16 research outputs found

    Two Supervised Neural Networks for Classification ofSedimentary Organic Matter Images fromPalynological Preparations

    Get PDF
    An improvement in the supervised artificial neural network classification of sedimentary organic matter images from palynological preparations is presented. Sedimentary organic matter encompasses the entire acid-resistant organic micro-particles (typically with a diameter of 5-500ÎĽm) recovered from a sediment or sedimentary rock. Supervised neural networks are trained to recognize patterns within databases for which the correct classifications are already known. Once trained, they are verified on pre-classified samples not seen by the network, and then used for classification of samples whose class is not known. Such networks have an input, hidden and output layer. Typically, these networks determine what the output class is by adjusting weights associated with the layer interconnects, and by modifying the signals that propagate through the hidden layer by a non-linear transfer function. In this example, the inputs in each network are the salient features selected from an available set of 194, while the outputs are the sedimentary organic matter classifications which were formerly developed with the rationalization of descriptive terms from previous classification schemes. The author's past work tested the supervised back propagation neural network for the classification of sedimentary organic matter images. This gave an overall correct classification rate of 87%. However, because the back propagation network underperformed on two of the four classes, the radial basis function neural network was tested on the same databases initially used in an attempt to improve the recognition rate of these two classes. The difference between the back propagation and radial basis function networks lies in the non-linear transfer function applied in the hidden layer, which was modified by a Gaussian function in the latter. In the best-case scenario, this improved the recognition rate by 4% to just over 91%. This has also determined that a series of different supervised neural networks may be better for classification of sedimentary organic matter images. These results are encouraging enough to prompt further research that may result in a commercially viable syste

    A radial basis classifier for the automatic detection of aspiration in children with dysphagia

    Get PDF
    BACKGROUND: Silent aspiration or the inhalation of foodstuffs without overt physiological signs presents a serious health issue for children with dysphagia. To date, there are no reliable means of detecting aspiration in the home or community. An assistive technology that performs in these environments could inform caregivers of adverse events and potentially reduce the morbidity and anxiety of the feeding experience for the child and caregiver, respectively. This paper proposes a classifier for automatic classification of aspiration and swallow vibration signals non-invasively recorded on the neck of children with dysphagia. METHODS: Vibration signals associated with safe swallows and aspirations, both identified via videofluoroscopy, were collected from over 100 children with neurologically-based dysphagia using a single-axis accelerometer. Five potentially discriminatory mathematical features were extracted from the accelerometry signals. All possible combinations of the five features were investigated in the design of radial basis function classifiers. Performance of different classifiers was compared and the best feature sets were identified. RESULTS: Optimal feature combinations for two, three and four features resulted in statistically comparable adjusted accuracies with a radial basis classifier. In particular, the feature pairing of dispersion ratio and normality achieved an adjusted accuracy of 79.8 ± 7.3%, a sensitivity of 79.4 ± 11.7% and specificity of 80.3 ± 12.8% for aspiration detection. Addition of a third feature, namely energy, increased adjusted accuracy to 81.3 ± 8.5% but the change was not statistically significant. A closer look at normality and dispersion ratio features suggest leptokurticity and the frequency and magnitude of atypical values as distinguishing characteristics between swallows and aspirations. The achieved accuracies are 30% higher than those reported for bedside cervical auscultation. CONCLUSION: The proposed aspiration classification algorithm provides promising accuracy for aspiration detection in children. The classifier is conducive to hardware implementation as a non-invasive, portable "aspirometer". Future research should focus on further enhancement of accuracy rates by considering other signal features, classifier methods, or an augmented variety of training samples. The present study is an important first step towards the eventual development of wearable intelligent intervention systems for the diagnosis and management of aspiration

    A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification

    Get PDF
    Introduction: Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk prediction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. Historically, partial least squares (PLS) regression has been the gold standard for binary classification. Nonlinear machine learning methods such as random forests (RF), kernel support vector machines (SVM) and artificial neural networks (ANN) may be more suited to modelling possible nonlinear metabolite covariance, and thus provide better predictive models. Objectives: We hypothesise that for binary classification using metabolomics data, non-linear machine learning methods will provide superior generalised predictive ability when compared to linear alternatives, in particular when compared with the current gold standard PLS discriminant analysis. Methods: We compared the general predictive performance of eight archetypal machine learning algorithms across ten publicly available clinical metabolomics data sets. The algorithms were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks. Results: There was only marginal improvement in predictive ability for SVM and ANN over PLS across all data sets. RF performance was comparatively poor. The use of out-of-bag bootstrap confidence intervals provided a measure of uncertainty of model prediction such that the quality of metabolomics data was observed to be a bigger influence on generalised performance than model choice. Conclusion: The size of the data set, and choice of performance metric, had a greater influence on generalised predictive performance than the choice of machine learning algorithm

    Vision-based techniques for automatic marine plankton classification

    Get PDF
    Plankton are an important component of life on Earth. Since the 19th century, scientists have attempted to quantify species distributions using many techniques, such as direct counting, sizing, and classification with microscopes. Since then, extraordinary work has been performed regarding the development of plankton imaging systems, producing a massive backlog of images that await classification. Automatic image processing and classification approaches are opening new avenues for avoiding time-consuming manual procedures. While some algorithms have been adapted from many other applications for use with plankton, other exciting techniques have been developed exclusively for this issue. Achieving higher accuracy than that of human taxonomists is not yet possible, but an expeditious analysis is essential for discovering the world beyond plankton. Recent studies have shown the imminent development of real-time, in situ plankton image classification systems, which have only been slowed down by the complex implementations of algorithms on low-power processing hardware. This article compiles the techniques that have been proposed for classifying marine plankton, focusing on automatic methods that utilize image processing, from the beginnings of this field to the present day.Funding for open access charge: Universidad de Málaga / CBUA. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors wish to thank Alonso Hernández-Guerra for his frm support in the development of oceanographic technology. Special thanks to Laia Armengol for her help in the domain of plankton. This study has been funded by Feder of the UE through the RES-COAST Mac-Interreg pro ject (MAC2/3.5b/314). We also acknowledge the European Union projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578) from the Horizon 2020 Research and Innovation Programme and the Ministry of Science from the Spanish Government through the Project DESAFÍO (PID2020-118118RB-I00)

    Migrating from partial least squares discriminant analysis to artificial neural networks: A comparison of functionally equivalent visualisation and feature contribution tools using Jupyter Notebooks

    Get PDF
    Introduction: Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. Objectives: We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. Methods: We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. Results: The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. Conclusion: We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures

    Deriving statistical inference from the application of artificial neural networks to clinical metabolomics data

    Get PDF
    Metabolomics data are complex with a high degree of multicollinearity. As such, multivariate linear projection methods, such as partial least squares discriminant analysis (PLS-DA) have become standard. Non-linear projections methods, typified by Artificial Neural Networks (ANNs) may be more appropriate to model potential nonlinear latent covariance; however, they are not widely used due to difficulty in deriving statistical inference, and thus biological interpretation. Herein, we illustrate the utility of ANNs for clinical metabolomics using publicly available data sets and develop an open framework for deriving and visualising statistical inference from ANNs equivalent to standard PLS-DA methods

    Application of statistical learning theory to plankton image analysis

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science and Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy At the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed. One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not “good” ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large realworld dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications.This work was supported by National Science Foundation Grants OCE-9820099 and Woods Hole Oceanographic Institution academic program

    Application of statistical learning theory to plankton image analysis

    Get PDF
    Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006.Includes bibliographical references (leaves 155-173).A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed.(cont.) One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not "good" ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large real-world dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications.by Qiao Hu.Ph.D

    A comparison of flow cytometry and conventional microbiology in the study of biofilms.

    Get PDF
    A comprehensive study on the application of flow cytometry (FCM) for the analysis of biofilms has been undertaken and the results presented in this thesis have shown that flow cytometry can been successfully used to enumerate, sort and image the bacteria and amoebae in biofilms and water distribution systems as a rapid and sensitive semiautomated technique compared with conventional microbiology.It has been shown that the results of flow cytometric analysis of total Legionella pneumophila cells have a strong statistical correlation with the numbers of Legionella cfu by BCYE plate counting (BCYE PC) methods for biofilms and planktonic phases. There are also strong statistical correlations between flow cytometric analysis and epifluorescent microscopic (EFM) analysis (direct counting) for determination of bacteria, including Legionella, Escherichia coli, Salmonella, Pseudomonas and amoebae, and total and viable cells in pure cultures, water distribution systems and biofilms.The flow cytometric protocols have been set up and optimised for the analysis of environmental microorganisms. The novel fluorescent dyes and immunofluorescence antibodies from the most current commercial dyes also have been screened and the staining protocols have been optimised and adopted for flow cytometric analysis and direct counting by epifluorescent microscopy. The tap water biofilms and river water biofilms were analysed by the flow cytometer and direct counting methods as well as by conventional microbiological methods (plate counting). The bacterial populations in real water distribution systems have been fully investigated and the total, viable bacteria were determined by the above methods.The findings of this work have practical implications with respect to the rapid and automatic detection and predictions of Legionella spp. and the risk assessment from biofilms and water environments
    corecore