the success rate drops sig-

nificantly, whereas on the other end, the performance gets

worse. Hence, choosing parameters for this algorithm is ul-

timately a trade-off between performance and robustness.

The accuracy of the wind sensor only has a marginal im-

pact on the performance, and no visible influence on the

robustness as long as the accuracy is good enough. If the

noise is too high, however, the algorithm does not work at

all.

Quantitatively, the simulation results are much better

than the results obtained with the real robots [13]. Quali-

tatively, the results are very similar, though, and the casting

algorithm remains the worst among the three algorithm in

terms of distance overhead and success ratio.

4.2 Surge-Spiral

The surge-spiral algorithm is extremely robust and vir-

tually all 1350 runs succeeded. With the simple plume used

in this setup, a spiral of increasing radius will always reac-

quire the plume. In addition, the performance is fairly good

over a wide parameter range. As expected, a small spiral

gap is advantageous, at least as long as the robot reacquires

the plume within one turn. Figure 8 (E) also suggests that

higher dlost yield slightly better performance. This, how-

ever, is simply due to the fact that the upwind steps get

larger, and could have a negative influence in non-laminar

flow conditions. In contrast to the casting algorithm, wind

sensor accuracy only affects the distance overhead of surge-

spiral, and not its success rate. For high noise values, the

distance overhead becomes significantly larger, as the algo-

rithm more often fails guessing on which side the plume is.

Interestingly, the simulation results seem to be slightly

worse than the real-robot results [13]. This is presumably

due to differences in the distribution of the wind direction

measurement error.

4.3 Surge-Cast

The results obtained with the surge-cast algorithm are

comparable to those of the surge-spiral algorithm. As ex-

pected, the distance overhead grows almost linearly with the

cast distance, but at a fairly low rate. Furthermore, for very

low cast distances, the algorithm fails to work reliably - the

robot simply does not get back to the plume. These results

for this algorithm match closely those obtained with the real

robots [13].

Furthermore, the wind sensor noise seems to mainly af-

fect the success rate, which we have observed with casting

algorithm as well.



5 Conclusion

We carried out odor source localization experiments in

simulation with three different bio-inspired single-robot al-

gorithms. The setup was similar to the real-robot experi-

ments carried out in the wind tunnel [13].

While there are some quantitative differences between

the simulation results and those obtained with the real

robots, our previous observations have been confirmed.

Namely, pure casting is inefficient in laminar flow, and up-

wind surge techniques yield much better performance in

terms of success rate and distance overhead.

In addition, we could show that the plume lost distance,

dlost, does not have a significant influence on the perfor-

mance of the algorithms. Well-chosen upwind angles, spiral

gap or cast distances are much more important. In addi-

tion, improving the wind direction sensor helps mainly the

surge-cast algorithm, while large errors in the wind direc-

tion measurement impair all three algorithms.

In future work, we will test the algorithms in turbulent

flow and/or meandering plume conditions.
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