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Abstract

Abstract

This thesis documents the research that has led to advances in the Artificial 

Neural Network (ANN) approach to analysing flow cytometric data from 

phytoplankton cells. The superiority of radial basis function networks (RBF) over 

multi-layer perception networks (MLP), for data of this nature, has been 

established, and analysis of 62 marine species of phytoplankton represents an 

advancement in the number of classes investigated.

The complexity and abundance of heterogeneous phytoplankton 

populations, renders an original multi-class network redundant each time a novel 

species is encountered. To encompass the additional species, the original multi- 

class network requires complete retraining, involving long optimisation 

procedures to be carried out by ANN scientists. An alternative multiple network 

approach presented (and compared to the multi-class network), allows 

identification of the expanse of real world data sets and the easy addition of new 

species. The structure comprises a number of pre-trained single species networks 

as the front end to a combinatorial decision process for determining species 

identification. The simplicity of the architecture, and of the subsequent data 

produced by the technique, allows scientists unfamiliar with ANNs to dynamically 

alter the species of interest as required, without the need for complete re-training.

Kohonens Self Organising Map (SOM), capable of discovering its own 

classification scheme, indicated areas of discrepancy between flow cytometric 

signatures of some species and their respective morphological groupings. In an 

attempt to improve identification to taxonomic group or genus level by supervised 

networks, class labels more reflective of flow cytometric signatures must be 

introduced. Methods for boundary recognition and cluster distinction in the output 

space of the SOM have been investigated, directed towards the possibility of an 

alternative flow cytometric structuring system.

Performance of the alternative multiple network approach was comparable 

to that of the original multi-class network when identifying data from various 

environmental and laboratory culturing conditions. Improved generalisation can 

be achieved through employment of optical characteristics more representative of 

those found in nature.
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Chapter 1

1. Introduction

/./ Phytoplankton and Their Importance

Plankton is the collective name given to the microscopic animals and plants found 

at all depths in the Earth's oceans and fresh water regions. Phytoplankton, the plant 

constituent of plankton, exist either as independent cells or in a colonial state. The main 

components of fresh water areas are the Diatoms, Dinoflagellates, Desmids and 

Cyanobacteria (also a marine inhabitant), whilst primarily Diatoms and Dinoflagellates 

populate the world's seas (Harris, 1986) (Fig. 1.1).

These organisms are photoautrophic and fuel marine food chains throughout the 

planet. They supply protein, carbohydrates, fats, vitamins and mineral salts to the primary 

consumers, and the oxygen liberated by photosynthesis is a vital part of the life support 

system of the planet (Boney, 1989). They are also known to have a more subtle effect on 

the earth's climate, impacting on the exchange of COi between atmosphere and sea. To a 

lesser extent they contribute to atmospheric cooling through the production of dimethyl 

sulphide, which once oxidised forms sulphate aerosols (Wigley, 1994). Some species 

form toxic blooms, which cause death to many aquatic vertebrates and invertebrates in the 

affected area, not only by oxygen depletion but by toxin production. Cyanobacteria, being 

one of the major culprits of toxin emission, are capable of causing severe illness in 

humans as well as the aquatic life. It is therefore imperative that in order to understand the 

functioning of the world's aquatic systems, the community structure and function of these 

primary producers be fully understood. The work reported in this thesis forms part of a 

major study programme in this area (Section 1.5).

1.2 Major Phytoplankton Classes

Characterising phytoplankton is an exceptionally difficult process. Variation 

within a single species can be considerably complex due to a number of factors (Section 

1.4.3). Morphological characteristics (Appendix 1, Table Al.l) have historically been 

used for distinguishing between species and taxonomic groups, producing a number of 

major phytoplankton classes, some of which are listed here:

  Bacillariophyceae (Diatoms)

  Dinophyceae (Dinoflagellates)
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Figure 1.1 Morphological illustration of a selection of phytoplankton species. 
Dinoflagellates (a) Gymnodinium micrum (b) Prorocentrum micans (c) Heterocapsa 
triquetra (d) Alexandrium tamarense (e) Amphidinium carterae (f) Gymnodinium micrum 
(g) Aureodinium pigmentosum. Diatoms (h) Thalassiosira sp. (i) Chaetoceros sp. (j) 
Skeletonema costatum. Prymnesiomonads (k) Prymnesium parvum (1) Emiliania huxleyi. 
Flagellates (m) Pyramimonas sp. (n) Tetraselmis sp. Cryptomonads (o) Chroomonas sp. 
(Supplied by Dr. G.A. Tarran of Plymouth Marine Laboratories).
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  Chlorophyceae (Grass-green algae)

  Prasinophyceae (Green algae)

  Euglenophyceae (Euglenoid flagellates)

  Chrysophyceae (Golden-brown phytoflagellates)

  Prymnesiophyceae (Brown phytoflagellates)

  Cryptophyceae (Flagellate)

  Cyanophyceae (Cyanobacteria; blue-green algae)

  Rhodophyceae (Red algae)

Details of these classes are given in Table A1.2 (Appendix 1). It should be noted 

however, that the descriptions are generic, and genera and species within the classes vary 

considerably.

1.3 Phytoplankton Analysis

The most commonly used tool for quantitative and qualitative analysis of 

phytoplankton is microscopy. Once samples are harvested, staining techniques and 

fluorescence can be used to highlight certain cellular components under microscope 

analysis, allowing subsequent identification to be made by a highly trained taxonomist. 

Both light and electron microscopy are used in the analysis, providing information on 

external morphology (e.g. special structures) and sub-cellular structure respectively. Light 

microscopy is also used for living organisms, where a species can be identified by its 

swimming motion.

Other techniques include satellite remote sensing, which supplies a spatial and 

temporal monitoring of phytoplankton blooms, employing colour scanners to determine 

biomass through optical effects on pigment (Harris, R. 1987; Fukushima, 1993). 

Fluorometry is used to evaluate biomass on a smaller scale, where chlorophyll 

fluorescence is measured and converted using chlorophyll to carbon conversion factors to 

produce an evaluation. A more accurate procedure than fluorometry is chromatography 

(Drucker, 1987). This technique separates chemical substances by taking advantage of the 

rates at which they are absorbed by a stationary material from a moving stream of gas or 

liquid. Gas chromatography, which can detect the various pigments in a sample and 

quantify them, is commonly used. This method allows identification of certain species
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or groups whose pigments are unique, producing a number of chemo-taxonomic markers. 

From the techniques mentioned, microscopy provides the most definitive and 

complete analysis for identifying and quantifying a phytoplankton sample, however, it 

does have its limitations. The procedure is painstakingly long and tedious and cannot 

normally be achieved at sea. It requires exceptional expert knowledge and a clear set of 

distinguishable features. The study of individual cells covers areas such as intra- 

population variability, and is an important aspect of phytoplankton analysis (Burkill, 

1987). When this is required of a cell from a less common species, microscopy is 

unsuitable, as it is unable to identify a single cell that may be obscured by a mass of 

organic and inorganic materials. Thus, automated cell analysers were introduced to 

marine biology (Trask et al, 1982; Olson et al, 1983; Yentsch et al, 1983; see below).

1.4 Flow Cytometry

Flow cytometers are particle analysers that simultaneously record a set of optical 

measurements, providing information on the physical characteristics of individual cells. 

Purpose designed for the study of mammalian cells and cell immunology, there use in 

oceanography required a number of alterations to account for the many differences 

between mammalian and phytoplankton cells (Peeters et al., 1989). In addition to 

variance in size and shape, mammalian cells are generally homogenous, whereas marine 

organisms are exceptionally heterogeneous; internal fluorescence is one of the primary 

areas of investigation in aquatic cells, a characteristic rarely studied in mammalian cells; 

medical flow cytometers are designed for controlled, stable laboratory use and are not 

robust or flexible enough to transport to sea (Burkill, 1987; Steen, 1991). In order to 

advance this obvious benefit to aquatic science, marine flow cytometers needed to be built 

to specification, to increase their operation in allowing for these requirements.

1.4.1 Marine Analytical Flow Cytometer

A number of the limitations of the first marine flow cytometers were addressed by 

the design and experimental implementation of the Optical Plankton Analyser (OPA) 

(Dubelaar et al, 1989; Peeters et al., 1989). Although the OPA allowed the diversity of 

phytoplankton size and shape to be considered, it was determined unsuitable for field use,
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only achieving experimental status; advancing this was the European Optical Plankton 

Analyser (EurOPA) (Dubelaar et al, 1994a; 1994b). This flow cytometer was designed 

specifically for on board use, with the ability to measure particles in the range of l|j.m to 

lOOOjJm, at a rate of about 1 ml of sample per minute. It is capable of detecting species 

that exist as colonies and chains, without damage to the structure. The instrument has the 

facility for image capture and, through improved electronics, allows a greater number of 

optical measurements to be taken (Dubelaar et al, 1994a).

1.4.2 Becton-Dickinson Flow Cytometer

The flow cytometer used in this research is the Becton-Dickinson FACSort (Fig. 

1.2). The instrument is triggered on chlorophyll fluorescence for data acquisition, 

indicating the presence of photosynthetic cells. Laboratory cultured Micromonas pusilla 

(l-3(jm) is used as the lower analysis detector. An electrolyte containing the sample 

travels through a flow cell, crossing the focus of a very intense 15mW argon ion laser 

beam. The laser projects monochromatic light at a wavelength of 488nm, which 

irradiates 103 cells sec"1 . As cells pass individually through the beam, light is scattered in 

various directions. A number of detectors and filters are placed at different positions to 

measure pulse peak height or integrated signals. These are stored as a multi-parameter set 

of data, providing the optical characteristics of the particular cell. The Becton-Dickinson 

records 7 optical parameters for each event (one pass of a cell through the laser beam):

  Forward light scatter (FSC) - gauges light scattered between 1 and 10 degrees and

is used as a sizing parameter.

90° light scatter is focussed by a light collection lens and then spectrally filtered to detect 

the remaining 6 parameters:

  Side scatter (SSC) - used to quantify cell granularity and complexity.

  Depolarised light scatter (FL1) - This is used to indicate the presence of a group of 

phytoplankton, the Coccolithophores, which have a covering of calcite plates that 

depolarises the vertically polarised beam into the horizontal plate.

Red fluorescence is an indicator of cellular chlorophyll, the photosynthetic pigment of

phytoplankton, recorded as three measurements:

  FL3-Height - measures the intensity of chlorophyll fluorescence.
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Figure 1.2 Exploded schematic diagram of a flow cytometer with cell sorting facility (the 
Becton-Dickinson FACSort)
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  FL3-Area - measures total chlorophyll fluorescence for a single cell.

  FL3-Width - measures time of flight, the length of time a particle fluoresces as it 

passes through the beam.

  Orange fluorescence (FL2) - measures cellular accessory pigments, primarily 

phycoerythrin. This pigment is especially dominant in a particular taxonomic 

group of phytoplankton, the Cryptomonads.

The signals are measured for each event, amplified, digitised and stored in a listmode 

(binary) file, generally as logarithmic values. The flow cytometric signature for each cell 

is represented in the multi-parameter data. In addition to single cell analysis, this 

particular flow cytometer is capable of sorting, by electrostatically charging those droplets 

containing cells exhibiting the required parameters and deflecting them into sorting 

vessels. These can then be used for subsequent analysis or purification of cultures 

(Burkill, 1987; Burkill and Mantoura, 1990).

1.4.3 Characteristics of Flow Cytometry Data

With the exception of size and the detection of calcite plates, flow cytometry 

provides limited information about a cell's external physical features. Some of the 

defining characteristics that have placed species into their respective taxonomic groups are 

not detected by flow cytometry. Thus, not all species that are distinguishable through their 

morphometric characteristics, will be as easily separated by their flow cytometric 

signatures. For example, the placement of Hemiselmis rufescens (Fig. 1.3a) and Chlorella 

salina (Fig. 1.3b) into different taxonomic groups, is supported by the variance in their 

flow cytometric signatures. However, this is not the case with Chlorella salina and 

Hemiselmis virescens (Fig. 1.3c), where the two-dimensional plot of Hemiselmis virescens 

appears more characteristic of the Flagellate distribution than its own genus. This overlap 

and complex nature of flow cytometric signatures is a consequence of the inherent 

variability of phytoplankton data. Whether a sample is cultured or natural, individual cells 

from the same species will exhibit considerable biological variation, as well as the 

possibility of some multi-modal data distributions. In a field environment, additional 

factors contribute to the heterogeneous nature of phytoplankton (Morris et al, 1994). A 

sample may contain cells at varying stages of growth or decay; differences may be
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Figure 1.3 Two-dimensional scatter plots of Red Fluorescence (H) against Orange 
Fluorescence for (a) Hemiselmis rufescens (Cryptomonad), (b) Chlorella salina 
(Flagellate) and (c) Hemiselmis virescens (Cryptomonad). The morphometric placement 
of Hemiselmis rufescens and Chlorella salina into different groups is supported by their 
distinct flow cytometric signatures. This is not the case with Chlorella salina and 
Hemiselmis virescens where, in this instance, the latter appears more representative of the 
Flagellates distribution than the Cryptomonads.
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attributed to environmental conditions (nutrient availability, light intensity, temperature, 

depth), and/or temporal and evolutionary factors; cell debris, zooplankton, bacteria and 

inorganic particles will add to the complexity of a sample (although chlorophyll content 

allows relatively easy exclusion of non-photosynthetic extraneous particles). These factors 

illustrate two primary requirements when considering identification through flow 

cytometry. Firstly, an adequate number of optical parameters must be considered in the 

analysis in order to achieve maximum separation of classes. However, the variables that 

make up the multi-parameter patterns are not independent of each other and therefore 

cannot be analysed individually. This dictates the requirement for a method of analysis 

which examines simultaneously all the variables that contribute to a particular cell 

(Demers et a/., 1992). Secondly, in order to cover as much of the range of biological 

variation as possible, a sufficient number of flow cytometric signatures, representative of 

each species, must be analysed. The need for such an abundance of variable data 

intensifies the extent of overlap between different species, as well as limiting the choice of 

algorithm to those that can cope with large data sets.

7.5 Plankton Reactivity in the Marine Environment - PRIME

The Biogeochemical Ocean Flux Study programme introduced the PRiME project 

in the early 1990s. At the start of 1995, a number of Oceanographic Research groups were 

brought together to lay the basis for comprehensive, mathematical models of the nature, 

distribution and interaction of ocean plankton, with a particular understanding of the 

contribution of these organisms to biogeochemical processes in the world's aquatic 

regions. Modelling employs both historical and empirical data generated during the course 

of the project. Varying techniques, old and new, including microscopy and acoustical 

engineering, have been employed in the programme to analyse areas such as grazing, 

normally containing a predator (e.g. Zooplankton), and competition experiments, 

addressing the survival of individual phytoplankton species in a fight for nutrients. The 

requirements of the PRiME project for the research reported here, was to further the 

coupling of Automated Flow Cytometry with Artificial Neural Networks, producing a 

rapid, portable and flexible multi-variate analysis technique, for identification and 

classification of large numbers of phytoplankton (Section 1.7 & 1.8).
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1.6 Pattern Recognition

Pattern Recognition encompasses many areas of data interpretation. Its 

implementation is found in numerous fields such as, computer vision, seismic analysis, 

face and speech recognition, character recognition and medical diagnosis. Any 

application which, broadly speaking, involves the description, identification or 

classification of measurements, may be termed a pattern recognition problem. It may be 

categorised as an information reduction, information mapping or information labelling 

process (Schalkoff, 1992). It is based on recognising a set of states which provide 

information about a certain event, such as the pattern set of optical parameters which 

represent the flow cytometric signature of a phytoplankton cell. The primary approaches 

to pattern recognition fall into three main categories:

  Statistical pattern recognition considers class-conditioned probabilities or probability 

density functions (Section 1.6.1).

  Syntactic pattern recognition looks at the internal relationship between features in a 

pattern, rather than the features themselves (not documented here).

  Artificial Neural Networks are the most recent form of pattern recognition and are the 

main focus of this thesis (Section 1.6.2.2).

Although varying in internal algorithm, the structure of each system is relatively 

similar, employing either a classification, identification or descriptive procedure to 

produce a decision.

1.6.1 Statistical Pattern Recognition Methods

Multivariate statistical analysis is commonly used for large data sets, where P 

measurements are recorded simultaneously on each of N individuals, allowing expression

of the data set as a data matrix:
/ N

 *11 x\2 '" xip

JC91 •*:22 
X = f :

XNI XN2 v

where X2i denotes the 1 st parameter recorded for the 2nd individual, and each row of the 

matrix can be considered as a vector representation of the N* individual in P-dimensional

10
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space. A number of classical methods of multivariate statistical analysis exist, all of 

which are well-explored and documented (Dillon & Goldstein, 1984; McLachlan, 1992; 

Krzanowski, 1993), some are briefly discussed here.

Cluster Analysis

Cluster analysis involves partitioning the data space into particular regions (sub­ 

sets or clusters) and then assigning each pattern in the data set to one of the clusters. It is 

a data reduction technique, where residence in a particular sub-set is dependent upon 

similarities more common to the other members than to the remaining patterns being 

considered. This similarity is commonly assessed via a distance metric and requires an 

inference to 'What is similarity?' and subsequently 'What is dissimilarity?'. Once a 

similarity threshold has been established, the data must be partitioned based on the 

concluded measure, a process for which numerous methods exist (Dillon & Goldstein, 

1984).

Discriminant Analysis - Bayesian Statistics

Discriminant analysis uses a set of independent variables to classify events into 

mutually exclusive and exhaustive groups. Bayesian statistics is concerned with the 

separation of two points in hyper-dimensional space, generally concluded by deciding how 

to partition the sample space. Considering a set of k classes of which pattern x belongs to 

class j, the analysis expresses the a posteriori probability Pr(class j I x), i.e. the 

probability that the class is j given the event x, in terms of the a priori probability of class 

j, Pr(classj), and the class conditional probability or likelihood, Pr(x\classj):

PHclassj I X) = Pr(x ' GlaSSJ) Pr <class J>
Pr(x)

The unconditional probability is denoted by the denominator and ensures that the posterior 

probabilities sum to one. It can be expressed in terms of the class conditional probability 

and the prior probabilities:

_ . , ... Pr(x I class j) Pr (class j) Pr (class j I x) = -^     -——•   —

Pr (x\ class j) Pr (class j)

11
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The classifier then assigns x to the class with the highest a posteriori probability. 

Calculated a posteriori probabilities can subsequently be used for analysis of new data 

(Bishop, 1995).

Feature Selection

Feature selection is a technique used for reducing dimensionality by selecting only 

a subset of the inputs, disregarding any that have little or no influence on classification. 

The procedure requires defining a threshold criterion to select influential parameters (Tou 

and Gonzalez, 1974)

Principal Component Analysis

A commonly used approach, Principal Component Analysis (Jolliffe, 1986; 

Preisendorfer, 1988), transforms a set of vectors, x, in a p-dimensional space, onto a set of 

vectors, z, in a m-dimensional space (where m<p), with minimum loss to variance of the 

original set. Generally, 2 or 3 principal components are extracted, where each is a linear 

combination of the input parameters and weights wn:

PCC = wclxl +Wc2x2 + - 

where c = l...m principal components and i = l...p variables.

p
Subject to the constraint ^ wci = 1 , the weights are chosen so that the variance of

/=!

PCC is a maximum (Krzanowski, 1993). The first principal component accounts for the 

majority of variance in the data and subsequent ones represent variation that is unrelated 

to any preceding principal component.

Multivariate statistical techniques have been employed in the analysis of flow 

cytometric data (e.g. Demers et at, 1992; Carr et al, 1996), however, some of these 

procedures have limitations, requiring decisions to be made prior to analysis. 

Dimensionality reduction techniques may cause loss of discriminatory information and 

possibly increase the overlap between classes, thereby making it more difficult to 

determine class membership. Bayesian statistics requires an a priori measure, normally

12
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the probability of a class' existence within the data set, to produce an accurate 

identification or allocation of a pattern to 1 of k classes. Prior knowledge is not generally 

available for the data considered in this research. Conversely, cluster analysis does not 

allocate to a pre-determined class. The threshold requirements of this method can be very 

much user-dependent i.e. similarity/dissimilarity measurements, and as the process of 

grouping or partitioning can continue until there exists either one group containing all 

patterns, or as many groups as there are patterns, knowledge of the number of groups 

actually present in the data set may be required. Whilst an appropriate statistical 

procedure may work well, the choice of technique is not always easy with difficulties 

arising if the assumptions made about the algorithm or data are incorrect.

Bayesian statistics (Chapter 3 & 4) and cluster analysis (Chapter 5) are further 

investigated and used in conjunction with ANNs.

1.6.2 Neural Computing

1.6.2.1 The Biological Pattern Recognition System

The basic element of information processing in the human brain is the neuron, an 

electrochemically respondent cell. Projecting from the cell are numerous dendrites and a 

single axon. The dendrites receive information from other neurons as electric impulses. 

These are transmitted across synaptic junctions, between the dendrites of one cell and the 

axons of others, through a chemical transfer using neurotransmitters (Heimer, 1995). The 

dendritic spines and the branch-like nature of the dendrites, ranging from one micrometer 

to one millimetre in length, designates a considerably large surface area upon which to 

receive information from other neurons. The human brain contains approximately 1011 

neurons, each one making connections with thousands of other neurons, indicating the 

presence of over 1014 synapses.

As a nerve impulse reaches the synaptic junction of a neuron, neurotransmitters are 

released to a receiving neuron. This interaction produces an action potential (electrical 

impulse), which will either depolarise or hyperpolarise the receiving synapse (Heimer, 

1995). The nature of the synapse may be excitatory or inhibitory and will influence 

whether the receiving neuron 'fires'. Each neuron receives impulses from thousands of 

other neurons. These impulses are scaled through adaptive strengths associated with each

13
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synapse. If the summation of the incoming signals passes the excitation threshold, the 

neuron fires a sequence of action potential spikes down the axon to the dendrites of 

receiving neurons and the process continues.

The processing time of a biological neuron is relatively slow when compared to 

electronic devices. However the overall processing, performed at an immensely parallel 

level, delivers complete computation in the order of 102 ms, far exceeding any automated 

processing (Bishop, 1994). The real-time capability of the brain is exceptional, as is its 

ability to adapt to various states, to be able to extrapolate and interpolate data and still 

function given a 'noise' situation. Additionally, it has a vast memory capacity and 

continues to function in the event of damage or death of individual neurons. It was these 

characteristics that inspired the onset of neural computing.

1.6.2.2 Artificial Neura^Networks

Typical von Neumann computers (von Neumann, 1945; Goldstine, 1972; Randell, 

1982) have the ability to perform a great many tasks at tremendous speeds. However, 

these computers are capable only of serial processing, requiring an external, pre­ 

determined, logical set of instructions to solve a particular problem. Thus, in an attempt to 

model the pattern recognition ability of the human brain, neural computation was 

developed, encompassing the capacity to simulate parallel performance with a distributed 

control that does not require the specific dictation of logical algorithms.

An Artificial Neural Network, or connectionist system, consists of a number of 

inter-connected nodes (neurons), linked by weighted junctions (analogous to synapses). 

Each of the nodes performs a relatively simple processing function, simulating an overall 

parallel computation. The basic features observed in the biological brain translate to 

ANNs in various ways, the majority of which are listed below:

  The neuron or processing unit in an ANN has a synaptic strength or weight 

modifying the signals.

  Neurons receive and pass on signals to multiple neurons.

  Some function is applied to the incoming signals.

  Memory storage can be long term and adaptive through the weighted connections.

14
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• Weights can be modified during learning (Chapter 2) to adapt to changes in 

environment.

  No programming is involved.

  They have the ability to recognise patterns immersed in noisy or uncertain data.

  ANNs are relatively robust to loss of information.

  They operate in real-time.

  They are capable of generalising from specific data.

These characteristics make ANNs advantageous to a diverse number of fields, 

especially where the problem supplies a vast quantity of multi-variate data. Their 

generalisation ability minimises the need for a priori knowledge and they do not require 

assumptions to be made about the distribution of the data, or the selection of an 

appropriate algorithm.

1.6.2.3 Neural Network Characteristics

There are many types of ANNs, distinguished primarily by their learning/training 

algorithm, the node characteristics and the network topology. A typical structure of a 

basic Multi Layer Perceptron (MLP) (Hush & Home, 1993; Chapter 2, Section 2.2) is 

shown in Figure 1.4. The processing units are arranged in layers. Typically, one hidden 

layer (Chapter 2, Section 2.2.2.1) is used but more can be introduced, depending on the 

structure and complexity of the data. Each node in a source layer is linked, through a 

weighted connection, to every node in its destination layer. The number of nodes in the 

input layer are representative of the number of input parameters for the specific problem, 

in this case, seven optical flow cytometry parameters, one node per parameter. The 

transformed output from the hidden layer node is received at the output layer, where the 

class membership is determined. There are a number of distinct categories for 

distinguishing ANNs.

Dynamic or Static
Dynamic networks, e.g. The Hopfield Network and Continuous Time Recurrent 

Network (Hush and Home, 1993), are capable of memory storage represented by node 

equations, either differential or difference. Conversely, static networks have memory-less
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Figure 1.4 A feed forward Multi Layer Perceptron with one layer of hidden nodes, seven 
input nodes, representing the 7 parameters of flow cytometric data, and an output layer 
with as many nodes as there are possible classes. The bias node acts as an extra hidden 
unit, with a constant value of 1.0, connected to all nodes in the hidden and output layer 
(not all connections are shown) (Chapter 2, Section 2.2).
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node equations, where each output is a function of the present input only, e.g. Radial 

Basis Function Network (RBF) (Moody and Darken, 1989; Broomhead and Lowe, 1988; 

Chapter 2, Section 2.4), and the Multi Layer Perceptron.

Binary or Continuous

Although many networks may be capable of processing both binary and continuous 

valued inputs, certain networks were designed for one type of data, for example, Adaptive 

Resonance Theory 1 (ART1) (Carpenter & Grossberg, 1987a) analyses binary data only. 

The ART2 network, by the same authors, accepts both binary and continuous data 

(1987b).

Supervised or Unsupervised
The learning mode is a primary differentiation between neural network algorithms. 

Supervised networks, like many classical pattern recognition systems, require the presence 

of some external knowledge. These paradigms, including the MLP, RBF and Learning 

Vector Quantisation network (LVQ) (Kohonen 1988, 1990), are used for identification 

rather than classification and learn through pattern association. The network requires a 
priori information in order to assign identified patterns correctly. In supervised networks, 

learning is via a set of n patterns, each of which belongs to 1 of N classes, where N may or 

may not be equal to n. Each of these n patterns has an associated label (target) indicating 

to which of the N classes it belongs. As training proceeds the network parameters are 

adapted, according to the learning algorithm, until the relationship between inputs and 

targets has been sufficiently modelled. For example, those patterns belonging to class 2 

will have a target output 0,1,0,...,0, and the network output should reflect this association. 

The values produced by the network will generally be continuous and the node producing 

the highest valued output indicates class membership.

Unsupervised networks, such as Kohonens Self Organising Map (SOM) (Lippman, 

1987; Kohonen 1990, 1997; Chapter 5), and ART networks, are independent of any 

external knowledge. These networks are not given a patterns associated identity and are 

therefore not forced to model any pre-existing relationship between input data and class 

membership. As no label is presented, training involves the network's own natural
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determination of pattern relationship and clusters accordingly. This is performed through 

some measure of mathematical similarity, generally a hyper-dimensional distance (e.g. 
Euclidean).

Data Transfer

Networks are also identified by the order and direction of data transfer. All of the 

architectures considered in this research, i.e. MLP, RBF and SOM, are feedforward 
networks. Used in most applications, these networks map a set of input values directly to 

a set of output values through some transformation. The input layer of the basic 

architecture, acts only as the receptor for the input parameters, performing no function of 

any kind. The data are transformed by some function in the hidden layer nodes and passed 

through weighted connections to the output layer, where interpretation of the signals 

produces a decision. This process can continue for as many epochs (the number of 

presentations of the training set) as required, but only in one direction. There is no lateral 

or reverse propagation of signals in the networks and no time-varying behaviour.

Alternatively, recurrent networks, such as ART, exhibit dynamic behaviour 

capabilities. These networks are considered as an interconnection of units, rather than 

layers, introducing lateral and reverse direction connections. They are applied to complex 

computations which require the additional ability of a network to map temporal events.

1,7 Flow Cytometry and Neural Networks

Identification and classification of phytoplankton by neural networks has been 

investigated in a number of fields, including image analysis (Culverhouse et al., 1996; 

Ellis et al., 1997) and remote sensing data (Scardi, 1996 & 1998). Much of the earlier 

research documented for ANN analysis of flow cytometric data, employed only MLP 

networks as the supervised approach to these pattern recognition problems. One of the 

first works which demonstrated the potential of the ANN/AFC approach, Frankel et al. 
(1989), used a back-propagation network and a Kohonen Self Organising Map to 

distinguish between large, naturally occurring phytoplankton species (Prochlorophytes and 

Synechococcus) from noise and calibration beads. Later, Frankel et al. (1996) used back- 

propagation networks to identify a number of laboratory grown cultures of phytoplankton,
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as well as natural populations, demonstrating further the robustness and flexibility of 

ANNs. Previous to this, Smits et al. (1992) and Balfoort et al. (1992) used MLPs to 

distinguish between cyanobacteria and non-cyanobacteria data, analysed on the Optical 

Plankton Analyser (OPA). The results for separating the poisonous from the non- 

poisonous algae were in the order of 99% correct. However, these two species were 

visually discernible through two- dimensional scatter plots, showing the nature of the 

identification to be relatively simple. Subsequent investigations include Wilkins et al. 
(1994a), which used LVQ and SOM networks for analysis of 7 species of freshwater 

phytoplankton, and Wilkins et al (1994b) where MLP and RBF networks were employed 

to identify a maximum of 12 marine phytoplankton classes.

All of the above works established the enormous possibilities in using ANNs to 

analyse flow cytometric data. However, the research mentioned so far considered only 

small data sets, with a limited number of classes (i.e. species), where the probability of 

correct identification/classification is expected to be high. In the natural world, the 

taxonomic categories would by far exceed those considered in many of the above studies. 

Exceptions to this are Boddy et al. (1994a & 2000), of which the initial work used a back- 

propagation network to discriminate between 42 species of phytoplankton, while the latter 

employed an RBF to identify 72 species, and Wilkins et al. (1999), which employed RBF 

networks to discriminate between 34 species. These works advanced the application of 

ANNs to AFC data by increasing the number of classes under analysis.

The research documented to date, illustrates that analysis of multi-variate flow 

cytometry data by ANNs is an extremely powerful approach to this area of pattern 

recognition. However, the natural abundance of phytoplankton populations requires the 

non-trivial task of analysis of a large number of both laboratory and field cultured species 

(classes), not always available in equal quantities. The discovery of a new species is 

inevitable, and its inclusion in subsequent analysis is a necessity. When this is 

encountered, the addition of the species to the database can cause problems with existing 

network architectures. Additionally, identification to taxonomic or genus level by 

supervised networks may be improved, if the labelled classes were more reflective of flow 

cytometric signatures than their original morphological groupings. This involves analysis 

by unsupervised networks to provide an indication of flow cytometric similarities. Thus,
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to fully realise the potential of the approach, further development is required to overcome 

these problems.

1.8 Aims and Objectives

The primary aim of this research was to investigate the application of neural 

networks to analytical flow cytometry data, for the identification and classification of 

phytoplankton. The rationale for the work was prompted by the requirements of the 

PRIME project (Section 1.5). A number of areas of investigation have been considered, 

an outline of which is presented.

1. Analysis of different supervised network paradigms to determine the optimal 

algorithm for the data considered (Chapter 2).

2. Analysis of network performance as the number of classes and events per class are 

varied, for both balanced and imbalanced training sets (Chapter 3 & 4).

3. Analysis of the selected paradigm with a high number of classes (Chapter 3).

4. Development of an alternative multiple network approach, simulating a parallel 

dynamic decision process, to overcome some of the limitations of the original 

multi-class network architecture (Chapter 4).

5. The subsequent improvement of supervised network performance, by using 

training data for which class membership is determined through flow cytometric 

similarities, rather than forcing morphometric groupings. (Chapter 3 & 4).

6. The development of various techniques of grouping data through determination of 

cluster centres and cluster boundaries on a Kohonen SOM (Chapter 5).

7. Illustration of the variance between morphology and flow cytometric signatures for 

some phytoplankton species (Chapter 5).

8. Analysis of the generalisation ability of a network, trained on a particular set of 

laboratory grown cultures (Chapter 2, Section 2.6), to be able to identify species 

from both differing synthetic cultures and actual field samples (Chapter 6).
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2 Supervised Neural Networks - MLP or RBF? 
2.1 Introduction

With the exception of a few papers (Wilkins et al., 1994b, Wilkins et al, 1999; Al- 

Haddad et al, 2000; Boddy et al, 2000), the majority of research aimed at identification of 
phytoplankton has utilised probably the most common supervised network architecture, the 

Multi Layer Perceptron (Frankel et al, 1989, 1996; Balfoort et al, 1992; Smits et. al, 
1992). Although this network has a documented performance success in pattern 
recognition areas, an alternative paradigm, the Radial Basis Function (Moody & Darken, 

1989; Broomhead & Lowe, 1988), has a number of advantages, including relatively rapid 
training times and the ability to reject unknowns, which appear to make it more suitable for 
the flow cytometric patterns being analysed.

This chapter discusses each of the architectures and applies both networks to a 
selection of 12 species from various taxonomic groups. The networks are assessed on 

suitability for the data, identification, and rejection of unknowns. An optimum paradigm is 
chosen and the reasons discussed.

2.2 Multi Layer Perceptron Artificial Neural Network (MLP ANN)
2.2.1 Architecture

The basic MLP consists of a number of processing elements arranged in layers 

(Chapter 1, Fig. 1.4). The Nin nodes in the input layer represent the A^, parameters of the 
training data. These input nodes serve only to distribute the input pattern to the one or 
more hidden layers of nodes, where a transfer function is implemented. The number of 
nodes in the hidden layer(s) is determined either heuristically or empirically. Computation 

also takes place within the output layer nodes, of which there exist as many as there are 
classes in the training data. Every node in a single layer is connected, via weights, to every 
node in a preceding or succeeding layer, and the computations that take place create an 

arbitrarily close approximation to any non-linear mapping.

2.2.2 Algorithm
The most common MLP algorithm is the back-propagation network, which is based 

on the error-correction learning rule (Rumelhart & McClelland, 1986; Haykin, 1994). This 

algorithm is performed in three main stages. Initially, training patterns are presented to the
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input layer and propagated forward (forward pass) via inhibitory or excitatory weighted 

connections. The calculated output from the network is compared to the desired output for 

the particular pattern and an error value determined. Next, the associated error is 

propagated backwards (backward pass) through the layers, and the final stage involves 

small adjustments to the weights, to reduce the calculated error. This process continues for 

a number of epochs until a defined limit is reached, or the error converges to a minimum. 

At this point the network is considered trained and any subsequent testing or usage 

involves only data flow in the forward direction.

2.2.2.1 Forward Pass

Hidden Layer Nodes

The input signal of the training vector x, where x = xi,X2.....xmn, is passed on to 

the hidden layer nodes for initial computation. These nodes act as feature extractors, 

forming an arbitrary mapping from Afln-dimensional input space to WOMrdimensional sample 

space. When considering a network with one hidden layer, the input of hidden node j is a 

weighed summation of the outputs from the Nin nodes in the input layer (for a network with 

a second hidden layer, this is the summation of the outputs from the preceding hidden layer 

nodes):

a i = =

where vv,-,- is a weight vector from input node i to hidden nodey and, wj0 denotes the bias for 

hidden node j, which acts as a weight vector with a constant value of 1. This can be 

represented within the summation by setting XQ to 1:

a j =

The activation, a/, is transformed by a non-linear transfer function g() and the subsequent 

output, Oj, is passed on to the next layer:

°j =8

in the case of one hidden layer node this is passed to the output layer.

The hidden layers of an MLP form infinite linear hyper-plane boundaries bisecting
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the data space. Identification of a pattern is dependent upon an input vector's proximity to 

one of these boundaries and upon which side of the boundary it falls, both of which are 

depicted by its activation level, a} . The orientation of the decision plane is defined by the 

node's weight vector, while the bias governs its perpendicular distance to the origin, 

ensuring the hyperplanes are not constrained to pass through the origin.

Transfer Function

A two layer perceptron, containing just input and output layers, is not capable of 

mapping a complex function that may bound non-linearly separable regions. A multi-layer 

linear system also lacks this ability, performing only as a single layer linear network. The 

activation function in the hidden layers makes the MLP more powerful than the basic 

perceptron, by introducing non-linearity into the network.

The elementary requirement for the transfer activation function is that it is 

differentiable and preferably bounded. Two of the most common non-linearly increasing 

activation functions are the sigmoidal, such as the monotonic increasing logistic function:

. x 1 + e x
bounded between 0 and 1 (Fig. 2. la), and the hyperbolic tangent function (Fig. 2.1b), 

bounded between  1 and +1 :

X — Xe - e
x , — xe + e

Output Layer
Each node in the output layer receives a weighted summation of the nodes from the 

preceding hidden layer. After application of a transfer function the value produced at the 

output layer nodes, y, indicates the network's response to a particular input pattern:

yn =s j=o
where Nhid is the number of hidden layer nodes, wnj is the weight from hidden node j to 

output node n, and the bias term has been again been absorbed in the summation. 

Although g() is depicted as the transfer function, there is no constraint on the form of the 

function within the output layer being the same as that of the hidden layer.

When the network uses a squared error cost function (Section 2.2.2.2), and the
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Figure 2.1 Non-linear transfer functions applied to the activation of the nodes in the MLP. 
(a) Sigmoid Function bounded between 0 and 1 (b) Hyperbolic Tangent bounded between 
-1 and 1. Other possibilities include trigonometric, log or Gaussian functions.
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outputs are termed 1 of Nout, it has be shown that with sufficient training data, the network 

outputs estimate Bayesian a posteriori probabilities, providing the class conditional 

probabilities and a priori probabilities are accurately reflected in the composition of the 

data (Richard & Lippman, 1991); this is discussed further in Chapters 3 & 4.

2.2.2.2 Backward Pass - Update

As the final calculation reaches the output layer, the backward pass begins with the 

determination of the associated error for a particular pattern, x:

««(*) = (tn (x)- y n (x)}

where yn(x) is the network output for node n with pattern x, and tn(x) is the target output for 

node n with pattern x, which takes a value of 1 if the pattern belongs to the class 

represented by node n, and 0 otherwise. The error or cost function is evaluated over all 

nodes for a particular pattern as the squared error:

Nnut

z n (x) where n = l,2...Nout

In order to achieve an optimum trained level, the free parameters within the 

network, i.e. the weights, must be adjusted so as to minimise the error. This optimisation 

is done via the error back-propagation, or Generalised Delta Rule (GDR). This is a 

process of gradient descent, where the errors computed at the output layer are propagated 

backwards through the network, and the local errors, i.e. local gradient (S), for each node 

are calculated (Lippman, 1987; Schalkoff, 1992; Hush & Home, 1993; Bishop, 1995). 

Weights are then successively updated layer by layer in an attempt to reduce the error.

The local gradient (delta value), &, is computed at the output layer as a product of 

the error for the particular node, n, and the derivative of the associated activation function:

5 n = e n (*)#'(««) 

The weight and bias correction terms are then defined respectively:

Aw«/ = ^n 0 j J = l > 2 — N hid 

Awn0 = T]5 n

where TJ is a learning-rate parameter.

The hidden nodes have no associated target and therefore the error term, 6], for a 

node; in the hidden layer, is calculated in terms of the delta inputs from the nodes in the
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output layer and the derivatives of the activation functions:

N.out
5 n w t

n=l

with weight and bias update as before:

Awji = rjSjXt

AWy 0 = TjS j

where, for a one hidden layer network, xt is the output from node / in the input layer.

Once all delta values have been calculated, the weights are updated simultaneously 

throughout the network for each particular connection:

™new = ™ 0ld + Aw

This iterative training process proceeds with continuous pattern presentations until the 

error reaches a stable minimum, or the algorithm is halted.

2.2.3 Network Initialisation 

2.2.3.1 Hidden Nodes

Kolmogrov's Mapping Neural Network Existence Theorem (Kolmogrov, 1957) 

generalised that any multi-variable continuous function, for a closed and bounded domain, 

could be represented by the superposition of a small number of single variable functions 

(ref. by Bishop, 1995). This suggested that a 3 layer network (i.e. one hidden layer) can 

perform any continuous mapping g(x), from an input space of d dimensions exactly to an 

output space of m dimensions, where the single hidden layer has (2d+l) units. This 

theorem incorporates a mono tonic increasing function within the hidden layer nodes, but is 

limited in its usage as no indication of the form of the function is known.

Generally the number of layers is dependent upon the complexity of the data and 

the decision boundaries required. However, a network with two hidden layers should be 

sufficient to map any complex function, and it has been suggested that there should be at 

least 3 times as many nodes in the second hidden layer as in the first (Lippman, 1987). 

The performance of one and two hidden layers was researched by de Villiers and Barnard 

(1992), where a comparison yielded no significant difference and in fact found that a one 

hidden layer network had a higher identification success.
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An increased number of hidden nodes does not always improve network 

performance and in some cases is counterproductive, for two main reasons. Firstly, too 

many nodes can have a significant influence on the time taken to achieve an optimum 

training level and secondly, surplus nodes may start to memorise the data causing the 

network to reach a state of overtraining, becoming unable to generalise on unseen data. 

The choice of how many hidden nodes and the structure of the layers is still very much a 

trial and error process, and can sometimes become a trade-off between training time and 
performance level.

2.2.5.2 Weights

The initial selection of weights has a significant influence on the successfulness of 

the network to learn and converge. An incorrect initialisation can cause slow convergence 

due to premature saturation (Lee et. al., 1991). This effect is apparent when the cost 

function appears to have reached a stable state, remaining almost constant for a period, but 

subsequently decreases further indicating a local minimum was reached instead of a global 

one. Lee suggests premature saturation can be avoided if the initial values of the weights 

are set to small, uniformly distributed, random numbers of the same dimension as the input 

data.

2.2.3.3 The Learning Rate Parameter : T]

The learning rate parameter controls the degree of change to the synaptic weights. 

For too small a value of 77 the weight changes are minimal, resulting in prolonged training 

periods and a risk of the error being trapped in local minima, where the value of 77 is not 

large enough to allow escape. However, too large a value of Tj causes instability in the 

network and convergence will be slow or unobtainable.

Setting 77 to an initial value and sequentially decreasing it as training progresses, 

avoids early risk of falling into local minima and increases the chance of convergence 

(Bishop, 1994).

2.2.3.4 Momentum : a

The introduction of a momentum term, a, to the GDR helps the system to avoid 

weight oscillation and aid convergence. This is achieved by adding a fraction, a (where
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0<#<1), of the previous weight adjustments at iteration t, to the present weight adjustment 

at iteration t+1. The momentum term, like the learning rate parameter, is also decreased 
during training. For further discussion of MLP and back-propagation see Rumelhart & 
McClelland 1986; Hush & Home, 1993; Bishop, 1995.

2.3 Radial Basis Functions and Interpolation

The RBF network is an alternative supervised paradigm, which has been used more 
recently in pattern recognition of phytoplankton flow cytometric signatures (Wilkins et al, 
1994b, Wilkins et al, 1999; Al-Haddad et al, 2000; Boddy et al, 2000). The network 
uses basis functions, or kernels, to determine the node activation via an arbitrary distance 
measure between the input vector and the kernels. Their initial use was for interpolation in 
hyper-dimensional space (Powell, 1985), and they were implemented into an ANN by 
Broomhead and Lowe (1988).

Given a set of A/,n input vectors, xi5 each with a target vector tt, the interpolation 
problem requires finding a function when mapping from a ^-dimensional input space, x, to 
a one-dimensional output space, t, such that:

/(*,-) = *,- i = l,2,............Nin

This is implemented via a set of Nin basis functions of the form &(\\x - x{ |) , where Xj are

the centres of the basis functions, and 11.11 indicates the norm, usually Euclidean 
(Broomhead & Lowe, 1988; Haykin, 1994). A weighted, linear combination of the basis 

functions forms the output of the mapping:

This translates to multiple output variables as each input vector, xi; is associated with a 

target vector, ft, generalising to:

fj (xi ) = tij i = l,2,.....Nin j = \,2......Nout

which leads to:
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2.4 Radial Basis Functions as Neural Networks

A direct implementation of the interpolation function as a neural network, requires 

a number of modifications to overcome certain restrictions (Broomhead and Lowe 1988; 

Moody and Darken 1989). Primarily, the requirement of as many basis functions as there 

are input vectors makes the procedure cumbersome and mathematically demanding. In 

cases where noise may be present, forcing the function to pass through every data point 

creates a continuous differentiable surface, that has a high oscillatory character (Bishop, 

1995). When modelling the underlying nature of the data this fitting of misleading 

variations is undesirable and results in poor generalisation. A function is required that is 

capable of averaging over any noisy data or anomalies, and is able to generalise enough to 

recognise unseen data. Allowing basis function number (Nhid), position and width to be 

variable and data dependent, makes the RBF a powerful interpolation tool, which is 

capable of mapping high dimensional data to a linearly separable space:

Jt=0

where vv,* is the weight vector between kernel centre k (hidden node) and output node j and 

the bias term has been absorbed in the summation by including an extra basis function t%, 

whose output is 1.

2.4.1 Architecture

The three layer architecture of the RBF network (Fig. 2.2) is similar to that of the 

MLP. The NM nodes in the input layer, one for each parameter of the data, transfer the Nin- 
dimensional training data to the hidden layer (of which there is normally one). The hidden 

layer nodes implement the basis functions and propagate their output, via weighted 

connections, through a linear summation that takes place in the output layer. A network 

decision on class membership is formed in the 1 of NOM output nodes.

Unlike the MLP, training in an RBF takes place in two separate stages. The first 

stage involves locating the positions of the basis functions and can be determined through 

supervised or unsupervised methods. The second stage involves calculating the connection 

weights between the hidden layer nodes and the output layer nodes.
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Output Layer - 1 ofNout Nodes
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kernel centres
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Input Laver — 7 Nodes

Figure 2.2 A Radial Basis Function Network with one layer of hidden nodes, seven input 
nodes (Nin), representing the 7 parameters of flow cytometric data, and an output layer with 
as many nodes as there are possible classes. The bias node acts as an extra hidden unit, 
with a constant value of 1.0, connected to all nodes in the output layer (not all connections 

are shown).
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2.4.2 Learning Algorithm
2.4.2.1 Location of the Basis Functions

The basis functions in an RBF network each represent a finite area of the input 

space. Each responds only to data points that fall within a small localised region of the 

centre of the particular kernel. A suitable number of kernels must therefore be chosen to 

span the entire input space and suitably model the data. This will allow the network to 

generalise without causing overfitting or memorisation, where only data found in the 
training set is recognised.

A number of methods exist to select and optimise the position of the basis function 
centres, including subsets of input data, orthogonal least squares, K-means and supervised 

clustering, all of which are summarised below.

Subsets of input data
k random pattern vectors are selected from the training data and implemented as 

kernel centre locations. Although the simplest method, it requires a large number of data 

points for good performance and is a poor approximator of density estimation, leaving 

many highly populated areas over-represented, while sparser regions are empty. It is used 

mainly as a starting point for other more optimal methods, where placement is generally an 

iterative process.

Orthogonal Least Squares
This method defines the network as a linear regression model and involves the 

selection of basis functions centred at different data points (Chen et al, 1991). Like the 
random sub-selection, the process defines which data points will be chosen to represent 

basis functions. Using an orthogonal procedure, such as Gram-Schmidt (Nering, 1970), a 

set of orthogonal vectors are constructed from the regressor vectors (basis functions), and 

the contribution of each to the output is established. The data point chosen as a basis 

function, is that which produces the greatest reduction in the sum of squares error.

K-means (Unsupervised Clustering)
This algorithm determines the number of k kernel centres in advance, via 

unsupervised clustering. It is based on the minimisation of the sum-of-squared distances
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between a kernel centre and the data points in its cluster domain (Tou & Gonzalez, 1974; 

Moody & Darken 1989). Initially, the centres are chosen at random from the data set. 

Hyper-dimensional distances between every input vector and each kernel centre are 

calculated and assigned to the centre for whom their distance is a minimum. This 

partitions the data points into k disjoint subsets, 5,, where j = l,2....k. After primary 

separation, the centre positions are adjusted by moving the kernel to the mean of each 

cluster. The minimum distance between the new cluster centres and all data points is again 

calculated and, if required, the data points are assigned to new kernels. The means are re­ 

computed and the iterative process continues until there is little, or no change in update of 

the centres.

Supervised Clustering

Unlike the previous methods a supervised placement of basis functions such as 

Learning Vector Quantisation (LVQ) (Kohonen 1988, 1990), will allow information about 

class membership to be encoded directly into the network. LVQ utilises a finite number of 

discrete codebook vectors or reference vectors, to model the distribution of individual 

classes, instead of the entire data set as one. M vectors are allocated to each of the 

identified classes present and the distribution is approximated defining class regions. In 

each of the subsets, 5,, the initial placement of the reference vector is random, after which 

competitive learning is employed to optimise placement of the winning node. The node 

deemed the winner is that one having the minimum Euclidean distance to the presented 

input pattern. If this node is representative of the class the data point is a member of, it is 

moved closer to that point. Conversely, if the winning node is representative of a different 

class, it is moved away from the point.

2.4.2.2 Form of the Basis Function
The exact form of the basis function appears to have little effect on the performance 

of the RBF networks (Haykin, 1994). As this is not an issue here only the most common 

form, the Gaussian kernel function (Fig. 2.3) is implemented throughout:

Iff I
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Figure 2.3 The Gaussian kernel function with varying values of a, the width parameter. 
This is the most common form of the basis function employed by RBF networks.
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Translated to the output of the hidden layer node, the function is defined in terms of 

a Euclidean distance metric between the kernel centres and the data points:

/ v &u \ T
0k = exp

(x —

where x is the AfJ/rdimensional input vector, mk , is the position vector of the kth kernel 

centre and a^ is the normalisation parameter, which controls the width of the k"1 kernel.

The basis functions form radially symmetric concentric boundaries around their 

centre locations, at which point the node output is one, reducing to zero as the distance 

from the centre increases, thereby producing a localised response to input patterns. The 

normalisation parameter can be calculated as the average Euclidean distance between a 

kernel centre and the A7* corresponding data points it represents (Hush and Home, 1993):
1 T

(x-mk ) (x-mk )
Ni xeSt

where 5* is the set of input vectors represented by kernel k. This can also be represented 

by the trace of the variance-covariance matrix, Ck, which summarises the distribution of 

data assigned to the particular kernel, k (Wilkins et al, 1994b):

r 2 -2 

.2

and

22 2&N2 ••• GNN.

trace (Ck ) = £ ffu

where oj, is the variance of the im component of the input vector x:
-,2 

xeSt

and Oij is the covariance between the 1th and jm components of x:

N;
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The functionality of the basis functions can be increased by replacing the Euclidean 
distance metric with the Mahalanobis distance metric, thus:

#k = exp(-|(x-int ) 7'£;1 (x-mk )) where ^£~1= cjc

This more versatile distance metric alters the spatial extent and shape of the basis 
functions, making them hyper-ellipsoids with varying principle axes (Hush & Home, 
1993). The actual distribution and dimensions of the function are defined by the

normalisation matrix, ^^ which takes one of three forms depending on Ck.

1. The principal axes of the hyper-ellipsoids are indicated by the eigenvectors of Ck, 
whose eigenvalues give the variances along the respective principal axes directions 
(Bishop, 1995). If Ck is non-diagonal, the axes are not restricted to the co-ordinate 
axes of the data, but can be oriented along the axes of possible clusters (Fig. 2.4a). 
Since the shape of the basis functions is defined by the eigenvalues and 
eigenvectors of the matrix Ck, it is this that defines basis overlap. Although using 
large eigenvalues produces good generalisation, it can increase the loss of local 
properties due to overlap of different class clusters (Musavi et al., 1992). This can 
be avoided if the covariance matrix for a basis function is constrained by the 
location of the nearest training point that does not belong to it. Musavi et al., 
(1992) suggests a method for this using the Gram-Schmidt orthogonalisation 
procedure to incorporate the information into the matrix.

2. If Ck is diagonal and the diagonal elements are not equal, the basis functions are 
still hyper-ellipsoids but with principal axes parallel to the co-ordinate axes (Fig. 
2.4b). A generalised version of the normalisation parameter can be applied to 
determine kernel width by defining individual scaling factors such that:

v2

giving the variance of the ith component of the patterns allocated to kernel k. 
3. If Ck is diagonal and the diagonal elements are equal, the basis functions are 

radially symmetric hyper-spheres. This is in fact the Euclidean distance, where the 

scaling factor, o, controls the width (Fig. 2.4c).
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Figure 2.4 Spatial extent and shape of the basis functions with varying forms of the 
variance-covariance matrix where m is the vector defining the kernel centre. The 
principal axes are indicated by the eigenvectors of Ck, and the variances along the 
respective principal axes directions are given by the eigenvalues of the matrix, (a) Ck 
is a non-diagonal matrix forming hyper-ellipsoid basis functions whose principal axes 
are not restricted to the co-ordinate axes of the input data, (b) Ck is a diagonal matrix, 
where the diagonal elements are not equal, forming hyper-ellipsoid basis functions 
whose axes are confined to the co-ordinate axes of the input data, (c) Ck is a diagonal 
matrix, where the diagonal elements are equal, forming radially symmetric hyper- 
spheres.
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2.4.2.3 Output Layer Weights

Once the hidden layer node parameters have been determined, the output from the 

basis function is propagated forward where a weighted linear summation occurs in each of 

the output layer nodes. Translated to matrix notation to give:

where W = (\vjk), and wjk is the weight connecting the k'h hidden layer node to output node 

j, 0 = (fyk), and &lk is the output of the kth hidden node when the I th input pattern is 

presented and Y= (yy) where yy is the output of node./ when presented with pattern i.

The optimum weights are found by minimising the total squared error calculated 

over all patterns present in the training data:

where y = (yi,y2,y3---yNout)T represents the actual network outputs and t = (ti, 12,13... tNOUt)T 

represents the actual target values, where // is 1 if the pattern comes from class 1 and 0 

otherwise. Although the solution can be solved via an iterative least mean squares 

procedure, placing the initial interpolation condition directly into the RBF matrix equation 

resolves the weights exactly, producing a set of linear equations (Bishop, 1995; Haykin, 

1994):

&12 
#22 &2Nhid

WU W12 t\\ t\2 * \Nout 
t2Nout

wNhidl wNhid2 "  wNhidNout 

where % is the target value of output node; when presented with pattern i.

This is the interpolation matrix ©W = T, which produces the formal solution for 

the weights that best minimises E as:
WT =0rT

rf:where 0r is the pseudoinverse termed 0 =

Once the optimum weights are determined the matrix calculation, QW = Y , can be 

solved, producing the network outputs which, like the MLP, represent the Bayesian a 

posteriori probability that an input belongs to 1 of NOM classes (Richard & Lippman, 1991; 

Chapter 3).

37



Chapter 2

When all network parameters are defined, i.e. basis functions and weights, they can 

be further optimised through a procedure of gradient descent. This requires defining an 

error surface and gradient with respect to a particular parameter. The parameter adjustment 

is then set proportional to the negative gradient, in order to move them towards an 

optimum solution of minimum error.

2.5 Paradigm Summary
The MLP and RBF are both capable of forming an arbitrarily close approximation to 

any non-linear mapping between multi-dimensional spaces. However, there are significant 

differences between the two paradigms making each appropriate for different tasks. These 

are summarised below:

  Both architectures consist of an input and output layer. However, where the RBF 

normally has only one hidden layer, the MLP may have one or more.

  Training in an RBF takes place in two completely autonomous procedures whereas the 

MLP parameters are generally determined simultaneously, as part of a supervised 

global training strategy.

  The activation functions of the hidden layer of an MLP are non-zero over an infinitely 

large region of the input space. This will produce activation from a number of hidden 

layer nodes when presented with an input pattern. Conversely the RBF uses localised 

basis functions {e.g. Gaussian) which cover only limited hyperspherical or 

hyperellipsoidal regions of the input space, producing notable activation from only a 

small number of hidden nodes within the vicinity of the input pattern (Haykin, 1994).

  In an RBF the non-linear operations of the hidden layer have a different purpose and 

are completely separate to the linear activations of the output layer. The hidden and 

output layers of an MLP normally share a common non-linear model, whose activation 

functions are not necessarily the same.

  In the hidden layer of a RBF, a distance metric between the input pattern and kernel 

location, forms the argument of the activation function. In a MLP the activation 

function transforms the weighted summation of the input signals.

Whilst the differences between the algorithms of the two architectures are obvious, 

their empirical performance for the particular data set has to be established. The following
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sections provide a comparison of both architectures when applied to the phytoplankton 

data.

2.6 Data Collection, Preparation and Pre-processing
A data set of laboratory cultured phytoplankton (PRiME 1) was received for 

analysis, supplied by the Plymouth Culture Collection. PRiME 1 consists of 62 species of 

phytoplankton from 5 taxonomic groups. The species spanned a range of sizes and 

morphologies, representative of natural phytoplankton populations (Table 2.1). The 

phytoplankton cultures were maintained in a Gallenkamp INF-781 incubator at 

approximately 15°C and were illuminated on a 12 hr light, 12 hr dark cycle at 

50|omol quanta m'V1 . Batch cultures were grown for several weeks before analysis and 

were sub-cultured every 3-4 days to maintain cultures in exponential growth. With the 

exception of Emiliania huxleyi B1J, which was grown in F/10 medium, all species were 

cultured in F/2 medium (Guillard, 1975), with or without soil extract (Boddy et al, 2000).

The cultures were analysed over 2 days with 3 species run a week later due to 

dilution levels being initially too high. The cultures were analysed by flow cytometry 

using thresholds as described in Chapter 1 (Section 1.4.2), imposed via FACStation  

software. Samples were run for four minutes at a flow rate of 100|0l min"1 , with the 

majority of cases consisting of 3 replicate samples of 10,000 events for each species. 

Instrument drift was monitored by analysing Coulter  Standard Brite  fluorescent beads, 

10 microns in size containing a fluorochrome with a broad band of emission from about 

400-700nm. The data were gated at Plymouth Marine Laboratory by omitting events with 

low red fluorescence signals to exclude any possible noise clusters, such as bacteria or 

inorganic particles. This produced primarily uni-modal data, with the exception of a small 

number of multi-modal cultures reflecting, perhaps, cells at different stages of growth. The 

listmode files were linearly rescaled in the range 0 to 1 for the RBF ANN and -1 to +1 for 

the MLP ANN (using a tanh transfer function). Without reseating, the weighted 

summation of a node can become large, causing saturation of the activation level (0 or 1), 

producing a zero derivative and halting learning (NeuralWare, Inc, 199la).

Training and testing files were constructed via random sampling of the listmode 

files without replacement. This ensures complete autonomy between training and test files, 

and avoids the possibility of any systematic deviations present within the listmode files.
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Table 2.1 Database of 62 PRiME 1 species from five taxonomic groups indicating species 
name, order and size (n.b. There are two strains of Emiliania huxleyi).

Taxonomic Group Species Name Order Size

Cryptomonads Chroomonas sp. 
Chroomonas salina 
Cryptomonas appendiculata 
Cryptomonas calceiformis 
Cryptomonas maculata 
Cryptomonas reticulata 
Cryptomonas rostrella 
Hemiselmis brunnescens 
Hemiselmis rufescens 
Hemiselmis virescens 
Plagioselmis punctata 
Rhodomonas sp._______

Cryptomonadida 8-10
5-12
15-25
10-15
12-20
18-25
16-25
5-8
4-9
5-8
6-9 
8-13

Flagellates Micromonas pusilla 
Nephroselmis pyriformis 
Nephroselmis rotunda 
Pyramimonas grossii 
Pyramimonas obovata 
Tetraselmis impellucida 
Tetraselmis suecica 
Tetraselmis verrucosa 
Tetraselmis tetrathele 
Tetraselmis striata 
Chlamydomonas reginae 
Chlorella salina 
Dunaliella minuta 
Dunaliella primolecta 
Dunaliella tertiolecta 
Stichococcus bacillaris 
Porphyridium pupureum 
Rhodella maculata 
Ochromonas sp. 
Pelagococcus subviridis 
Pseudopedinella sp.___

Prasinomonadida

Volvocida

Rhodomonadida 

Chrysomonadida

I-3
4-7
6-8
5-10
4-8
II-19
6-15
3-11
10-16
6-8
11-20
4-8
3-12
5-12
6-12
5-8
4-6
7-24
3-12
2-3
8-10

Prymnesiomonad Chrysochromulina camella 
Chrysochromulina chiton 
Chrysochromulina cymbium 
Chrysochromulina polylepis 
Emiliania huxleyi 92 
Emiliania huxleyi Bll 
Ochrosphaera neopolitana 
Pavlova lutheri 
Phaeocystis pouchetii 
Pleurochrysis carterae 
Prymnesium parvum_____

Prymnesiida 6-12
5-9
6-10
6-8
5-6
5-7
8-10
4-6
3-6
10-18
8-10
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Taxonomic Group Species Name Order Size 
(im

Diatoms Amphora coffaeformis 
Chaetoceros calcitrans 
Phaeodactylum tricornutum 
Skeletonema costatum 
Thalassiosira weissflogii

Bacillariophyceae 10-20
4-6
8-35
3-5
12-20

Dinoflagellates Amphidinium carterae 
Aureodinium pigmentosum 
Gymnodinium vitiligo 
Gymodinium micrum 
Gymodinium simplex 
Gymodinium veneficum 
Gyrodinium aureolum 
Heterocapsa triquetra 
Prorocentrum balticum 
Prorocentrum micans 
Prorocentrum minimum 
Prorocentrum nanum 
Scrippsiella trochoidea

Dinoflagellida 15-20 
7-12
7-22
8-15
6-10
9-16
35-45
15-27
9-15
30-40
16-18
8-10
30-42
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2.7 Experimental Procedure 
2.7.1 Training and Testing Files

In order to compare the performance of each paradigm, two sets of 12 species were 

selected from the PRiME 1 database to construct training and testing files. The first set 

comprised only Dinoflagellate species (Table 2.2), whose scatter plots of depolarised light 

and red fluorescence exhibit overlap and indeterminate distinction between clusters (Fig. 

2.5a). The second set of species were chosen from the five taxonomic groups, due to a 

more distinct appearance of clusters from the two parameter scatter plots (Fig. 2.5b), and a 

greater range of cell sizes (Table 2.2). The training and test files for both sets contained 

300 randomly chosen events (patterns) per species. Each event within the data files is 

labelled with its correct identification, associated with the species class of which it is a 

member (i.e. 1 of N).

An additional test file was created consisting of data for 12 unknown species (i.e. 
species upon which the network had not yet been trained; Section 2.7.4.2), chosen from 

four of the taxonomic groups (i.e. excluding Dinoflagellates), representing both separable 

and overlapping species (Table 2.3). This was used to evaluate each network's 

performance with novel data.

2.7.2 MLP training
MLPs were simulated using the Neural Works Professional II Plus (NeuralWare, 

Inc., 1991a, 1991b) software. The default learning/recall schedule was used for training, 

employing only the tanh transfer function as literature indicates its superiority over the 

sigmoidal (Refenes & Alippi, 1991; NeuralWare, Inc., 1991b; Refenes et al, 1993; 

Harrington, 1993). The initial default values for the learning coefficient were 0.3 and 0.15, 

for the hidden and output layers respectively, with a momentum coefficient of 0.4 for both 

layers. Both parameters were decreased as training proceeded. Five different sized 

networks were trained and tested for each data set, containing 5, 10, 20, 30 and 40 hidden 

nodes in a single layer. Each network was trained three times from a different initialisation 

point to avoid a possible poor choice of weights (Section 2.2.3.2). The training for each of 

the five networks was for 100,000 pattern presentations, which was extended to 400,000 

for the network selected as optimum (highest overall performance). This extended period 

of training had no effect on RMS error and showed no improvement in test data 

performance.
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Table 2.2 Two sets of species, i.e. Dinoflagellate Group and Mixed Group, used to 
construct training and testing files for assessment of the two network paradigms, MLP and 
RBF.

Taxonomic
Group

Dinoflagellate Group Dinoflagellate
"

"

II

"

"

**

"

H

"

M

Mixed Group Cryptomonad
11

"

"

Diatom
tt

Dinoflagellate
"

Flagellate
"
tt

Prymnesiomonad

Species Name

Amphidinium carterae
Aureodinium pigmentosum
Gymodinium simplex
Gymodinium veneficum
Gymnodinium vitiligo
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea
Gyrodinium aureolum

Chroomonas sp.
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.
Amphora coffaeformis
Chaetoceros calcitrans
Gyrodinium aureolum
Prorocentrum balticum
Micromonas pusilla
Pelagococcus subviridis
Tetraselmis tetrathele
Emiliania huxleyi Bll

Order

Dinoflagellida
ti

"

11

it

M

"

"

11

"

II

Cryptomonadida
"
"
"

Bacillariophyceae
"

Dinoflagellida
**

Prasinomonadida
Chrysomonadida
Prasinomonadida
Prymnesiida

Size
(urn

15-20
7-12
6-10
9-16
7-22
15-27
9-15
30-40
16-18
8-10

30-42
35-45

8-10
5-8
6-9
8-13
10-20
4-6

35-45
9-15
1-3
2-3

10-16
5-7

0 Depolarised Light Scatter Depolarised Light Scatter

Figure 2.5 Two-dimensional scatter plots showing Depolarised Light Scatter against Red 
Fluorescence (Height), (a) Dinoflagellate species set (b) Mixed species set. Overlap 
intensity appears greater in the Dinoflagellate set.
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Table 2.3 Novel data used to test the ability of both networks to rejection unknown 
species.

Taxonomic Order Species Name Size
____Group___________________________________urn
Cryptomonads Cryptomonadida Chroomonas salina 5-12

" Cryptomonas maculata 12-20
" Hemiselmis rufescens 4-9

Diatoms Bacillariophyceae Phaeodactylum tricornutum 8-35
Skeletonema costatum 3-5
Thalassiosira weissflogii 12-20

Flagellates Volvocida Chlamydomonas reginae 11-20
" Dunaliella minuta 3-12

Prasinomonadida Nephroselmis rotunda 6-8
Prymnesiomonads Prymnesiida Chrysochromulina chiton 5-9

" Ochrosphaera neopolitana 8-10
Pavlova lutheri 4-6
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2.7.3 RBF training

Using the AimsNet software (developed during the Aims project; Automated 

Identification and Characterisation of Microbial Populations; by Wilkins, 2000). RBFs 

were simulated applying the Mahalanobis distance. Seven networks were trained and 

tested for both data sets, containing a total of 12, 24, 36, 48, 60, 84 and 96 asymmetric 

Gaussian kernels respectively. Placement of kernel centres was done via the LVQ method 

(Kohonen, 1988; 1990). An optimal subset of the hidden layer nodes was automatically 

selected via the orthogonal least squares elimination process (Chen et al, 1991). All 

networks were trained 3 times from different initialisation points, and optimised via 5 

iterations of a conjugate directions gradient descent operation, which, as with the MLP, 

attempts to learn the free parameters in order to minimise the defined mapping error. The 

optimum network was then trained for a further 10 iterations, which failed to improve 

identification of the test data.

2.7.4 Testing Procedure 
2.7.4.1 Probability Matrices

After training had terminated, performance of each network was assessed using a 

number of probability measures applied to the labelled test file. The generated results files 

contain values produced at each of the 1 of NOM output nodes, y, for every test pattern, x, 
presented, with the highest value indicating possible class membership. From these 

results, matrices were created indicating the probability of correct identification for each 

class as the leading diagonal values, i.e. Mu = p(y-i\x=i), and the probability of a species 

identified as class j, which actually belongs to class i, as the off diagonal values, i.e. My = 

p(y=j\x=i). From this, two additional probabilities can be determined: (1) the overall 

probability of correct identification, calculated as the mean of the individual probabilities 

of correct identification, i.e. the mean of the values on the leading diagonal; (2) the 

confidence of identification, p(x=j\y=j), which is the probability that a pattern identified 

as belonging to class j, actually does belong to class j, calculated as

(Boddy et al, 1994a), assuming the a prior values for each pattern are equal.
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2.7.4.2 Rejection of Unknowns
A network's identification success is not the only assessment of how well it 

performs as a pattern recognition system. In many instances the application for which a 

neural network has been trained is within a defined region, where any classes present in the 

testing data have already been incorporated when training the network. However, in many 

real world applications this is not the case, and an unknown number of ambiguous classes 

may be present (Morris & Boddy, 1996). Although an approximation of what exists may 

be sufficient, there will be times when absolute identification is required and any 

questionable areas must be disregarded, rather than identified incorrectly. This procedure 

will increase confidence of identification at the expense of overall number of patterns 

identified.

When considering unknowns it is unrealistic to incorporate an additional class to 

identify them. Not only would it need to include all biological variations of every species 

in existence, but also a representation of noise (e.g. debris, dead cells, etc.). Instead, 

threshold values are imposed on network parameters, in an attempt to exclude any novel 

data for whom network generalisation is poor.

For both paradigms two constraints were used to investigate unknown and known 

data rejection.

1. Rejection if the highest valued output is less than a threshold, Tl, where Tl ranges 

from 0 to 0.9 in intervals of 0.1

2. Rejection if the difference between the two highest outputs is less than a threshold, 

T2, where T2 ranges from 0 to 0.9 in intervals of 0.1

2.8 Results
Both the MLP and RBF networks discriminated between the mixed species set, 

with an overall percentage of correct identification of 96.1% for the optimum MLP, and 

96.9% for the RBF (Table 2.4). Variation in the number of hidden layer nodes for this set 

produced only a marginal increase in performance for the RBF, with a 0.6% difference 

between the minimum and maximum number of nodes. The performance of the MLP rose 

by 6% when the number of nodes was increased from 5 to 20, after which point it dropped 

slightly. Correct identification and confidence of identification for individual species was 

greater than 85% for both paradigms (Table 2.5).
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Network performance for the Dinoflagellate group was not as good, with a 

maximum value of correct identification of 83.2% for the RBF and 77% for the MLP 

(Table 2.4). Varying the number of hidden nodes from 12 to 96 in the RBF and from 5 to 

20 in the MLP, resulted in an increase of 7.6% in both networks. Individual species 

identification and confidence of identification varied for both paradigms, with the optimum 

RBF being superior approximately 70% of the time (Table 2.6). For both data sets, the 

MLP required 20 nodes to perform to the same level as the RBF employing only 12 nodes.

With a rejection criterion imposed on the highest valued output of both paradigms, 

rejection of known species from the mixed data set remained below 10% for a value of 0.6 

and increased to between 28% and 30% for a value of 0.9 (Fig. 2.6a). Rejection of 

unknown species remained at less than 5% by both networks for a threshold of 0.2. As this 

threshold was increased to 0.5 the MLP rejected only 12% of unknown species, whereas 

the RBF rejected 68% (Fig. 2.6a). For both architectures, rejection of known and unknown 

species from the Dinoflagellate group was approximately zero to a threshold of 0.2, 

beyond this, rejection of known species through the RBF, and both known and unknown 

species through the MLP, followed a similar path (Fig. 2.6b). Unknown species rejection 

by the RBF was slightly higher at all threshold values. As the rejection threshold increased 

to 0.5, identification dropped for individual species, producing overall success of 74.6% 

and 65.3% for the RBF and MLP networks respectively (not shown).

When the rejection criterion was set to the difference between the winning node 

and second highest, at a threshold of 0.2 over 50% of unknown species were rejected from 

the mixed data set by the RBF, and 23% by the MLP (Fig. 2.7a). Rejection of known 

species through both networks were similar, with less than 10% rejection at a threshold of 

0.4. Rejection of unknown species from the Dinoflagellate set were very close for both 

architectures, with approximately 23% being rejected at a threshold of 0.1 (Fig. 2.7b). 

However, known species rejection for both paradigms was also high, with the MLP 

rejecting approximately 10% more than the RBF at each value. At a value of 0.5, overall 

identification success were 53.4% and 41.9% for the RBF and MLP respectively.

Confidence of identification increased for most species in both network paradigms, 

irrelevant of constraint type.
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Table 2.4 Overall percentage of correct identification for the Mixed and Dinoflagellate 
data set, by each paradigm as hidden layer nodes are increased. The optimum networks 
chosen for further study, are selected from test data performance and indicated by '*M' 
and '*D' as optimum for the Mixed and Dinoflagellate data sets respectively. Individual 
species identification for the optimum networks are shown in Table 2.5 (Mixed Species) 
and Table 2.6 (Dinoflagellates).

Network No. 
Paradigm

MLP 

*M*D

RBF

*M 

*D

. of Hidden Layer Overall Correct Identification 
Nodes Mixed Species Dinoflagellates 

Training Test Training Test
5 
10 
20 
30 
40
12 
24 
36 
48 
60 
72 
84 
96

91.1 
95.6 
96.1 
95.9 
95.9
96.4 
96.8 
97.2 
97.1 
97.7 
97.7 
97.8 
97.9

90.1 
95.5 
96.1 
95.7 
95.9
96 

96.5 
96.6 
96.6 
96.9 
96.8 
96.7 
96.6

69.7 
77.1 
78 

78.1 
78.2
77.2 
81.8 
83.3 
84.1 
84.4 
84.7 
84.6 
84.7

69.4
75.5 
77 

77.1 
75.9
76.4 
80 
82 
82 
83 

83.2 
83.1 
83.2
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Table 2.5 Individual percentage of correct identification (corr) and confidence of 
identification (conf) for species in the Mixed data set by the optimum networks chosen i.e. 
MLP (96.1%) and RBF (96.9%).

MLP

Species Name

Amphora coffaeformis
Chaetoceros calcitrans
Chroomonas sp.
Emiliania huxleyi Bll
Gyrodinium aureolum
Hemiselmis virescens
Micromonas pusilla
Prorocentrum balticum
Pelagococcus subviridis
Plagioselmis punctata
Rhodomonas sp.
Tetraselmis tetrathele

Order

Bacillariophyceae
Bacillariophyceae
Cryptomonadida
Prymnesiida
Dinoflagellida
Cryptomonadida
Prasinomonadida
Dinoflagellida
Chrysomonadida
Cryptomonadida
Cryptomonadida
Prasinomonadida

Size um

10-20
4-6
8-10
5-7
35-45
5-8
1-3
9-15
2-3
6-9
8-13
10-16

% 
Corr

93
98.3
94.3
98
97.3
99.7
100
89.7
91.3
95.7
96.7
98

Conf
97.6
98.7
97.6
97.7
94.5
97.4
89.8
92.8
98.2
97.3
95.7
95.8

RBF

% 
Corr

94.3
98.7
94.3
97
97
98.3
100
95.3
93.3
97.3
98.3
98.7

Conf
97.9
99.3
97.7
99.3
95.8
97
95.6
90.4
97.9
98
95.2
99.4

Table 2.6 Individual percentage correct identification (corr) and confidence of 
identification (conf), for species in the Dinoflagellate data set by the optimum networks 
chosen i.e. MLP (77%) and RBF (83.2%).

MLP

Species Name Order

Amphidinium carterae Dinoflagellida
Aureodinium pigmentosum "
Gymodinium simplex "
Gymodinium veneflcum
Gymnodinium vitiligo "
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea
Gyrodinium aureolum

Size um

15-20
7-12
6-10
9-16
7-22
15-27
9-15
30-40
16-18
8-10
30-42
35-45

%
Corr
78.8
80.7
94.3
31.7
77.7
83.7
72

91.3
55

85.7
87.3
88.7

Conf
78.1
82

86.8
62.9
59.1
77

80.3
70.6
73.3
81.6
92.9
81.3

RBF

%
Corr
85.7
85.7
92.3
68.3
72.3
82.7
84
92
67

91.7
92

90.3

Conf
88.1
92.5
91.2
69.7
72.4
84.6
79.4
74.6
81.4
89

93.1
90.4
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ai 02 as a4 as 06 a? as 09 
Threshold

ai 02 03 out as a6 a? as a9 i
Threshold

(a) (b)

Figure 2.6 Overall percentage of species rejected when a threshold, Tl, was imposed 
upon the highest valued output.   Overall rejection of unknown data by the optimum RBF 
network,   Overall rejection of unknown data by the optimum MLP network, A Overall 
rejection of known data by the optimum RBF network, * Overall rejection of known data 
by the optimum MLP network, (a) the mixed species set and (b) the Dinoflagellate set.

o ai 0.2 03 a4 as ae a? as a9 i
Threshold

(a)

o ai 02 03 a4 as 0.6 a? as 0.9 i 
Threshold

(b)

Figure 2.7 Overall percentage of species rejected when a threshold, T2, is imposed upon 
the difference between the winning and the second highest nodes,   Overall rejection of 
unknown data by the optimum RBF network,   Overall rejection of unknown data by the 
optimum MLP network, A Overall rejection of known data by the optimum RBF network, 
* Overall rejection of known data by the optimum MLP network, (a) the mixed species set 
and (b) the Dinoflagellate set.
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2.9 Discussion

The mixed data set exhibits areas of visual distinction between many of the 

probable clusters (Fig. 2.6b), indicating little overlap between species and, accounting for 

the high discriminatory power of both paradigms. The performance of the 'optimum' 

RBF, for the Dinoflagellate data group, using 96 kernel centres, is only 2% higher than a 

network using 36 centres. In this instance it is chosen as the 'optimum' network as class 

numbers were few and time is irrelevant. However, in networks trained for a high number 

of classes, a trade off between a marginal rise in performance and the number of basis 

functions may take place, in order to reduce computational time and complexity. 

Additionally, in some cases increasing node numbers can have a more detrimental effect 

on performance, especially evident in the MLP. The probability of correct identification 

for individual species varies for both paradigms. However, some correlation can be seen 

between the networks, where species identified poorly by the RBF also have low 

identification values by the MLP. A common species to both sets, Prorocentrum balticum, 
indicates the problems in identification when overlap increases. The identification of the 

species within its own taxonomic group (i.e. Dinoflagellate), is at least 10% lower than 

when present in the mixed data set. This can be attributed to its misidentification with 

species from its own genus, and is discussed further in Chapter 3. Confidence of 

identification of individuals is generally higher in the RBF, indicating less cases of 

misidentification between species than were apparent in the MLP (Tables 2.5 & 2.6). 

When considering the mixed data set, where visual separation is possible, the hyperplane 

boundaries of the MLP are as effective as the hyperellipsoids of the RBF. However, the 

superiority of the RBF is indicated when identifying overlapping data distributions, where 

its ability to form complex decision boundaries allows it to approximate the data better 

than the MLP (Section 2.4.2.2). Although introducing a second hidden layer into the MLP 

will enable disjoint decision regions, it will require an assumption about the network's 

architecture. An increased number of layers, and therefore nodes, may restrict 

generalisation by the network, causing unpredictable behaviour, it may increase training 

times and will not necessarily improve performance (de Villiers and Barnard, 1992; 

Wilkins et al, 1994b).
The RBF rejects a greater number of unknowns from both data sets, irrelevant of 

constraint type, with less being rejected in the overlapping data set. The rejection of
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known species when the classes are distinct (Fig.2.7a), was relatively small and similar for 

both networks when the threshold T2 was imposed. However, as data overlap intensifies 

(Fig. 2.7b), a high number of knowns are rejected by the RBF, and more knowns than 

unknowns are rejected by the MLP. This results in a very poor overall identification at a 

very early threshold value. This threshold, although apparently effective with distinct data, 

must be considered in a real world example where ease of seperability will be low. In this 

instance, the performance of the constraint is very poor, indicating its unsuitability.

The formation of the decision boundaries in an MLP governs its inadequacy in 

rejecting novel data (Section 2.4.2.2). For example, Figure 2.8 shows a two-dimensional 

scatter plot for two of the species in the mixed data set, A and B (Chroomonas sp. and 

Chaetoceros calcitrans respectively, although species type is not significant here). The 

decision regions shown are hypothetical, and serve only to demonstrate the relationship 

between an imaginary unknown data point U, and the possible boundaries created by both 

paradigms. Identification of a pattern by an MLP, is dependent upon which side of a 

hyper-plane boundary the pattern falls. As these linear decision boundaries are infinite, 

any test pattern will have a notable output from the network, despite location in the data 

space. Although this gives the network the ability to generalise in sparser areas, the output 

values for unknown patterns (e.g. U in Fig. 2.8) may be of similar magnitude to that of the 

known data. Inevitably, an unknown pattern will be assigned a class membership, and 

exclusion of the pattern by threshold imposition may be at the expense of known data 

rejection. Theoretically, surplus nodes could be used to represent closed finite decision 

boundaries. However, the gradient descent, error reduction strategy of the MLP, means 

this is not guaranteed unless the network reduces its output error in the process, and as 

noted, unknown formation of boundaries in empty or sparse areas may have adverse effects 

on the network (Wilkins et al, 1994b). Conversely, as the hyperellipsoidal (or 

hyperspherical) boundaries of an RBF are finite and localised, the hidden node outputs 

decrease to 0 as the distance from the centre of the kernel increases. Therefore, the output 

value of a basis function (kernel) for a particular pattern, will be in relation to its proximity 

to the kernel centre, which in the case of a distinct unknown (e.g.U in Fig. 2.8) should be 

negligible. The summation values at the output layer for a novel pattern, will then be of a 

smaller magnitude to that of the known data points, and a threshold value would reject 

them without rejecting as many knowns. This distinction also offers an alternative
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0 N

Depolarised Light Scatter

Figure 2.8 Scatter plot showing the position of an imaginary unknown data point (LO in 
relation to the hypothetical boundaries created by the two network paradigms. The dotted 
line shows a possible location for an infinite hyperplane in the MLP, while the solid lines 
depict possible finite elliptical boundaries of the RBF.
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rejection criterion based on hidden layer node outputs, which will be discussed further 

(Chapter 3).

The location in data space of actual unknown species, whether they are laboratory 

grown or field samples, will of course not be as distinct as data point U. Therefore, 

introducing either constraint to a network will inevitably mean exclusion of those known 

species which fall below the threshold, or the inclusion of unknowns that have some 

resemblance to the knowns. This will naturally reduce the individual and overall 

probability of correct identification. This is more evident in the MLP, where identification 

successes were lower than for the RBF network. An increase in overall confidence of 

identification is apparent in both networks, where threshold imposition increases 

confidences for most individual species, due to the exclusion of ambiguous patterns. 

However, for some species this increase was small, indicating the incorrect identification 

of a number of unknown species as those present in the data sets; a trait again more evident 

in the MLP network.

2.10 Conclusion
The aim of this preliminary study was to exemplify the RBFs superiority over the 

MLP for data of this nature. Initially, the RBF boasts shorter training times than the MLP. 

Although not an issue with such small data sets, it is a distinct advantage in areas where 

networks may require constant re-training in real time, a prerequisite of this thesis. 

Secondly, the phytoplankton data used for this research, represents only a small laboratory 

grown subset of what is found in the field. In a natural environment, variation and overlap 

will be greatly increased, with some species exhibiting multi-modal data. The formation of 

convex continuous decision regions by the MLP, restricts its identification abilities to 

relatively simple, linearly separable data. However, the RBF is capable of forming 

complex non-linear decision regions, making it more suitable to model the distribution of 

this data. Finally, the formation of the decision boundaries has a considerable affect upon 

a network's ability to reject novel data. Using the more suitable threshold (i.e. highest 

valued output), both networks were capable of excluding unknowns, but the rejection by 

the MLP was continually lower than that of the RBF, with the reverse being true for 

knowns. These studies indicate the advantages of the RBF over the MLP for data of this 

nature, and it is therefore the chosen paradigm for the areas investigated in this thesis.
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3 Multi-Class RBF Networks for Phytoplankton Analysis 

3.1 Introduction
RBF networks were shown to be superior to MLPs, at least for 12 species, in 

Chapter 2. This, however, is not a realistic field number and the problem of scaling up is 

not a simple one. In a field environment the number of species will naturally be greater 

and data acquisition more difficult. Training data therefore, may not always be available in 

equal abundance, resulting in the possibility of an imbalanced representation of particular 

species.

It has been suggested, that an imbalance in event numbers may result in low error 

convergence of the subordinate class, thereby affecting overall performance (Anand et al, 
1993). Thus, this chapter firstly investigates the performance of the RBF, as the number of 

species and events per species are gradually increased, for both balanced and imbalanced 

data sets; imbalanced data sets are discussed further in Chapter 4.

Secondly, a more detailed evaluation of the RBF architecture is performed for a 

large data set. This includes, improving network performance by combining data for 

species with overlapping flow cytometric signatures, and evaluating the multi-class 

network's ability to reject unknown species.

3.2 Training Set Size
Although the analysis of large data sets has received some attention from neural 

network research, it has been applied primarily to data dimensionality (Raudys & Pikelis, 

1980; Chandrasekaran & Jain, 1975,1977; Jain & Chandrasekaran, 1982; Fukunaga & 

Hayes, 1989). High quantity of data is an area still largely under statistical investigation, 

with only a few algorithms able to cope with massive numbers of events and high- 

dimensional vectors. In particular fields, much of the data gathered may be redundant and 

therefore only a suitable subset is required. In these cases the training set comprises only 

relevant information, selected by, for example, the D-optimality Criterion (Choueiki & 

Mount-Campbell, 1999). In the case of flow cytometric data, the potentially wide 

biological variation may require analysis of a large, possibly imbalanced, number of cells 

from each population.
As class number (species) increases, the possibility that species present in the 

training data occupy the same or similar areas of the sample space multiplies, making non-
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linear partitioning a problem. As long as the classes forming the data set are separable, 
identification is achieved with high success. However, this only occurs when using a small 
number of species with distinct flow cytometric signatures (Frankel et al., 1989,1996, 
Smits et al., 1992, Balfoort et al, 1992). As the number of classes is increased, overlap can 
be considerable and the distinction between species (and therefore ease of identification) 
becomes particularly complex. Thus, scaling up is not easy.

When data size is being investigated, the quantity of data, coupled with the 
network's architecture, must be considered prior to training. The number of hidden layer 
nodes can have various effects on a network's ability to generalise. Baum and Haussler 
(1989) suggest a condition for determining data size for an MLP, based on the number of 
synaptic weights, W, the number of hidden layer nodes, M and the fraction of errors 
permitted on test, e, given by:

 . 32W,
e ^ e )

However, this equation produces a worst-case scenario (Haykin, 1994), and does not 
consider the nature or complexity of the data, or the possibility that data may not be 
available in equal abundance. As each application is unique, a more practical approach 
through trial and error is advocated.

Many of the species present in the database are represented by approximately 
10,000 events. To incorporate this much data for 62 classes (or indeed more) would be 
nonsensical, as the computational effort and time required would make the procedure 
unrealistic, and in fact is unnecessary, as is shown (Al-Haddad et al., 2000; Section 3.4). 
The number of events must allow adequate representation of species variation, in order for 
the network to generalise on unseen data. This optimum number must be high enough to 
avoid any memorisation of data, but low enough to avoid any high degree of computation, 

thereby keeping training times to a minimum.

3.3 Imbalanced Training Sets
When considering imbalanced event numbers, the effect of training data size on the 

network's performance can be more pronounced. If a species is inadequately represented 
by event numbers, presentation at every epoch of the same limited amount of data, may 
cause the network to memorise the particular representation of the subordinate class,
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rendering it unable to generalise. When a class is inadequately represented, the basis 

functions may be unable to approximate its distribution, causing error values to oscillate. 

In order to compensate for imbalanced training data, Richard & Lippman (1991) suggest 

adjusting network outputs using training data and correct class probabilities. It has already 

been noted that with appropriate architecture and algorithm, and sufficient training data, 

the network outputs estimate Bayesian probabilities (Richard and Lippman 1991). The 

output is implicitly the a priori class probability for classy, i.e. (Pr (class j)), multiplied by 

the class likelihood, i.e. (Pr (x\class j)), divided by the unconditional input probability 

(Chapter 1, Section 1.6.1). Richard and Lippman (1991) suggest that as the a priori term 

is simply a coefficient, it is possible to adjust it to counteract the imbalance producing a 

corrected identifier. An adjustment can be made dependent upon the ratio of training data 

frequency to that of test or field data. This scaling is simply performed by first multiplying 

the network output by the correct class probability and dividing by the training data class 

probability. This is detailed empirically in Section 3.4.3.

3.4 Experimental Procedure
The following experiments establish the effect on network performance, of both 

size of training data set and of imbalanced number of events. Data preparation and 

network training and testing were carried out as described in Chapter 2, Sections 2.6 & 2.7. 

The number of kernels (hidden layer nodes) defined for both balanced and imbalanced 

networks, for those networks trained using an LVQ placement strategy, were prior to 

training, and an optimal subset were automatically selected via the orthogonal least squares 

procedure (Chen et al, 1991; Chapter 2 - Section 2.4.2.1).

3.4.1 Balanced Event Numbers
For the first study, an initial set of 20 species were selected from the database. This 

included the Cryptomonads, as research indicated their high identification success (Section 

3.8.1.2), and a random selection of separable species. Nine training files were created, 

each containing the 20 species, with a random selection of 10, 25, 50, 100, 200, 400, 600, 

800 and 1000 events per class. For each of the 9 training files, 6 RBF networks were 

produced, with a total of 10 kernels for the first network, and 1 to 5 kernels per class 

(increasing in steps of 1) for the remaining 5. A random kernel placement strategy was
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used for the first network, while the others employed the LVQ method of placement 

(Kohonen, 1988, 1990; Chapter 2 - Section 2.4.2.1). All networks used a Mahalanobis 

distance metric.

Twenty randomly chosen species were added to the first set to create 40 classes, 

and 9 training files were created as before. The topology of the RBF networks produced 

were identical to those for the 20 species, with the exception of the first network which 

contained 20 randomly placed kernel centres.

Finally, a further 20 species were added to create 60 classes and the process 

repeated with the initial network containing 30 randomly placed centres.

Table 3.1 indicates membership to each of the three sets as A (20 species), B (40 

species) or C (60 species).

3.4.2 Imbalanced Event Numbers
For the second study, an optimum number of nodes and events were determined 

from the results of study one. The same species were used to construct the three individual 

data sets, containing 20, 40 and 60 classes (species) respectively. For each of the three 

sets, 30 imbalanced data files were constructed consisting of an x:y ratio of event numbers. 

Explicitly, x events per species for classes 1 to l/m and y events per species for classes 

(Vin+1) to n, where n is the total number of species and x and y are one of 400, 200, 100, 

50, 25 or 10 events per class. To ensure that class representation was not biased through 

easily discriminable species possibly dominating one half of the data set, the uneven split 

was then reversed, so a x:y split was then trained as a new network containing a y:x split. 

Table 3.1 indicates membership to either half of each of the three data sets as Al or A2 (20 

species), Bl or B2 (40 species) or Cl or C2 (60 species). Networks were trained for each 

data set using 3 hidden layer nodes per class, employing a Mahalanobis distance metric.

For both studies, all networks were trained three times from different initialisation 

points, and were tested using an independent test file consisting of equal events for all 

species present in each of the respective training sets (Chapter 2 - Section 2.7.4.1).
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Table 3.1 Membership to each of the three data sets, for the balanced event numbers, are 
indicated as A, B and C for the 20, 40 and 60 species sets respectively. The imbalanced 
sets are represented by 1 or 2, indicating class membership to either the first or second half 
of set A, B or C. Individual species identification and misidentification are shown for an 
optimum RBF network trained on 60 species.

Taxonomic 
Group and Order
Cryptomonads

Cryptomonadida
"

"

it

it

it

11

11

11

ii

11

M

Flagellates
Prasinomonadida

n
"
M

11

11

"

"

"

"

Volvocida
11
M

11

"

"

Rhodomonadida
M

Chrysomonadida

"
11

Prymnesiomonads
Prymnesiida

"
»

Species Name

Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Pyramimonas grossii
Pyramimonas obovata
Tetraselmis impellucida
Tetraselmis suecica
Tetraselmis verrucosa
Tetraselmis tetrathele
Tetraselmis striata
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Stichococcus bacillaris
Porphyridium pupureum
Rhodella maculata
Ochromonas sp.

Pelagococcus subviridis
Pseudopedinella sp.

Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium

Size
(Urn)

8-10
5-12
15-25
10-15
12-20
18-25
16-25
5-8
4-9
5-8
6-9
8-13

1-3
4-7
6-8
5-10
4-8

11-19
6-15
3-11
10-16
6-8

11-20
4-8

3-12
5-12
6-12
5-8
4-6

7-24
3-12

2-3
8-10

6-12
5-9

6-10

Data 
Set

A1B1C1
A1B1C1
A1B1C1
A1B1C1
A1B1C1
Al B1C1
Al Bl Cl
A1B1C1
A1B1C1
A2B2C1
A2B2C2
A2B2C2

A2B2C1
B2C2
B2C2

C2
C2

A2B2C2
B2C2

C2
A2B2C2

B2C2
B1C1

Cl
B1C1
B1C1
B1C1

C2
A2B2C2
A2B2C2

C2

A2B2C2
C2

B1C1
Cl
Cl

% correct 
i.d.

93.5
94

98.5
89
94
95

98.5
64

64.5
93

92.5
87.5

99.5
70

55.5
71
68
94

88.5
64

95.5
74.5
89
54

62.5
88.5
82.5
63
96

91.5
39.5

86.5
79.5

89
60.5
32.5

Species Misidentified 
>10%

H. rufescens (33%)
H. brunnescens (30%)

N. rotunda (23%)
N. pyriformis (31 %)

P. lutheri (11%)

C. polylepis (12%)

P. parvum (10.5%)
S. costatum (24%)

C. polylepis (20%)
C. polylepis (14%)

C. chiton (13% )
O. neopolitana (15%)
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Table 3.1 continued....

Taxonomic Group 
and Order
Prymnesiomonads

Prymnesiida
II

ti

it

ti

it

M

"

Diatoms
Bacillariophyceae

"

"

ti

Dinoflagellates
Dinoflagellida

"
11
"
it
"
11
n
"
n
n
"

Species Name

Chrysochromulina polylepis
Pleurochrysis carterae
Emiliania huxleyi B 1 1
Emiliania huxleyi 92
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Prymnesium parvum

Chaetoceros calcitrans
Phaeodactylum tricomutum
Skeletonema costatum
Thalassiosira weissflogii

Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

Size
(M.m)

6-8

10-18
5-7
5-6
8-10
4-6
3-6

8-10

4-6
8-35
3-5

12-20

7-12
8-15
6-10
9-16
7-22
35-45
15-27
9-15
30-40
16-18
8-10

30-42

Data 
Set

Cl
B2C2

Al B1C1
Cl
C2
C2
C2
C2

B1C1
A2B2C2

C2
C2

Cl
B1C1

Cl
B1C1
B1C1
B1C1
B2C1
B2C2
B2C2
B2C2

C2
B2C2

% correct 
id

63.5
90

99.5
78.5
45.5
72

56.5
75.5

87
94.5
80

93.5

86.5
74

62.5
46.5
63

88.5
79.5
66.5
74
58
63
42

Species Misidentified 
>10%

C. chiton (17.5%)

Pyramimonas obovata (14%)
Chlorella salina (11%)

G. vitiligo (32%)
G. veneficum(21%)

D. minuta (16.5%)
D. tertiolecta (17.5%)
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3.4.3 Compensation for Imbalanced Event Numbers
In the subsequent analysis, the training data class probabilities were estimated as 

the occurrence of events for each class in the data set. For example, for the 20 class data 

set, with 10 events per class for the first 10 species and 400 events for the remaining 10, 
the total number of events is given by:

Events per class x ———— + Events per class for x ° aSS6S 
for first 10 classes remaining 10 classes 2

i.e. 10x + 400x = 4100
2 2

The training class probability for the classes with 10 events each is therefore,

no. of events per class _ 10 
total no. of events 4100

and for those with 400 events per class,    
4100

The probabilities for the remaining combinations of event numbers are shown in 

Table 3.2. Richard and Lippman (1991) note that for certain applications the correct class 
probability can be discovered from the relevant statistics, generated either heuristically or 
empirically, depending on the area. In this instance, the correct class probabilities are 
estimated assuming classes are represented by equal event numbers, i.e. 1/20, 1/40 or 1/60, 
for the 20, 40 and 60 class data sets respectively. The adjustments were performed for 
each of the three data sets using the combinations of events indicated in Table 3.2.

3.5 Results
3.5.1 Balanced Event Numbers

The primary observation was the decrease in overall success as the number of 

species increased from 20 to 60 (Fig. 3. la, b, & c). For all three data sets, when the 
number of events was small, the difference between performance of training and test data 

was high. For 10 events per class identification success was between 10% and 20% higher 

for the training data, dropping to a difference of 3%-6% as the events were increased to 50 

per class. From 100 to 1000 events the 20 class networks exhibit little improvement, with 

a difference of 1% to 2% between training and test data for all numbers of kernel centres 

(92%-94% correct; Fig. 3. la). With the exception of the network trained using one node
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Table 3.2 Combinations of event numbers per class for each half of the imbalanced data 
sets as well as respective training data class probabilities, used to adjust network outputs.

Classes Events 
per 

class

1 to l/m 10 

(Vzn+l) to n 400

1 to Vai 25 

C/in+l) to n 400

1 to l/m 50 

e/2n+l)ton 400

1 to >/2n 100 

C/an+1) to n 400

1 to V2n 200 

0/2n+l) to n 400

20 Classes

Total Training 
Events Probs 
per set

10
4100 

4100 
400
4100

25
4250 

4250 
400
4250

50
4500 

4500 
400
4500

100
5000 

5000 
400
5000

200
6000 

6000 
400

6000

40 Classes 60 Classes

Total Training Total Training 
Events Probs Events Probs 
per set per set

10
8200 

8200 12300 
400
8200

25
8500 

8500 12750 
400
4850

50
9000 

9000 13500 
400
9000

100
10000 

10000 15000 
400

10000

200
13000 

13000 18000 
400

13000

10
12300 

400
12300

25
12750 

400
12750

50
13500 

400
13500

100
15000 

400
15000

200
18000 

400
18000
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per class (=81% correct), a similar trend can be seen for the 40 class networks for events 

greater than or equal to 200 (84%-86% correct; Fig. 3.1b), and also for the 60 class 

networks with the uniformity beginning just past 300 events per class (=74% correct for 

one node per class and =77% for 2 or more; Fig. 3.1c).

For all three data sets the species at the extreme ends of the identification range are 

shown, with Micromonas pusilla indicated as the most easily distinguishable in all cases, 

with a minimum identification of 95% correct, for all event numbers except 10.

3.5.2 Imbalanced Event Numbers
Overall identification success for the 20 species data set was higher than that of the 

40 and 60 species sets (not shown). With the exception of y<50, identification of species 

11-20 were high and consistent (Figs. 3.2a, b, c, d, e & f - N.B. Graphical representation is 

on event number not class numbers, in contrast to balanced events). As the event numbers 

for x dropped to 50 and below, performance of species 1-10 decreased. For all sets of 

networks the identification for species 1 to Vm decreased as the events and identification of 

species (Van+l) to n increased. Identification for the training data was always higher than 

that of the test data, with an approximate difference of 1-2% for training sets with events 

greater than 100, which increased to between 5% and 10% as the events dropped to 10. 

The results for balanced events for each of the three data sets all coincided with the 

positive or negative gradient of identification success, depending upon which half of the 

data set was being considered. The number of hidden layer nodes remaining were between 

46 and 56 for the 20 species networks, 96 and 106 for the 40 species networks and between 

126 and 136 for the 60 species network. The results of extreme species identification are 

indicated graphically showing best and worst cases for both halves of each data set (Figs. 

3.3a, b, c, d, e & f).

3.5.3 Compensation for Imbalanced Event Numbers
Adjusting network outputs dramatically improves identification success for test 

data, exhibiting a large improvement in the subordinate classes, at the expense of a slight 

decrease in identification success of the dominant classes (Fig. 3.4).
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50 100 150 200 290 300 350 
Events per class for species

400

0/2n+l) to n (y) (a)

50 100150200250300350400 
Events per class for species

A/,^1 Uon (y) (C)

50 100 150 200 __ _- _.

Events per class for species
C/2n+l) to n (y) (e)

50 100150200250300350400 
Events per class for species

(Wn+1) to n (y) (b)

50 100150200250300350400

Events per class for species
(Vin+l) to n (y) (d)

50 100150200250300350400

Events per class for species
(Vin+l) to n (y) (f)

Figure 3.2 Percentage of test data correctly identified as imbalanced event numbers are 
altered for classes 1 to l/2n (x) and (»/2n+l) to n (y), for each of the three data sets;   20 
Species (1-10), D 20 Species (11-20), A 40 Species (1-20), A 40 Species (21-40),   60 
Species (1-30), O 60 Species (31-60), (a) x = 400 events per class, (b) x = 200 events per 
class, (c) x = 100 events per class, (d) x = 50 events per class, (e) x = 25 events per class, 
(f) x = 10 events per class.
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0 SO 100

Events per class 
for species (Vzn+l) to n (y)

(a)

150 200 290 300 
Events per class 

for species (Vin+1) to n (y)

(b)

350 400

Figure 3.3 The identification of extreme species for both halves of each data set 
are indicated with the best for classes 1 to Vz n as +, worst for 1 to Vai as •, best for 
(l/2n + 1) to n as A and worst for (Van + 1) to n as •, for the 40 species data set. The 
same results are plotted in red for the 20 species data set and blue for the 60 species 
data set. (a) 10 events in classes 1 to Vm.. ^ Cryptomonas reticulata, • Hemiselmis 
rufescens, A Tetraselmis impellucida, • Pelagococcus subviridis, + Emiliania 
huxleyi Bll, • Gymnodinium micrum, A Micromonas pusilla, • Nephroselmis 
rotunda, + Emiliania huxleyi Bll, • Chrysochromulina chiton, A Rhodella 
maculata, • Ochromonas sp. (b) 100 events in classes 1 to Vai. ^ Emiliania huxleyi 
Bll, • Hemiselmis brunnescens, A Micromonas pusilla, • Pelagococcus subviridis, 
+ Cryptomonas rostrella, • Hemiselmis rufescens, A Micromonas pusilla, 
• Prorocentrum minimum, + Cryptomonas appendiculata, • Chrysochromulina 
cymbium, A Phaeodactylum tricornutum, • Ochrosphaera neopolitana.
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Figure 3.3 The identification of extreme species for both halves of each data set 
are indicated with the best for classes 1 to Vz n as +, worst for 1 to ¥m as •, best for 
(l/m + 1) to n as A and worst for (Vm + 1) to n as •, for the 40 species data set. The 
same results are plotted in red for the 20 species data set and blue for the 60 species 
data set. (c) 200 events in classes 1 to Vai. + Emiliania huxleyi Bll, • Hemiselmis 
rufescens, A Micromonas pusilla, • Plagioselmis punctata, + Cryptomonas 
appendiculata, • Gymnodinium veneficum, A Micromonas pusilla, • Prorocentrum 
minimum, + Cryptomonas appendiculata, • Chrysochromulina cymbium, 
A Tetraselmis tetrathele, • Ochrosphaera neopolitan. (d) 25 events in classes 1 to 
¥m. + Cryptomonas appendiculata, • Hemiselmis brunnescens, A Micromonas 
pusilla, • Pelagococcus subviridis, + Emiliania huxleyi Bll, • Gymnodinium 
veneficum, A Micromonas pusilla, • Nephroselmis pyriformis, + Emiliania huxleyi 
Bll, • Chrysochromulina cymbium, A Tetraselmis tetrathele, • Ochromonas sp.
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Figure 3.3 The identification of extreme species for both halves of each data set 
are indicated with the best for classes 1 to Vi n as ^, worst for 1 to Vzn. as •, best for 
(l/m + 1) to n as A and worst for ( l/2n + 1) to n as •, for the 40 species data set. The 
same results are plotted in red for the 20 species data set and blue for the 60 species 
data set. (e) 400 events in classes 1 to Vin. + Emiliania huxleyi Bll, • Hemiselmis 
brunnescens, A Micromonas pusilla, • Plagioselmis punctata, + Cryptomonas 
appendiculata, • Gymnodinium veneficum, A Micromonas pusilla, • Scrippsiella 
trochoidea, + Emiliania huxleyi Bll, • Gymnodinium veneficum, A Tetraselmis 
tetrathele, • Ochrosphaera neopolitana. (f) 50 events in classes 1 to Vin ^ Emiliania 
huxleyi Bll, • Hemiselmis brunnescens, A Micromonas pusilla, • Pelagococcus 
subviridis, + Emiliania huxleyi Bll, • Gymnodinium veneficum, A Micromonas 
pusilla, • Prorocentrum minimum, + Micromonas pusilla, • Chrysochromulina 
cymbium, A Tetraselmis tetrathele, • Ochrosphaera neopolitana.
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50 100 150 
Events per class

1 to »/2n (y)

(a)

200 50 100 150 
Events per class 
0/2n + 1) to n (y)

(b)

200

Figure 3.4 Performance identification for each half of the data sets after adjustments. 20 
species, • classes 1-10, D classes 11-20; 40 species, A classes 1-20, A classes 21-40; 60 
species, • classes 1-30, O classes 31-60. (a) y = 400 for classes l/m + 1 to n (b) y = 400 
for classes 1 to Vm.
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3.6 Discussion
3.6.1 Balanced Event Numbers

As the number of classes increases, overall success drops. This is expected of data 

with such complex and overlapping characteristics. The difference in identification 

success, between the training and test data using 10 events per class, is extreme for each of 

the three studies, with the training data at least 10% higher. This indicates poor 

generalisation, where the network has memorised the training data therefore reducing its 

ability to recognise unseen patterns. This phenomenon is apparent to a lesser extent when 

the events are raised to 50 per class. Compared to the 40 and 60 class sets, the overlap of 

data points in hyper-dimensional space for 20 species is at a minimum, and the 

performance of the network using one node for each of the 20 classes is as good as those 

using 2 or more (Fig.3.la). This appears to imply a simple linear discriminant function 

may be sufficient for this identification problem, however, this would only be true if all 

species distributions were Gaussian (which is not the case), and in fact as class number and 

overlap increases the margin drops to between 3% and 5%, indicating one node per class is 

inadequate (Fig. 3.1b & c). Using anything less than one node per class requires the 

inefficient random placement strategy, which for the 20 class data set greatly reduces 

identification to 57%. Beyond 200 events (disregarding the networks using one node per 

class), each of the overall identifications for the three data sets follow a relatively similar 

path, implying that an increased number of events and nodes does not necessarily mean an 

increase in performance. This would suggest, that much of the variation that is present in 

the laboratory cultured species can be covered by using 300 events per class, depending 

upon the number of classes being analysed. The high individual identification of some 

species reflects the separability and distinction of their optical characteristics. Increasing 

event numbers for those species for whom identification is poor, does not always improve 

performance, indicating that some may never be completely separable. Others, such as 

Micromonas pusilla, appear so distinct that only a small number of events are required for 

adequate identification.

3.6.2 Imbalanced Event Numbers
As with the balanced data sets (and for the same reason), the overall success 

decreased as the number of classes increased. The poor results in the balanced data sets for
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50 events and less, and the high margin between training and test data, indicated loss of 
generalisation by the networks. This memorising of the training data was again reiterated 
in the results for the imbalanced sets, where the difference for 50 events and below was 
always between 3% and 6%, with the higher end of the scale evident for the 60 species 
data sets. Similar trends are apparent in the identification success of all species, dependent 
upon which half of the data set they are from. The identification of species 1 to^/an for 
each number of events x, dropped as the number of events for species (Vm+\) to n 
increased, for several reasons. As the biological variation of species in the second half of 
the data set increases with event number, the networks' ability to generalise on unseen data 
from these classes O/ai+l) to n improves. With this increase there is greater chance of 
misidentification by species 1 to Vm, thereby reducing the identification of the first half of 
the data set, and possibly overall success. If the mean location of an inadequately 
represented cluster is false, due to insufficient event numbers or poor data, kernel 
placement towards that mean (via LVQ) will not necessarily be characteristic of the 
distribution of the class. Subsequently, as an unseen pattern is presented, it may locate a 
distance away from the poorly defined distribution centre and provoke an activation from a 
basis function within its proximity, representing a different, possibly dominant class.

For the 20 class species set, performance for classes 1 to lAn was always lower than 
for classes (l/zn+l) to n. This was not a result of the number of events used, but merely the 
split of particular species into either half of the data set. For example, Hemiselmis 
brunnescens and Hemiselmis rufescens (both in Al) have low individual identifications of 
62% and 60% respectively, due to misidentification with each other, therefore lowering the 
overall value. This occurrence can be seen in the extreme species identification, where 
there appears to be a large difference between best and worst, in each half of the three data 
sets. For the 40 and 60 species data sets, similar identifications were indicated for both 
halves of the data set at the points where events are equal, indicating a relatively even 
distribution of individual species identification. For the reasons already noted, as the 
balance tips in these two sets, the half represented by a greater number of events has the 
higher identification.
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3.6.3 Compensation for Imbalanced Event Numbers
As the adjustments using class and training probabilities are approximations of 

training to test data ratio, they will naturally correct the performance rate of the under- 
represented data. In this instance, event frequency for individual classes, for both training 
and testing data are known, allowing easy evaluation and application of the method. 
However, in a field environment or laboratory cultured mixture, this is rarely the case and 
assuming equal correct class probabilities will generally be incorrect. Additionally, once a 
network is trained, its employment lies in its ability to identify species, and proportion of 
species, in an unknown sample. If correct class frequencies are required for output 
adjustment to identify the sample, then obviously sample content is already known and the 
procedure seems pointless. With no knowledge available, it is not sensible to adjust output 
values on the assumption that poorly identified classes are under-represented. The intense 
overlap of some species implies that complete separability, and subsequent high 
identification, may never be achieved and adjusting outputs to compensate may produce 
ambiguous results.

Although the method is suitable in areas such as medical research, where a priori 
data may be obtained from statistical records, in the area investigated here it is unclear how 
to employ it directly. However, it may be beneficial in a situation where the cost of 
misidentification is high, and a few false positive identifications are acceptable. For 
example, when detecting toxic species the number of misidentities could be reduced by 
scaling network outputs accordingly.

3.7 Summary
The studies indicate, that with a multi-class neural network, adequate training 

patterns are required to cover the biological variation of each species, especially in cases of 
high class numbers where overlap is intense. Although a balanced data set is preferable, 
some species identify well, despite being represented by fewer event numbers. For 
example, a species that lies outside the main cluster of N species is distinguishable by its 
hyper-dimensional distance from the group. If the number of variants of the single strain 
are few, but distinct, a LVQ placement strategy will locate a kernel centre within the 
cluster, allowing its distribution to be modelled. Despite representation by a smaller 
number of events than the main cluster (providing they are not too few so as to provoke
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memorisation), identification of the species should be high because of its separable 

characteristics. In this case, the number of events need only cover its biological variation. 

This appears true of Micromonas pusilla (Flagellate), which identifies to 95% with only 

100 events, against 400 events for each of the remaining 59 classes. In a balanced data set 

this species constantly identifies to at least 98% correct. The consistency of the 

identification when less events are used, can be attributed to its variant characteristics, 

making it distinct from other species, including its own taxonomic group. Micromonas 

pusilla is not only small (l-3|im), but unlike other species, a plot of orange fluorescence 

against time of flight produces an empty data set, indicating minimum measures of 

phycoerythrin.
This is also evident when training a network on 400 events for the 1- l/m classes 

and 1000 events for the (l/m + 1) to n classes (results not shown). When tested on 1000 

unseen events for each class, the identification is approximately 8% higher overall for 

those species represented by classes (Vin+l) to n, than classes 1 to l/2n. On closer 

investigation the species that identify to >85% when the events are balanced, are still 

within approximately 2%-5% of this value when an imbalance is introduced, irrelevant of 

which side of the data set they are from. However, the species for whom identification is 

<75%, suffer more when using lower event numbers, benefiting as the number increases. 

This indicates the importance of representation of overlapping species whose flow 

cytometric signatures are less distinct.
For most of the studies in this research 300, 400 or 500 events per species have 

been chosen as adequate to cover biological variation, without the risk of memorisation. 

The difference in performance, if any, when an increased number of events are used is 

negligible and would require greater computational time and intensity.

3.8 Analysis of 62 Phytoplankton Species by RBF
Further studies were carried out to produce a more detailed investigation of the 

RBFs performance for a high number of overlapping classes.
Preparation of the flow cytometric data, and network training and testing was as 

described in Chapter 2 (Sections 2.6 & 2.7.3). As with the analysis of training data size 

(Section 3.4), the node numbers defined in the following sections are prior to network
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training and the optimal subset were determined automatically, via the orthogonal least 
squares algorithm (Chen et al, 1991; Chapter 2 - Section 2.4.2.1).

3.8.1 Experimental Procedure
3.8.1.1 Identification to Taxonomic Group Level

The first study examined identification to taxonomic group level. Each of the 5 
taxonomic categories were represented by 2500 events, taken equally from the species 
belonging to each respective group. Ten networks were trained, five using a Euclidean 
distance metric and five using a Mahalanobis distance metric. Hidden nodes were 
increased from 2 to 10 per class, in steps of 2. An independent test set was constructed to 
assess performance.

3.8.1.2 Comparison of Distance Metrics with Large Data Sets
The second study compared the performance of the RBF networks to species level, 

using the full compliment of data and two different distance metrics. Training and test 
files were created containing 62 classes (species) of 500 events per class. Ten networks 
were trained all starting with 6 nodes per class, five using the Euclidean distance metric 
and five using the Mahalanobis distance metric. The use of five identical networks for 
each distance metric was to assess consistency of performance and optimisation from 
random initialisation points.

3.8.1.3 Number of Hidden Layer Nodes
The third study examined the effect of varying the number of hidden layer nodes, 

with each distance metric, for identification to species level. Eight networks were trained 
on the 62 class data set containing 500 events per species. Four of the networks used a 
Euclidean distance metric and four used a Mahalanobis distance metric. Hidden layer 
nodes were increased from 2 to 8 per class, in steps of two, for both sets of four networks.

3.8.1.4 Principal Component Analysis
The fourth study applied Principal Component Analysis to the seven-dimensional 

62 class data, prior to training. Each class contained 500 events. Three principal
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components were defined, and used to train a 6 node per class network, employing a 
Mahalanobis distance metric. A similar test file was constructed to asses performance.

3.8.1.5 Species Combinations
The fifth study examined the effect on network identification when three grouping 

schemes were introduced. The first analysis investigated performance when all species 
within a genus were combined into separate groups (genera). This produced 37 classes 
containing 500 events each, with some groups containing only one species. The second 
part of this study combined those species, within a genus, whose mutual misidentification, 
from the optimum network in Section 3.8.1.2, was greater than 5%. This formed 50 
classes with 500 events per class. The third area involved the production of a confusion 
dendrogram from the same optimum network (Fig. 3.5). This is constructed through 
analysis of the misidentification matrix and shows a progressive natural grouping by the 
network. This starts with species whose mutual misidentification was high at the left of 
the diagram, down to those for which confusion was lower. As merging progresses, the 
networks performance increases until all species are grouped as one, and the networks 
overall identification is 100%. The degree of confusion between two groups of taxa is 
determined by summing all probabilities that a pattern at (i=l to n species), belonging to a 
species from group A, is misidentified as a pattern bj (j=l to m species), belonging to a 
species from group B, as follows:

m + n ' J

Three points were chosen on the dendrogram as indicated in Figure 3.5 and the 
corresponding species combined, producing 54, 50 and 40 classes of 500 events per class. 
All networks in study five were initialised with 6 hidden layer nodes per class, employing 
a Mahalanobis distance metric.

With the exception of the second study (Section 3.8.1.2), all networks were trained 
3 times from different initialisation points.
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Figure 3.5 Dendrogram showing the order in which respective species were clustered 
(Section 3.8.1.5) using the optimum network from Section 3.8.1.2. Clustering proceeds 
from left to right with the ordinate axis showing the percentage of misidentified data 
remaining at each clustering stage. The positions marked 1, 2 and 3 on the dendrogram 
indicate the 54, 50 and 40 group sets respectively, for species combination.
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3.8.2 Results
3.8.2.1 Identification to Taxonomic Group Level

As the number of hidden layer nodes was increased from 2 to 8, overall 
performance for both distance metrics increased, with networks employing the 
Mahalanobis distance metric consistently 3-4% higher than those employing the Euclidean 
distance metric. Increasing nodes beyond this had a detrimental effect on performance. 
The optimum network had an overall success of 87.7% and used 8 nodes per class, 
employing a Mahalanobis distance metric. Group misidentity was most common in the 
Flagellates, where approximately 15% were misidentified as Prymnesiomonads and more 
than 7% each as Diatoms and Dinoflagellates (Table 3.3). Confidence of identification for 
all taxonomic groups was greater than 80%.

3.8.2.2 Comparison of Distance Metrics with Large Data Sets
The networks using a Mahalanobis distance metric had an overall performance of 

approximately 4% higher, than those trained employing the Euclidean distance metric 
(Table 3.4). The 5 replicate networks employing a Mahalanobis distance metric had an 
overall mean of 77.7% correct. The number of asymmetric hidden layer nodes remaining, 
ranged from 135 to 146, compared to 133 to 154 radially symmetric nodes. The difference 
in performance for individual species varied. With the exception of three species, the 
networks employing a Mahalanobis distance metric, had individual identifications of up to 
20% higher than those using a Euclidean distance metric. Individual identification in the 
optimum network, ranged from 41% to 99%, with misidentity existing both within and 
between groups. With the exception of Hemiselmis brunnescens and Hemiselmis 
rufescens, of which misidentity was mutal, the Cryptomonads had identifications and 
confidence of identification greater than 86%. Prymnesiomonad identification ranged 
from 46% to 97%, with mutal misidentity between the genus Chrysochromulina, and 
misidentity of Ochrosphaera neopolitana and Phaeocystis pouchetii with species from 
different groups. Diatom identification is quite high for all species at an average of 87.6%. 
Flagellates and Dinoflagellates exhibit mutual, and non-mutual misidentity with species 
from various groups.
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Table 3.3 Misidentification matrix for network trained to identify to taxonomic group level 
with an overall performance of 87.7%

Taxonomic 
Group
Cryptomonads 
Diatoms 
Dinoflagellates 
Flagellates 
Prymnesiomonads

Cryptomonads

98.1
0 

0.8 
0.7 
0.2

Diatoms

0.1 
94.4
0.7 
7.4 
2.2

Dinoflagellates

0.9 
0.9 

87.2 
7.2 
4.6

Flagellates

0.9 
3.3 
6.5 
70 
4.3

Prymnesiomonads

0 
1.4 
4.7 
14.8 
88.7

Confidence______ 98.3 90.1 86.5 82.4 80.9
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Table 3.4 Mean identification and standard error of mean, for individual species across the 
5 networks trained for the Mahalanobis (Maha) and Euclidean (Euc) distance metrics.

Species name

Chroomonas salina
Chroomonas sp.
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.
Ochromonas sp.
Pelagococcus subviridis
Pseudopedinella sp.
Micromonas pus ilia
Nephroselmis pyriformis
Nephroselmis rotunda
Pyramimonas grossii
Pyramimonas obovata
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa
Porphyridium pupureum
Rhodella maculata
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Stichococcus bacillaris
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi B1J
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneflcum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

Taxonomic Order Size 
Group |j,m

Cryptomonads Cryptomonadida 5-12
8-10
15-25
10-15
12-20
18-25
16-25
5-8
4-9
5-8
6-9

8-13
Flagellates Chrysomonadida 3-12

2-3
8-10

Prasinomonadida 1-3
4-7
6-8
5-10
4-8

11-19
6-8

6-15
10-16
3-11

Rhodomonadida 4-6
7-24

Volvocida 11-20
4-8
3-12
5-12
6-12
5-8

Prymnesiomonads Prymnesiida 6-12
5-9

6-10
6-8
5-6
5-7
8-10
4-6
3-6

10-18
8-10

Diatoms Bacillariophyceae 10-20
4-6
8-35
3-5

12-20
Dinoflagellates Dinoflagellida 15-20

7-12
8-15
6-10
9-16
7-22

35-45
15-27
9-15
30-40
16-18
8-10
30-42

Mean 
Identification 

Maha Euc
92.4
94.9
98.0
92.8
90.8
94.6
99.4
64.6
58.6
96.1
91.6
92.4
60.3
87.9
74.1
98.9
70.5
50.6
68.4
65.0
93.4
71.8
86.6
94.9
64.8
95.2
93.5
91.4
53.9
67.3
85.0
84.0
66.0
86.2
62.4
43.2
60.6
81.1
97.3
41.6
78.4
61.1
89.5
80.1
88.2
87.1
92.6
74.5
91.6
75.0
87.0
72.2
64.3
43.8
67.5
85.6
75.6
71.4
80.2
59.8
56.1
51.2

86.0
91.4
96.6
92.2
89.0
94.4
99.4
47.4
65.9
94.7
84.5
88.1
52.2
84.6
71.1
96.5
67.8
43.0
65.9
63.8
88.5
72.6
81.0
94.8
41.8
95.2
89.9
91.3
42.8
59.2
82.6
80.2
48.5
83.6
58.6
33.0
59,3
79.8
96.4
43.5
73.3
56.7
83.1
76.1
85.1
85.4
92.6
67.3
90.4
67.6
84.8
65.1
62.7
23.2
70.8
86.7
73.6
61.5
78.5
56.6
52.6
44.8

Standard 
Error 

Maha Euc
0.15
0.21
0.14
0.40
0.44
0.31
0.04
1.10
1.98
0.17
0.70
0.78
1.67
0.71
1.06
0.15
1.38
1.75
1.01
0.39
0.74
1.55
0.62
0.31
2.35
0.04
0.51
0.40
1.99
1.19
0.45
0.87
1.13
0.39
0.72
1.28
1.33
0.78
0.15
1.45
0.53
0.71
0.97
0.61
0.17
0.39
0.24
0.82
0.58
0.90
0.56
1.07
1.80
2.25
1.34
0.67
1.10
1.15
0.33
0.99
1.92
2.13

0.98
0.77
0.67
0.32
1.74
0.35
0.04
2.23
1.81
0.24
1.33
0.76
2.07
0.47
1.04
0.64
1.60
2.56
1.00
0.42
2.05
2.22
0.71
0.10
5.81
0.16
0.75
0.14
2.43
1.23
0.90
1.18
4.88
0.32
0.60
2.11
1.60
0.92
0.17
0.84
0.77
1.27
0.90
1.34
0.34
0.55
0.67
0.80
0.51
1.42
0.29
4.20
2.02
3.82
0.73
1.35
0.46
2.08
0.78
1.27
1.88
3.04
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3.8.2.3 Number of Hidden Layer Nodes
Increasing the number of hidden layer nodes per class, for networks employing 

either distance metric, had no marked effect on the identification of the test data (Table 

3.5). Performance on the training data was approximately 1-1.5% better.

3.8.2.4 Principal Component Analysis
Using the first 3 principal components produced a very poor result of 54.8% 

successful identification (data not shown).

3.8.2.5 Species Combinations
All three studies combining species improved overall identification. Grouping all 

species within a genus and grouping species within a genus only if misidentity is high 
(>5%), produced comparable results of 84% and 83.4% respectively (Table 3.6). The 

dendrogram grouping produced identifications of 83.5% (1), 85.6% (2) and 88.7% (3) for 
points 1, 2 and 3 indicated on Figure 3.5.

3.8.3 Discussion
3.8.3.1 Identification to Taxonomic Group level

Network performance to taxonomic group level is good when considering the 

overall identification. The main component of this relatively high result are the 
Cryptomonads which, with the exception of the genus Hemiselmis, are a fairly distinctive 
group. This is primarily due to the presence of Phycoerythrin, a cellular pigment indicated 
by orange fluorescence, which is more pronounced in the Cryptomonads. The Flagellates 

are the least well identified, having high misidentity with the Prymnesiomonads and to a 
lesser extent, the Diatoms and Dinoflagellates. Mutual misidentification with the 

Prymnesiomonads was not equal and overall identification of this group was 19% higher. 
This implies kernels located in the overlapping areas of these two groups are representative 

of the Prymnesiomonad clusters, therefore misidentifying any Flagellate patterns that fall 

within this region of the sample space, as Prymnesiomonads.
The overall identification to taxonomic group level is probably as high as is 

possible here. Any identification system will be unable to accurately model an underlying 

pattern between same class events, when their signatures suggest a pattern does not exist. 

This situation arises in some species, where the groupings produced from morphometric
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Table 3.5 Percentage of test data correctly identified as node numbers for networks 
employing both Mahalanobis and Euclidean distance metrics are increased. (3 nodes show 
results from the optimum balanced network from Section 3.5.1)

No. Hidden Layer Nodes
2 
3 
4 
6 
8

Performance of Distance Metric 
Euclidean Mahalanobis

72.7% 
73.2% 
73.9% 
73.7% 
72.9%

77.4% 
77.7% 
77.2% 
77.3% 
77.6%

Table 3.6 Overall identification and confidence of identification produced from combining 
species at various levels.

Groups Number of Overall Confidence of
Groups identification identification

All Species Separate 62 77.7 77.5

Genus' grouped 37 84 83.8
5%Misidentitywithina 
Taxonomic group

Dendrogram groupings 1 54 83.5 83.4

Dendrogram groupings 2 50 85.6 85.5

Dendrogram groupings 3 40 88.7 88.6
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similarities are not necessarily reflected in their flow cytometric signatures. This certainly 
appears true of the Flagellates. These traditional taxonomic groupings may not be the ideal 
primary division for identification of flow cytometric data, but suggests a classification 
centred around the network's interpretation of what is similar may be more appropriate. 
This is addressed further in Chapter 5.

3.8.3.2 Comparison of Distance Metrics with Large Data Sets
The standard error of mean of the five replicates, indicates slight fluctuations in the 

identification of some species. This can be attributed to boundary placement being 
marginally different each time a new network is trained, where the slight change in 
location may find some data points on the opposite side. The standard error of mean is 
higher for the Euclidean distance metric approximately 71% of the time, indicating more 
sensitivity in boundary movement. The spatial extent and orientation of the Mahalanobis 
measure makes it a much more suitable distance metric for these data, allowing 
information regarding class distribution to be incorporated. As these data generally have a 
non-isotropic variance-covariance structure, the Mahalanobis distance metric is more 
appropriate than the Euclidean, verified by higher identification success. This is apparent 
when comparing the spatial orientation of a species identified to a much higher extent by 
the Mahalanobis distance, such as Hemiselmis brunnescens, to one equally identified by 
both, such as Cryptomonas rostrella (Fig.3.6). Using radially symmetric kernels, 
empirically, requires an exponential increase in the number of hidden units (Haykin, 1994). 
This can have a considerable drain on computational memory and time. Since the kernel 
size depends upon the spatial distribution of the data, the asymmetric Gaussians, 
possessing greater orientation qualities than the symmetric, alleviate this problem. Far 
fewer adjustable hyperellipsoids than hyperspheres are required to adequately model the 
data. Although the symmetric kernels can be widened to encompass a possible cluster, this 
will increase the chance of boundary overlap and misidentification, thus having a negative 
affect on network performance.

The identification of such a large number of species is an advancement over 
previous works where class numbers were small with little overlap (Chapter 1). 
Approximately 65% of the species in the optimum network (Table 3.7) were identified to 
at least 70%, with confidences of the same or higher values for 70% of classes. Overall
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Figure 3.6 Spatial orientation in two dimensions of (a) Hemiselmis brunnescens and (b) 
Cryptomonas rostrella. Hemiselmis brunnescens has a non-isotropic variance-covariance 
structure, and is identified to a much higher extent by the Mahalanobis distance than the 
Euclidean, due to its elongated ellipsoidal distribution. The more isotropic Cryptomonas 
rostrella is equally identified by both distance metrics.
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performance is lowered by a number of poorly identified species, such as 
Chrysochromulina cymbium, which has 20% misidentification as other species within its 
genus. The same occurs with Gymodinium veneficum misidentifying 34% as other 
Gymodinium strains. However, not all misidentifications are within a genus, others are 
across groups such as Ochrosphaera neopolitana, which misidentifies with a number of 
species in each of the five groups. This does not necessarily indicate poor generalisation or 
performance of the network. Some species may in fact never be distinguishable by any 
pattern recognition system, in which case it may only be possible to identify a species as 
one of two, rather than a definite individual.

3.8.3.3 Number of Hidden Layer Nodes
Increasing the number of hidden layer nodes had little effect upon the performance 

of the networks. The most marked increase was a 1% rise when going from 2 to 4 nodes 
per class for the Euclidean distance metric indicating again, to a small extent, the 
requirement of more nodes to cover the spatial orientation of the clusters. As node 
numbers increase, the drop in performance and the widening of the margin between 
training and test data identification, indicates the onset of overfitting by the networks.

3.8.3.4 Principal Component Analysis
In reducing the dimensionality of the data to 3 principal components, the poor 

results imply a loss in discriminatory information. This indicates the importance of the full 
multivariate representation, for an improved indication of class membership.

3.8.3.5 Species Combinations
When comparing the results from study one (Table 3.3), identification to taxonomic 

group level, to the average values for the 5 taxonomic groups from study two (Table 3.7), 
some discrepancies are apparent. The identification to taxonomic group level for the 
Cryptomonads was higher than the average value calculated from the groups individual 
species identifications. This difference can be attributed to overlap and misidentity within 
the taxa, when identified to species level. For example, the average calculation was 
lowered by the mutual misidentity of the species Hemiselmis brunnescens and Hemiselmis 
rufescens. The same is apparent for the genera Chrysochromulina and Gymnodinium, both
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Table 3.7 Correct identification and confidence of identification of individual species from 
the optimum network trained on 62 phytoplankton species. Overall identification 77.7% 
(Section 3.8.1.2).

Species Name and
Group

Cryptomonads
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Averaee

Flagellates
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pelagococcus subviridis
Porphyridium pupureum
Pseudopedinella sp.
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Averaee

Corr

95.2
92.4
97.6
93.6
90.8
95

99.4
65

64.4
95.8
92

93.4

89.55

91.8
52.2
67.4
85.2
82.4
99.4
71
54

57.4
87

95.2
76

67.4
64
93

67.6
94.8
76
87

94.6
60.2

77.31

Conf

97.9
96.9
95.9
95.1
91.3
97.5
94.6
67.4
68.8
95.8
86.5
94.2

90.16

76.9
58.8
75.1
82.7
75.7
81.5
62.6
61.8
67.5
90.6
97.7
69.5
73.6
65.4
94.5
77.3
93.5
71.4
84

89.2
71.7

77.19

Species Name and
Group

Prymnesiomonads
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Ell
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

Averase

Diatoms
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Averase

Dinoflagellates
Amphidinium carterae
Aureodinium pigmentosum
Gymodinium micrum
Gymodinium simplex
Gymodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

Averase

Corr

85.4
61.2
46.2
60

80.8
97.6
45.6
77.6
59.4
92.2
79.8

71.44

88
87.6
93.4
76.2
92.8

87.6

77.8
88.2
71.2
69

41.4
66.4
86

72.4
70

81.2
61.6
56.4
51.2

68.68

Conf

76.7
60.6
56.1
56.8
73.5
95.1
55.5
70.6
62.4
83.8
70.9

69.2

90.9
83

90.8
76

74.5

83

72.6
73.4
62.6
66.9
68.8
63.1
92.1
79.7
73.5
59.9
77.6
70.9
66.7

71.3
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lowering the average calculation of their respective taxonomic group. These occurrences 
would imply, that in this instance, it may be easier to group the overlapping species and 
identify a pattern as either X or Y, rather than choosing one, thereby improving overall 
performance. The increase in identification when grouping species from the same genus, 
or species within a genus whose mutual misidentification was greater than 5%, indicates 
that for some of these species placement into genera by morphology is supported by 
similarities in their flow cytometric signatures.

Although imposing groupings based on genus may be an obvious procedure, an 
analysis of the results of study two indicate that not all misidentifications are within a 
taxonomic group or genus. For example, the 5 strains of the genus Cryptomonas all 
identify with at least 90% success, with confidences of 91% and above. Similarly, two out 
of the five species in the genus Tetraselmis, particularly Tetraselmis impellucida and 
Tetraselmis tetrathele, identify to 94% with high confidences. In contrast, there is at least 
6% mutual misidentification between Pseudopedinella sp. (Flagellate) and Prorocentrum 
nanum (Dinoflagellate). Phaeocystis pouchetti (Prymnesiomonad) constantly has at least a 
10% misidentification as Chlorella salina (Flagellate), with the reverse misidentity only 
2.5%, implying not all mutual misidentifications are necessarily equally weighted. These 
misidentifications are further illustrated in the dendrogram. The three groupings chosen 
from the dendrogram, gave slightly better results than combining species based on genus 
or taxa. The networks selection of groupings is more successful than forcing 
morphometric groupings not supported by flow cytometry (Chapter 1, Fig. 1.3a & 1.3b). 
This point is illustrated in the groups formed at position 2 on the dendrogram and the 
combination of species within a genus whose mutual misidentity >5%. Both selections 
produce 50 groups but the former has a 2.2% greater overall success. Although producing 
an identification as one of N possible species can be at the expense of detail, knowledge to 
genus or user-defined group level may be a requirement, or sufficient to narrow down the 
choices. An additional method of identification, such as increased discriminatory 
parameters or microscopy, can then be employed with a much smaller number of known 
possibilities.
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3.8.4 Rejection of Species as Unknown
The importance of network confidence, at the expense of overall identification 

through rejection of unknowns, was discussed in Chapter 2 (Section 2.7.4.2). However, as 
class numbers increase, the greater the possibility of overlap between the flow cytometric 
signatures of a known and novel species, thus making the process more difficult. This is 
assessed below.

3.8.4.1 Experimental Procedure
Eleven completely novel species (Table 3.8), i.e. species upon which the network 

had not been trained, were added to the original test file from study one (500 events per 
class). The optimum network from this study was selected and three different criteria for 
rejecting novel data were imposed.
1. Rejection if the difference between the two highest outputs is less than a threshold Tl, 

where Tl was varied from 0 to 0.9 in intervals of 0.1
2. Rejection if the highest valued output is less than a threshold T2, where T2 was varied 

from 0 to 0.9 in intervals of 0.1
3. Rejection if the maximum hidden layer node output is less than a threshold T3, where 

T3 was varied from 0 to 0.9 in intervals of 0.1

3.8.4.2 Results
With a threshold imposed upon the difference between the two highest node 

outputs, overall success drops rapidly as Tl increases (Fig. 3.7a). At Tl = 0.3 correct 
identification is at 53%, with 80.7% of unknowns being rejected and 44% of knowns. 
Rejection criterion based on maximum output node value (Fig. 3.7b) and maximum hidden 
layer node output (Fig. 3.7c) perform better, with the latter producing a fairly steady 
overall identification until T3 = 0.6, and then dropping rapidly. The former drops much 
sooner past T2 = 0.3. Although rejection of unknowns at this value is high, i.e. 80%, as the 
threshold increases to 0.5, the number of knowns rejected is also quite high, at 
approximately 32%. The threshold imposed upon hidden layer node output, rejects a lower 
number of unknown species, i.e. 60% at T3 = 0.7, but less known species (12%).
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Table 3.8 Eleven new species selected to assess the RBF networks ability to reject novel 
species when original class number is high.

Taxonomic Group Species Name Order Size

________
Diatom Chaetoceros affinis Bacillariophyceae 10->100

Chaetoceros debilis " 10->100
Chaetoceros radicans " 10->100
Surirellasp. " 10->100

Dinoflagellate Alexandrium tamarense Dinoflagellida 28-40
Alexandrium lusitanicum " 25-40

Prymnesiomonad Imantonia Prymnesiida 2-4
Platychrysis " 8-10
Dicrateria inornata " 3-5
Chrysotila lamellosa " 4-7

Flagellate ________ Nannochloris atomus _______ Volvocida ________ 2-4

88



Chapter 3

1

0.1 0.15 0.2 0.3 0.4 0.5 0.6
Threshold (Tl)

0.7 0.8 0.9
(a)

0.1 0.2 0.3 0.4 0.5 0.6 
Threshold (T2)

0.7 0.8 0.9 
(b)

s
S 
tcu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold (T3) (c)

Figure 3.7 Overall percentage of species rejected as unknown employing three thresholds 
• Overall rejection of known species • Overall rejection of unknown species A Overall 
percentage of correct identification (a) Difference between highest and second highest 
node is less than a threshold Tl (b) Highest valued output node is less than a threshold T2 
(c) Maximum hidden layer node output is less than a threshold T3.
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3.8.4.3 Discussion
Although the imposition of a threshold on output node difference (77) produces a 

high rejection of unknown species, its similar affect on known species makes it a poor 
criterion to use. The complexity and similarity of the spatial distribution of some classes 
results in relatively high values for a number of output layer nodes. A significant 
difference between the highest and second highest node is very rare, causing early rejection 
of species at a very low threshold.

With increased classes, the thresholds imposed on the hidden layer node output and 
maximum valued output are more appropriate. However, despite having a high rejection 
of unknowns, the maximum valued output threshold (T2) has a relatively high rejection of 
knowns, though not as high as Tl. Conversely, the threshold on the maximum hidden 
layer node (T3), rejects a much lower number of knowns but not as many unknowns. The 
high number of knowns rejected by T2 indicates low output values for many of these 
species, resulting in quite a rapid drop in overall identification. Although overall 
percentages are depicted, individual species' contribution to these results are considerable. 
For example, Figure 3.8 shows the rejection of the species at the extreme ends of the scale, 
for both novel and known data for T3. Alexandrium lusitanicum, an unknown species, is 
rejected almost immediately by this threshold, indicating its considerable difference to any 
species in the original database. However, Imantonia sp. has a very low rejection level due 
to its 69% misidentification as Pelagococcus subviridis, at a threshold of T3 = 0.6. 
Although this known species has a high individual identification (87%) its confidence of 
identification at this threshold is very low (45%), attributed to unknown species being 
retained and misidentified as it. Rejection of the known species Gyrodinium aureolum 
indicates that class distribution about its kernel is quite wide, with data points being found 
a distance away from the cluster centre. This is unlike the close proximity of 
Pseudopedinella sp., to its kernel centre, for which rejection is very low.

Although novel data will be rejected through imposition of thresholds, for some, 
this rejection will be weak (e.g. Imantonia sp.) due to similarities to known species. A 
knowledge of possible inhabitants would be preferable in a field area, thereby eliminating 

possibilities that may not be present in certain locations.
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Figure 3.8 Correct identification and rejection percentages when a threshold is imposed 
upon the maximum hidden layer node output. • Overall percentage correct identification;
• Overall confidence of correct identification; • Percentage of unknown species rejected;
• Percentage of known species rejected; Rejection of individual species, O 
Pseudopedinella sp. (Known), A Gyrodinium aureolum (Known), A Alexandrium 
lusitanicum (Unknown), * Imantonia sp. (Unknown).
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3.9 Conclusion
The optimum architecture of the RBF network, as well as varying event numbers 

for phytoplankton flow cytometric data, has been illustrated here. Although 500 events 
per class were used in the analysis of networks trained on 62 species (Section 3.8), the 
primary results of this chapter imply that biological variation can be adequately covered, 
in this instance, by less event numbers.

The overall identification of the RBF network trained on 62 classes, is comparative 
to previous work (Chapter 1, Section 1.7). For example, a correct identification of 75% 
was achieved by an MLP network trained on 40 species of phytoplankton (Boddy et al, 
1994a), and an RBF network, employed by Wilkins et al. (1999), identified 34 species 
to 92% correct. However, in both these cases the data was represented by eleven optical 
parameters, and the latter used both laboratory cultured and field samples producing more 
distinct data classes (Boddy et al., 2000). Greater correlation can be seen with Boddy et 
al. (2000), where a RBF network trained on seven-dimensional data successfully 
identified 72 species to an overall of 70% correct.

Further improvement in network performance can be achieved by combining those 
species for whom mutual misidentification is high. The increase in overall identification 
resulting from this, reflects the lack of correlation between the flow cytometric signatures 
of some species and their respective morphological characteristics. Combining species 
will also lower rejection of borderline knowns that lie on the boundary overlap of two 
similar species. In some cases no system will be able to adequately differentiate between 
overlapping species. When this arises, it seems appropriate that the species concerned are 
in fact similar enough to be considered as a flow cytometric group. If required, further 
discrimination can then be achieved via an alternative method. These results direct the 
initiation of an alternative grouping system for this area of research. This is discussed 
further in Chapter 5.

Although rejection of unknown species can increase network performance, it may 
also be desirable to then add the new species to the existing database. Species addition is a 
difficult process using the original multi-class network, and requires the introduction of an 

alternative approach, presented in Chapter 4.
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4 Alternative Multiple Neural Network Architecture

4.1 Introduction
The advantages and performance of the original multi-class RBF, within a 

biological field, have been demonstrated for phytoplankton identification in Chapter 3. 

However this architecture has a number of limitations. The phytoplankton community is 

diverse and immense, and the introduction of a new species to the database is a natural 

occurrence. Each time a new species is encountered and added, the network requires 

complete retraining, involving long optimisation procedures to be carried out under the 

supervision of scientists familiar with ANNs. This makes the multi-class network an 

inflexible architecture that cannot operate in real time.

This chapter introduces an alternative multiple network architecture for the 

identification of phytoplankton species. The approach is flexible, rapid and can be used by 

non-computer scientists.
Experiments are documented that compare the alternative multiple network 

approach with the original multi-class architecture, with regards to training times, 

performance, ease of use, species combinations, exclusion of unknowns and their 

subsequent addition to the identification system.

4.2 Restraints of the Original Multi-Class Network Architecture
The efficiency of any identification/classification system, neural or statistical, is 

dependent upon a number of factors, including training time, real time analysis, ease of use 

and system requirements. However the primary influence on performance is the quality, 

and in some cases, the quantity of the training data.
For identification of organisms as diverse as phytoplankton, all variations of flow 

cytometric signature for a particular species must be represented. As the complexity of 

such a data set increases, so does the architecture of the network required to model it. The 

increase in number of nodes and weights to achieve optimal performance, can have a 

heavy effect on memory and will inevitably increase training time. In many applications 

this is irrelevant. Once an optimum level has been achieved, the network has the capacity 

to identify phytoplankton cells, however, this is limited to species contained in the original 

training data. When the network is presented with unseen data, any unknowns with 

significant differences from known species, can be discarded by the imposition of a
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suitable threshold (Chapters 2 & 3). Once the unknowns have been rejected and identified, 
it may be necessary to include them in the database for future encounters. In this situation 
the original multi-class network is now rendered useless, and a new network will need to 
be constructed and retrained using the updated data set. This process will need to be 
repeated each time a new species is added.

In a laboratory, or on board ship, this is not a feasible process for real time 
operation, where the network needs to be easily and quickly re-trainable whenever a new 
species is encountered. The primary users will not necessarily be familiar with ANNs and 
a large network will require complex optimisation to achieve good performance. If 
training data is sparse, as is the case with many field applications, there is a risk of 
overparametisation with increasing network size, thus causing inadequate modelling of the 
data distribution and poor generalisation.

Additionally, the target population for analysis may be a subset of the actual 
database, where only certain species are required, and a network particular to the entire 
data set may therefore be unnecessary, and may be sub-optimal. This flexibility, real time 
training and dynamic selection of species, is impossible using the original multi-class 
architecture. A different approach, introducing a combination of multiple networks, novel 
to the identification of phytoplankton, has therefore been developed.

4.3 Combinatorial Neural Networks
Some of the limitations of the original architecture mentioned above, have been 

overcome by combining neural network models in various configurations. Many 
researchers have found that they improve not only performance and training time, but in 
some cases reduce complexity. These combinatorial structures can be a fusion of different, 
or the same network algorithms, existing in hierarchical or nested arrangements, connected 
in series or parallel.

Some methods combine unsupervised and supervised learning, where the former 
partitions the input space into subsets through feature extraction, and a number of 
supervised networks are then trained individually on the subsets of data. Yang et. 
at. (1996) used an Adaptive Resonance Theory network (Carpenter & Grossberg, 1987a, 
1987b) to classify non-stationary gas from odorous environments, while an MLP identifies 
the gas or odorous mixtures. Similarly, Raghavan et al. (1991) used a collection of
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Adaptive Resonance Theory networks for generic feature extraction and a number of back- 
propagation MLPs to identify the finer more specific features.

Other hierarchical/multiple combinations consist of interconnections of individual 
networks, each trained for a specific task. Hierarchical configurations tend to be 
sequential, where the results of a preceding network are passed onto the next. Examples of 
these are evident in many areas of research. Juell and Marsh (1996) used a hierarchical 
structure of four back-propagation networks to identify images of faces. The three 'child' 
networks were trained individually to identify a mouth, nose or eyes respectively, while the 
'parent' network was trained to recognise a face, providing all three features were present. 
Mehdi et. al. (1994) used a similar approach to separate normal cells from abnormal cells, 
where the first of three back-propagation networks performed the primary separation of 
normal or mildly dysplastic cells from moderate or severely dysplastic, and the two 
remaining networks partitioned the two subgroups of data into one of four classes. Higher 
numbers of networks can be seen in the production of the Artificial Neural Network Short- 
Term Load Forecaster or ANNSTLF (Khotanzad et. al. 1997). Developed for electric load 
forecasting, this paradigm utilises multiple back-propagation networks each focusing on a 
particular aspect of the training data. Other approaches use multi-layered hierarchical 
networks, like that of Namphol et. al. (1996), where a nested training algorithm is 
employed to partition images into sections and each particular segment is then processed 
simultaneously.

Whilst some of the sequential and parallel processes converge to a basic one output 
solution, others require more complex analysis involving combinations of outputs from 
multiple identifiers. Basic solutions include a voting winner takes all system (Huang et al., 
1997), averaging the outputs or combining networks using AND/MIN logic gates to 
generate output statistics (e.g. Shazeer 1992). These procedures assume that the individual 
networks within the system are trained to an equal optimum level. Other methods employ 
areas such as fuzzy logic (e.g. Wang et. al 1998) or principal component regression (e.g. 
Zhang, 1999) to fuse multiple network outputs.

The methodologies documented above are a selection of combination procedures, 
all of which perform optimally for their particular application. Although many of them are 
individually trained they are not all completely independent. Sequential processes will 
depend upon the outcome of a preceding network's performance. Many of the individual
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networks are trained for a specific task or characteristic of the application. These 
processes, much like decision trees and statistical hierarchical approaches, imply that 
accurate identification is dependent upon all network "questions' being 'answered' 
correctly, and the redundancy of one network, due to perhaps unavailable or poor 
information, makes the procedure inaccurate or impossible. A poor decision (due to poor 
training or memorisation of data) at a top level network, renders all subsequent decisions 
incorrect. Partitioning of the input space by unsupervised means requires some measure of 
known similarity (Chapter 5), as do those methods using a statistical a priori approach. 
Some are complex, lacking in flexibility, are application dependent and will require 
complete re-training with a new data set if a novel category is introduced.

To address the limitations of the original multi-class architecture and offer an 
alternative approach in combinatorial networks for phytoplankton identification, a multiple 
network structure has been suggested to incorporate large data sets, direct weighted node 
placement, rapid training times and easy addition of a new species by non-computer 
scientists.

4.4 Alternative Multiple Neural Network Architecture
The alternative multiple approach introduced in this research, is a variation on 

many of the general combinatorial network structures. The architecture consists of N 
simple identification Radial Basis Function networks (single species networks), each one 
responsible for one of the N individual species being considered (Fig. 4.1). Each of the 
single species networks, consist of a seven node input layer and one hidden node layer. 
Unlike many traditional combinatorial neural networks structures, identification by each of 
the individual networks is for a particular species only, however, as a one class RBF is 
meaningless, the single species networks have a two node output layer. Training data, 
therefore, consists of two classes, mapping onto the two network outputs. Class A, the 
class (species) of interest, contains x events for the species in question and Class B, the 
background class, contains a random selection of the remaining species (in this case 61). 
Each of the N networks are trained on the seven input parameter data, with the respective 
species being the class of interest and the output indicating membership as either species or 
background.
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Species 1 
Network

lofk Gaussian 
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Output Layer 
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Input Layer 
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Species 2 
Network

Species N 
Network

Class 1 Species 1 
(Class of Interest)

Class)

Combination of network outputs 
to construct decision process via 
either,
a) Maximum Valued Output 
or
b) RBF Decision Network

Class 1 
Species N

Figure 4.1 Alternative multiple network architecture showing combination of N single 
species networks for N species. Each single species network consists of a 7 node input 
layer for the seven-dimensional optical data, an individual hidden layer and a 2 node 
output layer. Outputs from single species networks are then passed on to the combinatorial 
stage where an decision on pattern identification is made.
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When training against a background class (Section 4.5) the amount of data that 
constitutes it can be unbounded. Even in laboratory cultured phytoplankton, it is 
unrealistic to obtain sufficient event numbers to balance the class of interest against the 
combination background class, and it has been shown that this is in fact unnecessary with 
regards to biological variation; which can be represented sufficiently using 300 events per 
species (Chapter 3). Thus the ratio of event numbers for Class A to that of Class B may be 
unequal. With a heavily imbalanced data set, where the class of interest (Class A) is 
generally engulfed within the mass of background data, RBF identification will perform 
best if hidden nodes are placed directly at the position vector of representative data patterns 
from the class of interest. Training involves the random selection of a subset of data points 
to act as kernel centres, employing a Euclidean distance metric. Node placement can be 
weighted towards and directly into either class (i.e. mA kernel centres are placed at the 
position vectors of mA nodes from class A, similarly for class B). Employing a Gaussian 
kernel function, the normalisation parameter is calculated as the root mean square distance 
between a kernel centre and its corresponding data points (Chapter 2, Section 2.4.2.2). 
Matrix operations are performed in the output layer to find the optimum weights (Chapter 
2, Section 2.4.2.3).

In a two class imbalanced data set, identification will tend towards the dominant 
class, where the likelihood that a data point, within close proximity of a centre, is from the 
background class, increases as negative examples abound. Identification of the 
subordinate class is very specific to data points that have been well represented by the 
hidden nodes. Naturally, ideal representation will come from placing as many centres as 
there are points and using each point as a kernel centre. This is of course unacceptable as 
it will only force the network to memorise the training data, making it unable to generalise 
and computationally intense. Any pattern unrepresentative of the class of interest will be 
misidentified as class B. The sheer abundance of data in the background class amplifies 
this outcome and, whether there are 1 or 20 nodes placed directly into the background 
class, has been found to have negligible affect on its identification. However, increasing 
nodes in class B progressively reduces the number of class A patterns identified correctly, 
and as class A is the class of interest, 1 hidden node is found sufficient to represent the 
background class. Once the N single species networks have been trained and tested, the

98



Chapter 4

outputs are combined via one of the procedures below and a decision upon class 

membership of an unseen pattern is made.

4.4.1. Maximum Valued Output

This is a simple method, employing a winner takes all procedure. The output from 

each of the N networks, for a particular pattern, are considered and compared, and the 

network having the highest value is deemed the winner. The pattern is then assigned the 

species for whom the network has been trained.

4.4.2 RBF Network Decision
Using the original multi-class network structure to identify a 62 class data set, gives 

varied levels of performance for different species. For example, the strains of 

Cryptomonas have distinct optical characteristics producing identifications of 95% and 

above, whereas species for whom overlap is great, have values as low as 41% 

(Gymodinium veneficum). When the class of interest of a single species network is a 

species for whom identification was found to be poor by the original multi-class network, 

the number of events correctly identified by the single species network may be low or 

possibly zero (Section 4.7.1). A set of seven-dimensional optical characteristics for a 

particular species represents the flow cytometric signature associated with that species. 

Providing there are no outliers and the data set is representative, a trained network will 

produce output values that lie within a common range for a particular species. Once the 

network is trained and the optimum architecture determined, a test pattern from the species 

in question will be translated from its seven-dimensional input to an output value for the 

class of interest. This pattern, having gone through the same network transformations as 

its representative training data, will produce an output value within the same common 

range. After all the single species networks have been trained, each one will produce a 

distinctive output for a particular pattern applied to it, where ideally, the output produced 

from the nth single species network for species n will be 1, and the remaining N-l outputs 

will be zero (this is of course never the case as continuous values are produced). 

Combining these N outputs, will form a signature vector representative of the species for 

whom the original seven-dimensional optical pattern belonged. Applying a data set of j 

events per species through a consistent architecture of N single species networks, will
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produce j, N-dimensional patterns distinctive to each individual species. This process 
forms a new set of data with characteristic signature vectors, that can be used as inputs to 
train an individual RBF decision network, with N inputs and N outputs.

4.4.3 Bayesian a posteriori Probabilities
A process of combining outputs from multiple classifiers was used by Singer and 

Lippmann (1992), to obtain scaled word likelihoods by the combination of RBF network 
outputs which are normalised by a priori class probabilities. This requires the network 
inputs to be independent.

The multiple network approach introduced here, is not a combination of multiple 
classifiers each trained to recognise the same classes. Although scaling the outputs of the 
single species networks and employing Bayes theorem to combine them will allow an 
evaluation of probability, it requires a priori knowledge. Ideally, balanced training data 
frequencies are employed, and this coupled with an assumption of equal a priori 
probabilities, will in this instance repeat an iterative update process of calculating a 
posteriori and subsequently adjusting a priori, that does nothing more than approximate 
the relationship between the actual outputs, thereby producing results identical to those of 
the maximum valued output method.

Although the approach is not employed here, its benefit may lie in an area where 
prior knowledge is available, or when scaling towards identification is required to avoid 
damaging false negatives.

4.5 Background Class - Content and Quantity
When only one species is of interest everything else is considered background. It is 

unrealistic to attempt to train a network to discriminate one species against every known 
strain of phytoplankton and every possible form of debris. Chapter 3 has already indicated 
the high identification of particular species, where their separability was demonstrated 
against an environment of 61 others, although their distinction may be such that the content 
of the remaining classes is irrelevant. This is not the case for those species for whom 
identification is poor, due to class overlaps. In some areas of research involving multiple 
networks, each individual network is trained for all classes and the outputs of each 
network, or a selection of the networks, combined to form a decision (Hashem, 1997). In 
other cases the individual networks are trained on two or more classes, but less than the
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total number (Wilson, et. al. 1996). The training data sets for the individual networks in 
these instances, comprise more than one known class of interest, each containing a 
balanced number of events, where identification of every class within a data set, for each 
individual network, is important. In the alternative multiple approach presented here, the 
content of the background class is varied and shown, for this data, to have little affect on 
the final identification of the species particular of the individual networks.

The quantity of background data is also a factor. When considering identification 
for one species against an unbounded plethora of others, if full biological variation of the 
background class is necessary, there will inevitably be an imbalance in event numbers. 
From investigation researched in Chapter 3, the number of events for a balanced set of 62 
species (to adequately represent biological variation) was between 100 and 300. For an 
unbalanced data set, the lack of identification of the subordinate class indicates that 
generalisation ability and primary error reduction are concentrated in the dominant class, 
where the greater numbers of events allows the hidden layer nodes to better model its 
distribution. Data duplication is one method used to overcome this problem (Foody,

/

1995). Although it does not add new information regarding characteristics or underlying 
trends of the data, it will increase the representation of the subordinate class, possibly 
improving the networks approximation of its distribution. Data replication and weighted 
node allocation have been investigated further (Section 4.4).

4.6 Experimental Procedure
Data preparation and pre-processing was as described in Chapter 2 (Section 2.6).

4.6.1 Single Species Training and Testing Files
To assess the approach with varying ratios of Class A event number to Class B 

event number, six sets of 62 single species training files were constructed. Each file 
contained x events for the species of interest (Class A), and a combination of y events per 
species for the remaining 61 (Table 4.1, sets A-F). In order to assess data repetition, two 
additional sets of 62 files contained duplicate data. The first comprised 1000 events for 
Class A, i.e. 500 repeated twice, and 500 per species in the background class. The second 
contained 1000 events repeated 30.5 times, and again 500 events per remaining species in 
class B, producing a balanced set (Table 4.1, sets G & H).
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Table 4.1 Event numbers for each of the 8 sets of 62 single species network training files. 
Overall identification success shown for each set of single species networks with 
increasing numbers of hidden layer nodes (hln) in the class of interest, employing a 
Euclidean distance metric (Section 4.6.2).

Data Class of Interest 
Set

Background Class Overall identification of 
Class of Interest

A
B
C
D
E
F

G

400
500
500
1000
500
500

1000 (500 
repeated twice)

30500 (1000
repeated 30.5 times)

Events per 
Species

400
500

8 or 9
500
250
1000

500

500

Total Events

24400
30500

500
30500
15250
61000
30500

30500

3 hln
38.21
36.29
93.8

43.21
44.20
30.15
40.12

Shin

91.02

10 hln
51.24
49.44
N/A

66.33
67.34
37.79
67.46

95.24

20 hln
55.73
56.00
N/A

67.99
68.20
46.01
69.55

N/A
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An independent test set of 500 events per species was created to assess network 
performance as documented in Chapter 2 (Section 2.7.4.1).

4.6.2 Single Species Network Training
For each of the data sets, A, B, D, E, F and G, three different architectures of 62 

single species networks were trained. These used a random kernel placement strategy, 
placing either 3, 10 or 20 nodes directly into class A, all employing a Euclidean distance 
metric. As discussed, 1 hidden node is placed into class B for all networks. Data sets C 
and H, for whom event numbers were balanced, were trained using equal nodes in each 
class. A single architecture of 62 single species networks, with 3 hidden layer nodes per 
class (A and B), was trained for data set C, and two sets of 62 single species networks with 
5 and 10 nodes per class were trained for class H. All networks were trained three times 
from a different initialisation point.

4.6.3 Maximum Valued Output
The results from each set of 62 single species networks were analysed in parallel. 

The maximum valued output was calculated for each individual pattern across the set, and 
the class associated with it assigned the winner.

4.6.4 RBF Network Decision 
4.6.4.1 Training and Testing Files

From each structure of 62 single species networks (of which there are 21), the 
outputs were combined to create 4 training files containing 400, 300, 200 and 100, 62 
parameter events (84 training files in total). This was to assess the number of events 
required to cover the variation of the 62 parameter signature vectors, used as input data for 
training the RBF decision networks.

The outputs of each set of single species networks, for an independent test file, 
were combined to form 21 files to assess performance of the particular RBF decision 
networks.
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4,6.4.2 Network Training
Each of the four training files created for each of the 21 sets of single species 

networks, were used to train 6 RBF decision networks using 3, 4 and 5 hidden layer nodes 

respectively, 3 using a Euclidean distance metric and 3 using a Mahalanobis distance 

metric to compare (504 RBF decision networks in total). Initial experiments (results not 

shown) comparing 1, 3, 5 and 10 iterations of optimisation (Chapter 2), exhibited 
negligible improvement in network performance, but a considerable increase in training 

time, particularly those employing a Mahalanobis distance metric taking 35 hours to train 

for 10 iterations. Therefore, 1 iteration was used to train all networks, each trained three 

times from a different initialisation point.

4.7 Results
4.7.1 Single Species Networks

As the node numbers increased from 3 to 20, so did the overall identification of the 

class of interest (Table 4.1). This improvement in performance is also evident when the 

ratio of events between the two classes is reduced. The data sets containing balanced and 

repeated balanced events, produced identification values almost as high as that of Class B 

(97%-100%). However, as the number of nodes and degree of repetition increases, so does 

the margin between training and test data identification success. When considering 

individual results for a set of balanced single species networks many of the identifications 
of the class of interest were >80%, however, when the imbalance is greater the 

identification is more varied (Table 4.2). Using 3 hidden layer nodes in the class of 

interest left a number of species with few or no test patterns assigned to them. As the 
number increases to 10, the identification in some of these badly allocated classes also 

increases, but rarely higher than 40%. Training using 20 hidden layer nodes has little 

effect on many of these weaker species, improving some only marginally and in certain 

cases reducing identification.

4.7.2 Maximum Valued Output
Using only 3 hidden layer nodes for the class of interest in the single species 

networks produced the poorest results, with values below 70% (Table 4.3). Improvements 

were evident from networks employing 10 and 20 hidden layer nodes, ranging between
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Table 4.2 Table indicating the results of three sets of 62 single species networks trained 
using 500 events in the class of interest (Class A) and 500 per species in the background 
class (Class B). The networks were trained using a Euclidean distance metric and 3, 10 
and 20 hidden layer nodes respectively for the class of interest. The mean and standard 
deviation for the classes of interest are also shown. (Mean of class B ranged between 0.98 
- 0.99 and standard deviation <0.06)

Taxonomic Group 
Species Name

Cryptomonad
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.
Diatom
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Dinoflagellate
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra 
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

3HLN
% 

Idled Mean S.D.

88.6
88.4
90.2
75.8
63.2
91.2
92.0
50.6
23.2
88.6
93.2
90.2

66.2
56.8
76.4
3.0

40.0

0.0
22.2
0.0
1.6

0.0
7.2
57.0

0.0 
0.0

69.0
0.0

0.0
0.0

0.756
0.740
0.758
0.581
0.541
0.791
0.917
0.458
0.388
0.794
0.813
0.733

0.495
0.544
0.625
0.320
0.482

0.200
0.402
0.170
0.306
0.228
0.386
0.458
0.252 
0.283
0.533
0.205

0.265
0.342

0.232
0.225
0.206
0.197
0.247
0.226
0.257
0.159
0.125
0.242
0.210
0.205

0.172
0.215
0.230
0.161
0.196

0.065
0.120
0.064
0.114

0.067
0.109
0.225

0.083 
0.111
0.224
0.084
0.075

0.097

10 HL
% 

Idied Mean

89.0
88.0
91.4
82.2
76.0
87.0
90.4
44.4
35.6
87.0
90.0
84.8

73.8
74.0
74.0
25.0
61.2

15.8
51.6
16.0
5.6
0.6
43.6
65.8
50.4 
29.6
61.2
40.2

16.2

59.6

0.821
0.840
0.857
0.809
0.710
0.843
0.898
0.466
0.433
0.828
0.834
0.810

0.687
0.654
0.719
0.352
0.571

0.357
0.495
0.310
0.297
0.296
0.440
0.626

0.499 
0.392
0.567
0.382
0.341

0.525

N 

S.D.

0.264
0.292
0.243
0.319
0.335
0.312
0.259
0.194
0.185
0.274
0.261
0.316

0.337
0.259
0.318
0.195
0.288

0.148
0.279
0.171
0.111
0.118
0.165
0.336
0.240 
0.244
0.308
0.248
0.162
0.245

20 HLN 
% 

Idied Mean S.D.

87.6
84.0
91.8
76.8
75.8
86.8
90.6
51.0
44.0
87.8
86.2
82.2

68.0
67.2
84.0
35.8
68.0

46.4
47.0
34.6
25.4

18.8
39.6
75.8
51.6 
51.6
59.4
41.2
43.6
60.8

0.825
0.802
0.878
0.776
0.720
0.849
0.894
0.477
0.458
0.835
0.817
0.812

0.700
0.653
0.720
0.450
0.649

0.446
0.496
0.379
0.376
0.361
0.446
0.691
0.536 
0.491
0.595
0.398
0.443
0.580

0.294
0.299
0.248
0.333
0.356
0.301
0.267
0.193
0.228
0.272
0.286
0.333

0.354
0.307
0.251
0.283
0.323

0.258
0.238
0.214
0.170
0.162
0.153
0.322
0.291 
0.279
0.304
0.279
0.234
0.299
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Table 4.2 continued.....

Taxonomic Group 
Species Name

Flagellate
Chlorella salina
Chlamydomonas reginae
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pseudopedinella sp.
Pelagococcus subviridis
Porphyridium pupureum
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Prymnesiomonad
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bll
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

% 
Idled

0.0
79.2
0.0

68.8
42.4
94.4
12.6
0.0
0.0
0.0

75.8
92.2
0.0
0.0

91.6
0.0
84.2
0.0
0.0
88.6
1.2

0.0
0.0
1.0
1.0
0.0
87.4
0.0
14.0
0.0

80.8
0.0

3HLN

Mean

0.141
0.577
0.216
0.561
0.451
0.761
0.375
0.309
0.127
0.227
0.598
0.910
0.184
0.225
0.918
0.239
0.770
0.214
0.243
0.801
0.315

0.319
0.265
0.210
0.286
0.229
0.893
0.143
0.356
0.175
0.725
0.300

S.D.

0.045
0.210
0.080
0.213
0.128
0.143
0.117
0.100
0.062
0.062
0.205
0.285
0.059
0.085
0.270
0.090
0.317
0.097
0.088
0.226
0.109

0.085
0.102
0.104
0.112
0.070
0.293
0.045
0.105
0.076
0.244
0.101

% 
Idied

0.0
75.6
45.6
76.0
68.8
84.6
25.4
25.8
0.0
13.6
79.2
93.4
25.2
0.0

92.0
29.4
82.0
0.0

68.2
88.2
39.2

52.8
1.6
3.2

21.8
33.2
92.6
0.0

34.4
0.0

81.4
21.8

10 HLN

Mean

0.241
0.670
0.418
0.637
0.564
0.785
0.369
0.380
0.178
0.366
0.753
0.912
0.368
0.275
0.904
0.030
0.833
0.252
0.563
0.834
0.426

0.493
0.301
0.259
0.361
0.412
0.909
0.187
0.431
0.224
0.780
0.358

S.D.

0.134
0.292
0.263
0.219
0.228
0.273
0.161
0.159
0.083
0.128
0.332
0.265
0.181
0.123
0.275
0.029
0.351
0.115
0.251
0.261
0.186

0.222
0.115
0.123
0.178
0.210
0.277
0.087
0.147
0.107
0.310
0.164

20 HL
% 

Idied Mean

26.4
78.4
43.4
70.0
67.2
86.6
37.0
26.4
2.4

28.2
78.8
91.8
30.4
26.2
93.0
42.6
84.4
46.6
67.0
84.0
45.6

47.4
29.4
8.6

32.2
47.6
92.6
1.8

48.6
9.6

88.8
45.4

0.323
0.768
0.425
0.610
0.655
0.784
0.433
0.380
0.252
0.380
0.774
0.899
0.372
0.353
0.945
0.437
0.854
0.465
0.590
0.785
0.464

0.551
0.374
0.307
0.393
0.499
0.912
0.190
0.497
0.282
0.817
0.479

N 

S.D.

0.212
0.353
0.282
0.269
0.313
0.263
0.160
0.167
0.140
0.170
0.340
0.267
0.193
0.193
0.239
0.280
0.310
0.283
0.269
0.258
0.225

0.308
0.217
0.147
0.190
0.276
0.267
0.130
0.249
0.158
0.253
0.262
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Table 4.3 Results of decision processes, RBF and maximum valued output, from the 
combinations of the various sets of trained single species network outputs. Architecture 
shown for the RBF decision networks which employed a Euclidean distance metric and 
300 events per class.

Data Single Networks RBF Identification Maximum 
Set Events Nodes Network Output 

Class Class Class Class % % 
A BAB Nodes Corr Conf Corr Conf

A 400 24400 3 1 3
4
5

10 1 3
4
5

20 1 3
4
5

B 500 30500 3 1 3
4
5

10 1 3
4
5

20 1 3
4
5

C 500 500 3 3 3
4
5

D 1000 30500 3 1 3
4
5

10 1 3
4
5

20 1 3
4
5

E 500 15250 3 1 3
4
5

10 1 3
4
5

20 1 3
4
5

F 500 61000 3 1 3
4
5

10 1 3
4
5

76.2
76.1
77.1
76.4
76

75.8
77.2
76.2
75.9
76.2
76.1
75.8
77.4
77.2
76.3
77.3
75.1
74.9
77.1
78.5
78.2
76.2
76.1
75.9
76.9
76.8
77.3
77.9
77.6
76.8
76.6
76.5
76.1
77.9
77.7
77.2
77.6
77

76.8
76

76.1
77.1
77.1
77

76.9

76 69.3
76

76.2
76.5 74.7
76.1
76

77.4 76.1
76.5
76.2
76.6 687
76

75.9
77.5 74.2
77.4
76.7
77.6 76.7
75.9
75

77.9 77
77.8
77.8
76.4 69.2
76

75.8
77.2 74.9
77.2
77.5
77.4 76.7
77.6
77

76.4 69.2
76.1
76
78 77

78.2
77.3
77.2 76.7
77.6
77

75.9 69
76

76.2
77 73.9
76

76.1

69.7

74.5

76.1

69.9

74.3

76.6

77. 1

69.3

75.8

76.8

69.3

76.8

76.8

68.7

73.5
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Table 4.3 continued....

Data Single Networks 
Set Events Nodes

Class
A

F 500

G 1000
(500

Class
B

61000

30500

Class
A
20

3

Class
B
1

1

RBF Identification 
Network

Nodes
3
4
5
3
4

%
Idled
77.3
75.1
74.9
76.4
76.3

Conf
77.6
75.9
75

76.5
76.2

Maximum 
Output

%
Idied
75.1

69.3

Conf
75.6

69.1

*2)

10

20

H 30500 30500
(1000
*30.5)

10 10

5
3
4
5
3
4
5
3
4

5
3
4
5

75.9
77.9
77.9
77.6
77.5
78
77.6
77.8
77.5

77.2
78
78.1
78

76
78.5
78
77.7
78
78.2
77.7
77.6
77.6

77.1
78
77.9
77.5

77.1

77.9

77

77.6

77.3

78

76.9

78.7
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approximately 75% and 78% for both identification and confidence, with the greater 
number of nodes again having the bigger margin between training and test data. The 
methods give individual identification values of 20% and above for all classes, with the 
lower values representing species for whom allocation was minimal by the single species 
networks. For example, Chlorella salina and Ochrosphaera neopolitana are identified 
42.8% and 20.2% correct respectively (Table 4.4), both of which have zero allocation from 
their respective single species networks.

4.7.3 RBF Network Decision
Using a Mahalanobis distance metric in the identification network, had little effect 

on the overall performance when compared to that of a Euclidean distance metric. The 
maximum increase achieved between all architectures was 1%, with a high increase in 
training time (Section 4.11.3). Using 100 events per class produced a difference of 3-4% 
between training and test data. An average correct overall identification of 77.3% was 
produced from those networks trained using 200, 300 and 400 events per class. Overall 
identification and confidence of identification are shown for those networks employing a 
Euclidean distance metric with 300 events per class (Table 4.3). No significant 
improvement was evident when node numbers were increased from 3 to 5, where in some 
cases 5 nodes had a slight detrimental affect on performance (1 node per class identifies 
approximately 72% correct - results not shown). There also appeared to be slight 
overparametisation with 5 hidden layer nodes, increasing the division between training and 
test data results. Identification of individual species varies between groups with highs of 
99%, mainly in the Cryptomonads and with Chrysochromulina cymbium the poorest at 
35.3% (Table 4.4).

4.8 Discussion
4.8.1 Single Species Networks

Performance of the single species networks varies considerably when the imbalance 
ratio is high. Many of the poorly identified species are from the same genus or have 
exhibited overlap in the past, indicating the possibility of misidentification with the 
background class. In comparison to the original multi-class architecture, the identification 
of individual species from the single species networks are low, but all are of a similar
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Table 4.4 Identification and confidence of identification for individual species, by the two 
decision processes for combining the outputs of one of the sets of single species networks. 
The single species networks were trained using 500 events for the class of interest with 10 
hidden layer nodes and 500 events per species for the background class. The RBF 
identification network used 300 events per class and 3 hidden layer nodes, employing a 
Euclidean distance metric. Overall identification was 77.4% for the RBF decision network 
and 74.2% for the maximum valued output method.

Taxonomic Group 
and Species Name

Cryptomonads
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Averaee

Flagellates
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pelagococcus subviridis
Porphyridium pupureum
Pseudopedinella sp.
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Average ________

Decision 
network

Corr

95.0
90.0
99.5
91.8
86.5
91.6
99.0
54.6
52.3
97.0
98.3
93.1

87.4

87.0
43.2
71.7
86.2
78.3
98.2
75.0
42.0
64.2
85.7
95.8
75.2
72.0
58.7
98.5
63.0
95.8
77.2
85.7
95.5
66.8

76.9

Conf

94.5
94.7
84.6
96.0
96.4
95.8
99.5
58.2
60.4
89.7
84.8
98.7

87.8

93.7
59.7
81.7
80.5
80.1
81.6
61.9
67.9
41.8
88.9
97.3
66.1
68.6
61.2
84.4
70.8
94.3
70.8
85.4
92.1
74.1

76.3

Maximum 
valued 
output

Corr

95.2
93

99.2
94

88.2
90.8
99

57.6
52.6
97.6
95

94.2

88.0

89.8
42.8
65.8
92.0
78.8
98.0
53.0
47.2
56.2
87.2
95.0
65.8
65.2
42.4
98.2
63.4
95.0
50.2
84.8
95.0
64.8

72.9

Conf

96.7
94.5
92.8
94.3
97.7
98.7
99.2
58.4
58.5
89.0
88.9
96.3

88.7

80.2
62.4
76.0
77.4
79.9
85.5
62.2
55.9
52.5
84.5
99.0
65.0
59.1
66.5
99.4
61.1
96.0
83.1
72.2
88.0
65.9

74.8

Taxonomic Group 
and Species Name

Prymnesiomonads
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bll
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

Averase

Diatoms
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Averase

Dinoflagellates
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

Averaee

Decision 
network

Corr

81.2
58.5
35.3
63.8
80.3
97.3
51.3
76.0
58.3
86.2
79.0

69.8

83.3
83.2
91.5
63.5
80.7

80.4

74.5
78.7
58.2
62.2
38.8
68.8
89.5
80.2
77.0
80.7
60.3
75.2
75.5

70.7

Conf

80.9
59.0
54.3
59.6
73.1
97.3
58.1
69.8
58.1
91.0
69.7

70.1

87.3
85.3
88.0
77.2
78.4

83.2

60.8
76.5
59.5
68.6
59.1
60.7
88.2
75.4
82.4
63.4
73.1
74.4
78.2

70.7

Maximum 
valued 
output

Corr

82
56
31

63.6
78.4
96.6
20.2
85.2
39.2
89.8
78.8

65.5

86
86.6
91.8
62.4
87.8

82.9

71.4
80.8
60.2
53.2
21.0
70.2
88.2
76.0
75.6
81.2
59.6
72.4
68.4

67.6

Conf

61.1
56.5
44.6
54.9
62.0
98.5
58.3
58.5
56.4
88.2
62.0

63.78

82.8
79.6
83.6
73.7
70.5

78.08

51.2
67.2
57.2
68.2
63.3
53.3
86.5
72.7
79.7
67.1
75.6
60.1
72.6

67.3
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magnitude below their respective identification by the multi-class network, thus preserving 
the relationship between good, average and poorly identified classes. Although the kernels 
representing the class of interest are placed directly into the class, this placement is 
random, and with no optimisation the centre's are representing the data within their radius. 
Naturally, with a greater imbalance between event numbers, there is a high possibility that 
the data surrounding the kernels are from the background class. Consequently, despite 
placement of only one centre directly into this class, it will inevitably be represented by the 
nodes placed at position vectors of the class of interest. Identification will be highest for 
those species with optical parameters that exhibit tight distinct clusters in hyper- 
dimensional space. The reason being, kernels placed directly into the class of interest will 
have a better chance of representing the species, if presented primarily with data points 
from that class. With a more diverse looser cluster, the input vector that falls within a 
centres radius, has a greater chance of membership to the background class. As expected, 
as the imbalance ratio between the dominant and subordinate class numbers decreases, the 
individual and overall identification increases.

4.8.2 Output Combinations
Overall identification and confidence of identification are higher by the RBF 

decision network than through the Maximum Valued Output method (Table 4.3). The 
range of values produced by the latter is wider than that of the decision network. This 
variance appears dependant upon the architecture of the single species networks and, to a 
lesser extent, event numbers. As the number of hidden layer nodes in the class of interest 
increase, there is a greater chance of patterns from this class falling within the radius of the 
kernels and producing a higher output. This is evident from the results of the individual 
species networks, where an increase in identification through node addition produces a 
high mean output value and has a widening effect on the standard deviation. This 
improvement with additional node numbers is good, until the difference between training 
and test data performance becomes too wide, indicating reduction in the network's 
generalisation and the introduction of memorisation. This has a direct effect on the 
maximum valued output method. Despite individual species having low or zero 
identification by their respective single species networks, they are identified, although in 
some cases poorly, by the maximum valued output method. This indicates that the range
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of output values from the class of interest, depicted by the mean to be less than 0.5, are in 

fact greater than the output produced by other single species networks when presented with 

the same input pattern.

The relationship between the architecture of the single species networks and the 

RBF decision network is much less important. Identification by the network is not only 

higher than the other method, but the range of overall values produced by varying 

architectures, of both the RBF decision network and the single species networks is 

minimal. This would indicate, that the signature input vector produced by the single 

species networks for a particular pattern, has little dependence upon the architecture of the 

networks, or the number of events. The small difference between Mahalanobis and 

Euclidean distance metrics for overall identification, would imply that the clusters are 

more spherical than elliptical and therefore do not require the more complex modelling of 

the Mahalanobis distance metric. The lack of improvement in increasing the event 

numbers from 200 to 400 per class, indicates coverage of the 62 parameter signatures 

within 200 events.

4.9 Conclusion
There are a number of approaches that can be considered to improve the individual 

performance of the single species networks. The affect of increasing event numbers and 

hidden layer nodes has already been demonstrated. Using further optimisation procedures, 

such as LVQ kernel placement, or a Mahalanobis distance metric would also have positive 

effects. However, the importance of the single species networks lies in how their results 

influence the combining procedure for final identification, and not the individual 

identification of species by the networks themselves.

Although the individual identification of many species are comparable in both 

methods (Table 4.4), overall identification by the RBF decision network is always higher 

and, more importantly, it is consistent. Performance of the maximum valued output 

method is dependent upon the architecture of the single species networks and the data file 

structure. It is also envisaged that addition of new species, increasing overlap, will have a 

direct effect on this method.
These areas are not an issue when combining the outputs through the RBF decision 

network, where the architecture of the single species networks and their training files has
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negligible influence on final performance. Providing there is consistency across the 
architectures of the single species networks, the range of the outputs used as signature 
input vectors for the RBF should be preserved. This negates the need for each network to 
perform to the same equal level, but only to their own individual optimum.

4.10 Multiple Network Architecture - Evaluation
In order to compare and evaluate the efficiency of the multiple network approach to 

that of the original multi-class architecture, a number of studies were performed, some of 
which were similar to those in Chapter 3. The single species networks for set B (Section 
4.7) were considered as a sufficient worst case, where biological variation of the 
background class is fully represented.

4.10.1 Species Combinations
The outputs produced for particular classes, from each of the 62 single species 

networks, were combined into individual training files for a RBF decision network. As 
with the multi-class architecture, three areas of overlap were considered. Initially, the 62 
parameter outputs for each particular genus were combined into separate groups, producing 
37 classes of 300 events each, with some groups containing only one species. Secondly, 
those species within a genus, whose mutual misidentification from the optimum network 
for set B was greater than 5%, were combined, forming 55 classes with 300 events per 
class. Finally, a confusion dendrogram (Chapter 3, Section 3.8.1.5) from the same 
optimum network was produced (Fig. 4.2). The three points chosen combined species into 
55, 46 and 37 groups, with 300 events per class.

All networks used 3 hidden layer nodes per class, employed a Euclidean distance 
metric and were trained three times from different initialisation points. An independent 
test set of 500 events per species was constructed to assess performance.

4.10.2 Rejection of Unknowns
The importance of unknown species rejection and its influence on performance has 

been discussed in Chapter 2 (Section 2.7.4.2). To assess the multiple network's ability to 
reject unknowns, 12 completely novel species (500 events per class) were added to the test 
file (Table 4.5). The trained 62 single species networks (set B) were presented with the file

113



Chapter 4

Amphora coffaeformis
Chrysochromulina cymbium
Chrysochromulina polylepis

Chrysochromulina chiton
Ochrosphaera neopolitana

Pseudopedinella sp.
Prorocentrum nanum

Chlorella salina
Phaeocystis pouchetii
Emiliania huxleyi 92

Ochromonas sp.
Skeletonema costatum

Prymnesium parvum
Stichococcus bacillaris

Pyramimonas grossii
Pyramimonas obovata

Pavlova lutheri
Aureodinium pigmentosum

Amphidinium carterae
Gymnodinium micrum

Gymnodinium veneflcum
Gymnodinium vitiligo

Gymnodinium simplex
Tetraselmis verrucosa

Tetraselmis striata
Chrysochromulina camella

Thalassiosira weissflogii
Prorocentrum micans

Tetraselmis suecica
Dunaliella minuta

Scrippsiella trochoidea
Dunaliella tertiolecta
Dunaliella primolecta
Gyrodinium aureolum

Prorocentrum minimum
Heterocapsa triquetra

Chlamydomonas reginae
Prorocentrum balticum

Phaeodactylum tricornutum
Nephroselmis pyriformis

Nephroselmis rotunda
Chaetoceros calcitrans

Micromonas pusilla
Pelagococcus subviridis

Pleurochrysis carterae
Tetraselmis impellucida

Hemiselmis virescens
Tetraselmis tetrathele

Emiliania huxleyi Bll
Cryptomonas appendiculata

Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata

Chroomonas sp.
Chroomonas salina

Rhodomonas sp.
Hemiselmis brunnescens

Hemiselmis rufescens
Plagioselmis punctata

Porphyridium pupureum
Rhodella maculata

Cryptomonas rostrella
en rs ~ O

Figure 4.2 Dendrogram showing the order in which respective species were clustered 
Clustering proceeds from left to right with the ordinate axis showing the percentage of 
misidentified data remaining at each clustering stage. The positions marked 1, 2 and 3 on 
the dendrogram indicate the 55, 46 and 37 groups respectively for species combination.
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Table 4.5 Twelve species of phytoplankton used as unknowns to assess the ability of the 
alternative multiple network architecture to reject novel species. Species also used to 
assess addition of classes to the existing database.

Taxonomic Group Species Name Order Size jam

Diatom Chaetoceros affinis Bacillariophyceae 10->100
Chaetoceros debilis " 10->100
Chaetoceros radicans " 10->100
Surirellasp. " 10->100

Dinoflagellate Alexandrium lusitanicum Dinoflagellida 25-40
Alexandrium tamarense " 28-40

Flagellate Nannochloris atomus Volvocida 2-4
Prymnesiomonad Chrysotila lamellosa Prymnesiida 4-7

Dicrateria inornata " 3-5
Imantonia " 2-4
Isochrysis galbana " 4-8 
Platychrysis _______"_________8-10
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containing the additional species, and a 62 parameter input file was constructed from the 

combined outputs. Three criteria for rejecting novel data were imposed upon the RBF 

decision network trained in the previous study on the data set B (Section 4.6.4).

1. Rejection if the maximum hidden layer node output is less than a threshold Tl, 

where Tl was varied from 0 to 0.9 in intervals of 0.1

2. Rejection if the difference between the two highest outputs is less than a threshold 

T2, where T2 was varied from 0 to 0.9 in intervals of 0.1

3. Rejection if the highest valued output is less than a threshold T3, where T3 was 

varied from 0 to 1 in intervals of 0.1

4.10.3 Dynamic Selection of Species

When comparing this research to previous work, the number of phytoplankton 

species assessed here is greater, making identification more difficult. This is still only a 

fraction of the phytoplankton community, which increases not only because of different 

species, but variation within individual species. However, a user may not require all 

species present in the database for a particular identification. For example, certain species 

may be known not to exist in a particular body of water, and may therefore be eliminated 

from the analysis, possibly reducing misidentifications.
As the single species networks are independent of each other, once trained, a subset 

can be chosen and their outputs combined. These can then be used as input data to train an 

RBF decision network specific to the particular species. Hence, the input file will 

comprise signature vectors whose dimensional value is equal to the number of single 

species networks originally chosen. As this allows dynamic control over the number 

selected, a user has the option of including extra single species network outputs in the 

input file, therefore increasing vector dimension and possibly adding discriminatory 

information, if needed.
In order to compare performance and training time to the original multi-class 

network, both architectures were trained with 5 to 60 classes increasing in steps of 5, as 

well as the full compliment (62 classes). As the database is constructed of overlapping and 

distinct species, random selection of individuals may be biased, therefore two data sets 

were constructed for each step of 5 to 62 classes. Using the dendrogram (Fig. 4.2), species 

were selected from left to right (high values of misidentification) to construct overlapping
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data sets and from right to left (low values of misidentification) to construct separable data 
sets. Three hidden layer nodes employing both Euclidean and Mahalanobis distance 
metrics and 300 events per class, were used for each architecture to allow full comparison. 
Only 1 iteration was used for all to ensure comparability between time and performance.

4.10.4 Addition of Novel Species
The primary advantage of the multiple network approach is the ease of addition of a 

new species. To investigate this, 12 additional single species networks were trained using 
the twelve unknown species as classes of interest (Table 4.5). In each case, 500 events 
were used for class A and 30500 events in total for class B, chosen randomly from the 
original species database. The networks were trained using 10 hidden layer nodes placed 
directly into class A and one node in class B. An unseen test set of 500 events per species, 
including both the original 62 species and the 12 novel species, was applied to each of the 
74 trained single species networks, 62 of which had already been trained from the initial 
study. The outputs from the networks were combined into 74 files, containing 74 
parameters and 500 events. Three RBF decision networks were trained with 300 events 
and 3, 4 and 5 hidden layer nodes per class, employing a Euclidean distance metric. An 
independent test set was constructed, and the outputs from applying it to the 74 trained 
single species networks were combined to test the performance of the RBF decision 
networks. As a comparison, an original multi-class network was trained with 500 events 
per class for the 74 classes. Training was initiated with 6 hidden layer nodes per class 
employing a Mahalanobis distance metric. Maximum valued output performance was also 
determined.

4.11 Results
4.11.1 Species Combinations

Overall identification when species were grouped into their respective genera was 
78.38%, compared to a value of 85.25% produced from the same number of groups 
constructed from the dendrogram (Table 4.6). Species whose mutual misidentification 
within a genus was greater than 5%, identified to 80.22%. The 46 and 55 dendrogram 
groupings produced an identification of 82% and 81% respectively. Overall confidence of 
correct identification was improved in all cases by the species combinations.
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Table 4.6 Overall identification and confidence of identification by the RBF decision 
network produced from combining species.

Groups Number of 
Groups

Overall 
identification

Confidence of 
identification

All Species Separate

Genus' grouped
5% Misidentity within a 
Taxonomic group

Dendrogram groupings 1 

Dendrogram groupings 2 

Dendrogram groupings 3

62

37

55

55

46

37

77.4

78.38

80.22

81

82.05

85.25

77.22

81.17

81.53

82.13

86.12

90.86
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4.11.2 Rejection of Unknowns

Rejection criteria, based on maximum hidden layer node outputs, produced very 

poor results for rejection of both known and unknown species (Fig. 4.3a). No rejection is 

evident until the threshold reaches 0.6, and progression to 0.9 rejects more knowns than 

unknowns. The difference between the two highest output node values gives better results, 

but still rejects a high number of knowns at a low threshold (Fig. 4.3b). At a value of 0.3, 

34% of knowns are rejected and 68% of unknowns. The threshold imposed on the highest 

valued output provides the best rejection criteria, with only 12% of knowns rejected at a 

threshold of 0.4, compared to 60% of unknowns (Fig. 4.3c). Overall performance drops 

for all thresholds as the number of knowns rejected increases, whereas confidence of 

identification increases, as both misidentified knowns and unknowns are rejected. Extreme 

species rejections vary, with the exception of Isochrysis galbana being the least rejected 

unknown, due to its high misidentity with Hemiselmis virescens.

4.11.3 Dynamic Selection of Species
Low training times were recorded for both the original multi-class networks 

employing Mahalanobis and Euclidean distance metrics, and the alternative multiple 

network approach using a Euclidean distance metric (Fig. 4.4). Training times were high 

for the multiple networks architecture employing a Mahalanobis distance metric, with 62 

classes taking just over 5 hours. With all networks, identification of small numbers of 

separable species produces fairly similar identification values, starting at 95% and above, 

for 5 classes and decreasing as the overlap increases with additional species (Fig. 4.5).

Naturally, as depicted by the dendrogram, identification of the overlapped data sets 

are less than for that of the separable species. The original multi-class architecture, using a 

Euclidean distance metric, gave the poorest performance, producing overall identification 

of 72% for 62 species. For separable species, the original multi-class network exhibits a 

2% to 4% difference in performance of the two distance metrics and a 3% to 5% difference 

for the overlapping species sets. Using the multiple networks architecture, the difference, 

for both the separable and overlapped data sets, is between 0 and 2%, with an average of 

0.9% difference. Overall identification for the 62 species using the alternative multiple 

network architecture is 77.1% and 77.6%, for the Euclidean and Mahalanobis distance 

metrics respectively, compared to 71.7% and 76% by the original multi-class architecture.
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Figure 4.3 Percentage of known and unknown species rejected, as well as overall 
identification and confidence of identification for the three rejection criteria. Extreme 
rejections for both known and unknown species is also shown. • Overall rejection of 
known species • Overall rejection of unknown species A Overall percentage of correct 
identification + Overall confidence of correct identification (a) Maximum hidden layer 
node is less than a threshold Tl. (b) Difference between highest and second highest node is 
less than a threshold T2 (c) Highest valued output node is less than a threshold T3.
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Figure 4.4 Training times for both network architectures employing each distance metric 
using 3 hidden layer nodes and 300 events per class. Alternative multiple architecture 
employing A Mahalanobis distance metric • Euclidean distance metric. Original multi- 
class architecture employing • Mahalanobis distance metric ^Euclidean distance metric.
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Figure 4.5 Percentage correct identification for the separable (empty markers) and 
overlapping data (solid markers) for both architectures (n.b. scale is exaggerated). 
Alternative multiple architecture employing A Mahalanobis distance metric • Euclidean 
distance metric. Original multi-class architecture employing • Mahalanobis distance 
metric + Euclidean distance metric.
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4.11.4 Addition of Novel Species
For 7 out of the 12 unknowns, identification by the single species networks was 

less than 60% (Table 4.7). The RBF decision network, however, identified 10 of the 

species at approximately 60% or above, with the exception of Platychrysis and 

Chaetoceros affinis, which identified to 29.2% and 33.8% respectively (Table 4.8). 

Platychrysis misidentifies as Chaetoceros debilis (36%) and Chrysotila lamellosa (12.5%), 

as well as various others. This is mutual, to a lesser extent, with Chaetoceros debilis 

misidentifying as Platychrysis 15.5%. Chaetoceros affinis misidentifies as Chaetoceros 

radicans 16.5% and as Amphora coffaeformis 20%, reducing the confidence of this 

original species. Various other species misidentify between both knowns and unknowns, 

reducing confidences and identifications. However, the greatest misidentities were 

between species for whom overlap was already high, for example, Hemiselmis 

brunnescens with Hemiselmis virescens, and Nephroselmis pyriformis with Nephroselmis 

rotunda. The overall identification of the network was 75.3% with a confidence of 

identification of the same value, compared to 72% correct and confidence of 72% by the 

maximum valued output method and 76% correct and confidence of 75.1% by the original 

multi-class network (results not shown).

4.12 Discussion
4.12.1 Species Combination

As expected, the grouping together of certain species where overlap is great will 

naturally improve network performance. The difference in identification of genus 

combinations to the groupings produced at position 1 on the dendrogram, indicates that the 

generated 62 parameter inputs, like the genus groupings of the seven-dimensional optical 

data (Chapter 3, Section 3.8.3.5), are not necessarily where the overlap lies. The 

confidence of identification is significantly improved as the misidentity of species is 

reduced, due to their coupling with overlapping classes.

Dendrogram groupings shown here are very similar to that of the dendrogram 

produced for the multi-class network (Chapter 3) and, although there are a few minor 

discrepancies, the degrees of overlap are almost identical, even if the order is slightly 

different. Whilst again illustrating the lack of similarity between the flow cytometric
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Table 4.7 Results of the single species networks trained for the additional 12 species using 
500 events in the class of interest and 500 per species in the background class. The 
networks were trained using a Euclidean distance metric with 10 hidden layer nodes for the 
class of interest. The mean and standard deviation of the network output values for the 
classes of interest are also shown. (Mean output value of class B ranged between 0.98 - 
0.99 and standard deviation of output values <0.06)

Taxonomic group Species name Percentage Mean Standard 
_____________________________identified___________Deviation

Diatom Chaetoceros affinis 0 0.161 0.092
Chaetoceros debilis 37.6 0.392 0.221
Chaetoceros radicans 39.2 0.401 0.275
Surirellasp. 57 0.518 0.226

Dinoflagellate Alexandrium lusitanicum 77.6 0.755 0.333
Alexandrium tamarense 61.2 0.591 0.310

Flagellate Nannochloris atomus 82.6 0.714 0.235
Prymnesiomonad Chrysotila lameiiosa 3.8 0.192 0.139

Dicrateria inornata 37.8 0.418 0.239
Imantonia 47.6 0.467 0.158
Isochrysis galbana 83 0.717 0.246
Platychrysis 0 ______0.229_____0.117
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Table 4.8 Individual identifications and confidence of identification by the decision RBF 
network trained using the original 62 species and the 12 additional species (shaded). The 
single networks used 500 events for the class of interest with 10 hidden layer nodes and 
500 events per species for the background class. The RBF decision network used 3 hidden 
layer nodes and 300 events per class (Overall identification of 75.3%). All networks 
employed a Euclidean distance metric.

Taxonomic group and
Species Name
Prymnesiomonads
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bl 1
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

IjChrysotila lamellosa
Wpicrateria inornata
Mmantonia

Isochrvsis galbana
Platychrysis

Average

Flagellates
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pelagococcus subviridis
Porphyridium pupureum
Pseudopedinella sp.
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Average

Corr

85.5
61.2
37.2
61.3
81.8
96.8
46.5
81.8
56.0
87.5
85.0
58.7
71.3
76.2
83.5
29.2

68.7

89.8
54.3
73.8
87.7
87.7
91.7
58.0
50.2
58.2
83.7
94.8
77.5
71.7
50.7
98.3
55.8
95.0
75.5
82.8
95.8
64.7
Q1 7

76.8

Conf

82.5
60.4
51.3
60.5
73.4
82.8
55.1
68.6
58.8
91.8
68.1
62.6
77.0
70.4
81.3
50.6

68.5

89.6
61.2
78.3
81.5
77.9
79.0
59.6
61.9
43.1
76.3
97.9
72.0
71.4
64.4
90.4
69.8
91.7
70.8
79.9
91.1
77.0
84. 4

75.9

Taxonomic group and
Species name
Cryptomonads
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Averaee

Diatoms
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii
Chaetoceros affinis
Chaetoceros debilis
Chaetoceros radicans
Surirella sp. J^^^H^

Averase

Dinoflagellates
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea
Alexandrium tamarense
Alexandrium lusitanicum

Average

Corr

96.2
91.5
99.0
91.0
93.2
96.0
100.0
24.0
81.0
92.7
94.0
92.2

87.6

82.8
89.5
91.5
70.2
81.2
33.8
63.5
70.2
88.2

74.5

74.5
83.5
61.3
57.8
49.7
55.0
98.5
81.3
66.0
76.8
67.2
61.2
50.8
91.3
84.0

70.6

Conf

95.7
97.7
94.4
95.0
92.1
96.0
95.8
65.3
54.8
78.5
86.7
91.6

87.0

77.3
87.3
83.1
72.4
79.0
63.6
57.7
67.8
79.5

74.2

64.9
72.9
58.7
71.1
57.3
59.7
90.0
73.0
80.0
74.3
80.3
67.2
72.3
64.0 •
96.8 1

72.2
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signatures of some same group/genus species, it also demonstrates that the relationship 

between the 7 optical characteristics is preserved in the generated 62 parameter data.

4.12.2 Rejection of Unknowns
Although the difference between the two highest output values produces high 

rejection of unknowns, it also rejects a high number of knowns making it an unsuitable 
criterion. Unlike the original multi-class network, rejection using hidden layer node 

thresholds is extremely poor for both the known and unknown species. This indicates the 

outputs of the Gaussian kernels for both known and unknown species are high. This would 

imply that the proximity of input signature vectors from the single species networks to 
kernel centres is, in relation, greater than the proximity of the seven-dimensional optical 
data to kernel centres in the original multi-class architecture.

The optimum rejection criterion for the 62 parameter data, is threshold imposition 

upon the highest valued output node. This highlights the importance, and influence, of the 
weight vectors between the hidden and output layer of the RBF decision network for these 
data. As the threshold values are increased the percentage of overlap and misidentity is 
reduced, therefore improving overall confidence of identification at the expense of number 
of species identified. The importance of this has already been discussed, and the gap 
between known and unknown species rejection may be increased by using a network 
trained on overlapping combinations of species, that are known to be hard to differentiate. 
This will increase confidence of identification with a lesser affect on overall performance.

4.12.3 Dynamic Selection of Species
The spatial distribution of phytoplankton flow cytometric signatures has already 

been discussed, and the advantages of the Mahalanobis distance metric over the Euclidean 

distance metric have been established. It is not surprising therefore, that the original multi- 
class architecture employing a Euclidean distance metric, produces the poorest 

identification as class numbers increase. Throughout the increase, the difference in 
performance of the two distance metrics, for the multiple network architecture, 

demonstrates the unnecessary requirement of the Mahalanobis distance metric in this 

approach. The Euclidean measure gives almost identical results to that of the 

Mahalanobis, in a fraction of the time. The comparable identification values between the
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two architectures, indicates that the combination of dynamically selected single species 

networks, perform just as well as the original multi-class network, with the advantage of 

shorter training times, greater flexibility and less complexity.

It should also be mentioned that, the software used to train the RBF decision 

networks uses optimisation procedures that are not required for the generally spherical 

clusters produced from the single species network outputs, therefore training time may in 

fact be even shorter than recorded here.

4,12.4 Addition of Novel Species
As expected when new species are added, overlap increases, therefore reducing 

overall identification. Adding new classes to any identification system will have an affect 

on its performance. The overall identifications are slightly lowered by the increase, but the 

RBF decision network for combining outputs, still performs better than the maximum 

valued output method. The original multi-class network, trained on all 74 species, 

produced an overall identification comparable to that of the alternative multiple network, 

and exhibited similar areas of overlap between the novel and original species. However, 

this network took over 2.5 hours to train and optimise to an overall identification of 

approximately the same value as that of the multiple networks architecture, which took 

approximately 50 minutes.
The average identifications of the five taxonomic groups (Table 4.8), are relatively 

similar to their identification without additional species (Table 4.4). The Diatoms are an 

exception to this, where the average identification was lowered by the four additional 

Diatoms, due to high misidentification within the genus Chaetoceros and species from 

other groups. The identification of most species is of a similar magnitude when compared 

to the network trained without the additions. More apparent between these results, is the 

change in identification of species for whom mutual misidentification was already quite 

high. As new species are added the misidentities are still evident, but in different 

proportions. For example, Hemiselmis brunnescens misidentifies as Hemiselmis rufescens 

34% in the network without unknowns (Section 4.7) and the mutual reverse to a value of 

37%. Here, mutual misidentification is 69% and 9.5% respectively. The same change in 

proportion is also true for Nephroselmis pyriformis and Nephroselmis rotunda, amongst 

others. This is a consequence of boundary positions being different in the two networks,
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where certain data points will now provoke a reaction from the node on the opposite side 
of its original placement, therefore affecting individual identification and proportion of 
misidentity, but not total misidentity. This shift is evident between species that constantly 
misidentify and may never be adequately separated.

The high identification of the novel species, and the consistency in identification 
and overlap of the original species, indicates the lack of importance of the content of the 
background class. This will allow single species networks to be trained and stored without 
the need for re-training when a novel species is encountered.

4.13 Conclusion
When comparing the identification of individual species by the two network 

architectures, similarities were evident across the groups (Table 4.9). Some differences 
arose where one performed better than the other for particular species. This is expected 
with any identification system, but what appears in this instance is that major discrepancies 
tend to be amongst those species for whom misidentity, mutual or otherwise, is already a 
factor, and the variance is a proportional balance. The misidentity of these overlapping 
species can be detrimental to their own individual identification, and the overall 
identification and confidence of identification of the network. As with the original multi- 
class approach, this affect can be lessened through combination of similar species and, 
together with the rejection of unknowns, can be used to improve performance.

The difference in overall performance of the two architectures is negligible. 
Although individual identifications vary between the two paradigms, the advantages of the 
alternative multiple networks approach are obvious. As the database of species increases, 
the original multi-class network will require far more optimisation than the alternative 
multiple network architecture. The original optical parameters are diverse, elliptical 
clusters requiring the more complicated Mahalanobis distance metric. The variance of 
these parameters, though stages of growth and multi-modality etc., are eliminated in the 
range of values generated for input into the RBF decision network. These, therefore are 
adequately modelled by the simpler Euclidean distance metric, despite the possibility of a 
high number of dimensions if dynamic selection dictates it. The addition of a new species 
to the alternative multiple networks approach requires minimum training time and 
optimisation, producing a flexible system that can operate in real-time by non-computer
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Table 4.9 Comparison of individual identification results for the optimum multi-class 
network from Chapter 3 (77.7% correct identification) and the optimum alternative 
multiple networks approach documented here (77.4% correct identification).

Taxonomic Group
and Species name

Cryptomonads
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas macuUua
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Average

Flagellates
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pelagococcus subviridis
Porphyridium pupureum
Pseudopedinella sp.
Pyramimonas grossii
Pyramimonas obovata
Rhode.Ua maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Average

Multiple
Network
Corr

95.0
90.0
99.5
91.8
86.5
91.6
99.0
54.6
52.3
97.0
98.3
93.1

87.4

87.0
43.2
71.7
86.2
78.3
98.2
75.0
42.0
64.2
85.7
95.8
75.2
72.0
58.7
98.5
63.0
95.8
77.2
85.7
95.5
66.8

76.9

Conf

94.5
94.7
84.6
96.0
96.4
95.8
99.5
58.2
60.4
89.7
84.8
98.7

87.8

93.7
59.7
81.7
80.5
80.1
81.6
61.9
67.9
41.8
88.9
97.3
66.1
68.6
61.2
84.4
70.8
94.3
70.8
85.4
92.1
74.1

76.3

Original
Multi-Class
Corr

95.2
92.4
97.6
93.6
90.8
95

99.4
65

64.4
95.8
92

93.4

89.55

91.8
52.2
67.4
85.2
82.4
99.4
71
54

57.4
87

95.2
76

67.4
64
93

67.6
94.8
76
87

94.6
60.2

77.31

Conf

97.9
96.9
95.9
95.1
91.3
97.5
94.6
67.4
68.8
95.8
86.5
94.2

90.16

76.9
58.8
75.1
82.7
75.7
81.5
62.6
61.8
67.5
90.6
97.7
69.5
73.6
65.4
94.5
77.3
93.5
71.4
84

89.2
71.7

77.19

Taxonomic Group
and Species name

Prymnesiomonads
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bll
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

Average

Diatoms
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Average

Dinoflagellates
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneflcum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea

Average

Multiple
Network
Corr

81.2
58.5
35.3
63.8
80.3
97.3
51.3
76.0
58.3
86.2
79.0

69.8

83.3
83.2
91.5
63.5
80.7

80.43

74.5
78.7
58.2
62.2
38.8
68.8
89.5
80.2
77.0
80.7
60.3
75.2
75.5

70.73

Conf

80.9
59.0
54.3
59.6
73.1
97.3
58.1
69.8
58.1
91.0
69.7

70.1

87.3
85.3
88.0
77.2
78.4

83.2

60.8
76.5
59.5
68.6
59.1
60.7
88.2
75.4
82.4
63.4
73.1
74.4
78.2

70.7

Original
Multi-Class
Corr

85.4
61.2
46.2
60

80.8
97.6
45.6
77.6
59.4
92.2
79.8

71.44

88
87.6
93.4
76.2
92.8

87.6

77.8
88.2
71.2
69

41.4
66.4
86

72.4
70

81.2
61.6
56.4
51.2

68.68

Conf

76.7
60.6
56.1
56.8
73.5
95.1
55.5
70.6
62.4
83.8
70.9

69.2

90.9
83

90.8
76

74.5

83

72.6
73.4
62.6
66.9
68.8
63.1
92.1
79.7
73.5
59.9
77.6
70.9
66.7

71.3
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scientists. A library of constructed pre-trained single species networks, will allow dynamic 
selection of particular species as and when required, and a simple, rapid, low optimisation 
procedure for final identification is achieved using the RBF decision network.
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5 Classification and Unsupervised Neural Networks
5.1 Introduction

Correct identification to species level by supervised networks is generally high, 

being poor in species only for whom overlap is such, that separation may never be 

possible. However, in some cases when the same species are identified to group or genus 

level the network's performance drops. This is due to the lack of correlation between flow 

cytometric signatures and the morphometric class labelling of some species (Morris & 

Boddy, 1995). It seems appropriate that in order to improve the identification of 

phytoplankton to group or genus level, an 'alternative structure' needs to be introduced, 

that is more representative of flow cytometric signatures than phenetic similarities. This 

chapter investigates the closeness of taxa in terms of recorded optical parameters through 

the analysis of unsupervised neural networks.

Unsupervised neural networks differ from supervised in their ability to discover for 

themselves, the simultaneous relationships between variables of multi-dimensional data. 

They do not require the presence of any external or a priori knowledge and are used 

primarily for classification rather than identification. The Kohonen Self Organising Map 

(SOM) (Lippman, 1987; Kohonen 1988, 1990) is a topology preserving network, 

representing a simplified model of the feature mapping that takes place in the brain. It 
reduces multi-dimensional data to a more easily conceived dimensionality, whilst still 

attempting to retain the physical configuration of the input space. However, although 

similar patterns in the input space are mapped to adjacent areas in the output space, the 

distinction between probable clusters is less than obvious.
This chapter evaluates the network and introduces a number of methods for 

recognising probable boundaries and hence determining clusters on the SOM, as well as 

demonstrating the conflicts between morphometric groupings and flow cytometric data.

5.2 Data Classification
Classification is an instinctive process, which has been naturally carried out on 

animate and inanimate objects for centuries. Elements belonging to the same class do so 

because of some in-group similarity that is not apparent, or as pronounced, in objects 

belonging to a different class. These distinct sub-sets may subsequently belong to a larger 

group, for which the in-group similarity is coarser.
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Statistical cluster analysis determines possible classes within a data set using 
algorithms that are either hierarchical or partitional. Both methods involve grouping 
similar objects into mutually exclusive clusters. Hierarchical methods iteratively form 
clusters by either merging the data; i.e. agglomerative methods, e.g. Single linkage, Wards 
method; or dividing the data; i.e. divisive methods e.g. Splinter-Average (Krzanowski, 
1993); at various levels. Partitional methods differ from hierarchical by allowing a data 
point to be re-assigned to a different cluster if it becomes apparent that the initial choice 
was incorrect. They partition the data based on some pre-defined objective function, e.g. 
K-means (Tou & Gonzalez, 1974).

Scale space theory (Witkin, 1983) is an approach employed in a number of 
clustering fields. This requires scale-space representation of the data and a suitable scale 
parameter. Cluster number is determined as that number which persists over the greatest 
range of the defined scale interval (e.g. Wong, 1996; Kothari & Pitts, 1999; Pitts et al, 
1999).

Data clustering, however, is not an exact science. Despite some techniques 
possessing strengths over others, they very rarely yield a conclusive guaranteed result. 
There is no absolute definition of what constitutes a cluster, consequently, for many of the 
algorithms, the in-group similarity is regarded as a measure of closeness in hyper- 
dimensional space. Many algorithms are sensitive to initialisation conditions. There are 
problems with some of these methods when cluster shapes vary. For example, a set of two 
hypothetical elliptical clusters, discernible to the eye, can be problematic to a method for 
which cluster detection relies on distance (Fig. 5.1). The same elliptical distribution can 
cause ambiguous clusters, if an incorrect placement of probable centres within each are 
subsequently merged, due to the centres' proximity to each other. Many of the methods are 
effective only if the data produces spherical, distinct, evenly distributed clusters. 
Empirically, data rarely conform to this ideal condition, being sometimes noisy, 
contaminated with outliers and unevenly distributed. A large data set is likely to have 
areas of great distinction, as well as intense overlap, where the within-group similarity of 
one cluster may be very different to that of another. Thus, the number of clusters may vary 
greatly depending upon the scale the data is looked at, with no definite number being 

easily extracted.
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t <s

Parameter X

Figure 5.1 Two-dimensional plot of two data sets exhibiting elliptical clusters. Using a 
classical statistical method, employing a distance metric as a measure of similarity, may 
regard point B as being closer to point A than point C (i.e. t<s). Subsequent grouping may 
partition one or both clusters, giving an inaccurate conclusion of class membership.
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5.3 Flow Cytometric Classification and Neural Networks

The existing taxonomies for organisms such as phytoplankton, have been largely 

developed through phenetic relationships. Some documented work relating to neural 

network analysis of morphometric data, has produced relatively good results. For 

example, Boddy et al. (1994b) identified fungal spores using morphometric measurements, 

such as length of basal appendage and maximum spore length, as input to both supervised 

and unsupervised networks. However, organisms that can be characterised solely on 

physical measurements, make creating a training file for a neural network a relatively easy 

option. Once scaled or normalised, the dimensional measurements can be translated into 

input parameters with little or no conflict. Organisms for which identification is both 

dimensional and feature based are more difficult. For example, the major distinguishing 

feature of the Flagellates is the presence and number of flagella. An interpretation of how 

to represent this physical characteristic would be required, related either to the number 

present or by implying its' presence (i.e. yes = 1, no = 0). In order to ensure the network 

places equal emphasis on each input parameter, the data must be rescaled (Boddy et al., 

2000). Thus, after linear rescaling this feature would add little if any discriminatory data, 

but may increase computational intensity. The use of flow cytometric signatures removes 

this problem. However, the characteristic flagella are not detected by flow cytometry, and 

in cases where this may be the specific morphological variance, the outcome of supervised 

training could be muddled. With identification, as opposed to classification, performed 

primarily by supervised neural networks, the presence of non-characteristic class targets 

makes identification to group, and sometimes genus level, not as successful as to species 

level. This was established from the results in Chapters 3 and 4 where overlap for some 

species was not necessarily in-group. Therefore, class labels, more characteristic of flow 

cytometric signatures for group and maybe genus division, discovered via unsupervised 

means, can only stand to improve identification by supervised networks.

5.4 Cluster Definition Problem
Cluster definition poses problems in a number of areas, the main two being: (1) 

determination of the number of clusters present in a data set; (2) to which cluster a data 

point should be assigned. Whether a hierarchical or partitional method is used, an analyst 

must pre-determine criteria for cluster definition. In many cases, knowledge of data
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distribution, outliers, even the number of clusters is needed to select the best method to 
use. However, with a priori information generally not available, a user must make 
assumptions to decide upon method and procedure. When this is the case, two 
investigators using the same data and algorithm may produce very different results, due to 
a simple assumption made early on in the computations. This degree of user-control 
makes the analysis very susceptible to errors and inaccuracies.

Unsupervised networks offer an alternative approach to statistical methods which, 
unlike cluster analysis, are more able to cope with noisy data, outliers and non-uniform 
cluster distributions. They do not suffer from the cluster definition problem to the same 
extent as classical methods, not requiring any pre-determined knowledge to select them as 
an appropriate method. They are less sensitive to their starting conditions and do not need 
a priori information to approximate the data distribution. Without this data being imposed 
upon them by a user, they are able to determine for themselves underlying similarities. 
This removes any possible human inaccuracies at early stages and ensures that similar data 
are located within a close proximity (Section 5.5). However, some of the primary 
problems of cluster definition are still present. These issues are addressed (Section 5.6).

5.5 Kohonen's Self Organising Map
5.5.1 Architecture

Kohonen's SOM attempts to map events which are close to each other in the p- 
dimensional input space, to the same or adjacent areas on a two-dimensional (or sometimes 
one-dimensional or three-dimensional) feature map. The relatively simple architecture 
generally consists of two layers of nodes (Fig. 5.2). The input layer represents the p- 
dimensional feature vector, x = (xi,X2,......,xp), and is connected to every node in the
second or Kohonen layer. The most common structure is a rectangular two-dimensional 
ordering, where every node within the body of the lattice is interconnected to its eight 
neighbours (except at the edge of the map).

5.5.2 Algorithm
The weight vectors (of the same dimension as the input data), Wj = (wi,W2,......,wp),

representing the nodes within the Kohonen layer, are initially set to small random values. 
As a pattern, x, is presented to the network a best match between it and the Kohonen nodes
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2 D Kohonen Lattice

Input Layer - 7 parameters

Figure 5.2 Kohonens Self Organising Map in two dimensions. In the rectangular lattice 
depicted, each internal node is laterally connected to its eight neighbours.
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is determined. This is defined as that node, j, whose weight vector produces a minimum 

Euclidean distance, D(X,WJ), to the pattern,

M=l 

where ./=./,2,...,fc, and k is the user-defined number of nodes.

As the algorithm continues, competitive learning in the Kohonen layer produces a 

winning node for each pattern, that node is then shifted in the direction of the input vector. 

Prior to training a region of update is set around the winning node, which can be altered 

dynamically as training progresses. Nodes that fall within this region are also updated, 

either positively or negatively, depending on their distance from the winning vector. The 

excitatory or inhibitory effects of this neighbourhood resembles the Mexican Hat function 

(Fig. 5.3; Kohonen, 1997), where two distinct regions of lateral interaction can be 

observed. Nodes within region A are moved in the direction of the input vector, those 

closest to the origin being updated to a greater extent, and those that fall within region B 

are moved away. The winning node and its localised neighbours are updated according to: 

w^ (t + 1) = Wji (t) + a(t )/(rf)[xj (0 - Wjj (t ) j if j falls within the update region

Wj (t + 1) = Wj (t) otherwise

where 0 < a(t) < 1

The degree of update of the nodes is dependant upon the learning parameter, a(t), 

which decreases as time progresses, and the neighbourhood function, f(d), which is 

generally Gaussian:

/(<*) = exp
d 2

2cr 2 (0

Here, a(t) defines the neighbourhood radius and d is the distance between the winning 

node and the neighbouring units. The function maximum is centred at the winning node, 

for which f(d)=l, and decreases to zero as the distance between the winning node and 

neighbours increases. As preliminary placement of the nodes is random, there exists the 

possibility that nodes already representing the input data will continue to win more often 

than those placed in sparsely populated areas. To counter this problem, a conscience 

mechanism is initiated (DeSieno, 1988). If a node appears to be winning too often a 

negative bias is introduced, based on the nodes winning frequency, allowing other nodes
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Output

Input

Figure 5.3 Update region within the Kohonen layer depicted by the Mexican hat function. 
Region A - excitatory, nodes are moved towards the input vector. Region B - inhibitory, 
nodes are moved away from the input vector.
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the chance to be selected and updated (Appendix 2). This iterative process of pattern 
presentation and update continues until the parameters expire, if linear, or until there is 
little or no movement of the node positions. The Kohonen nodes then approximate the 
distribution of the input data, visually displayed in a topologically preserved two- 
dimensional map.

5.5.3 Initialisation
5.5.3.1 Update Region

The size of the update region is crucial to the final distribution of data in the output 
space. Too large an update region may not detect small discrete clusters in the input space, 
whereas too small an area may neglect to find any larger clusters. Kohonen (1990) 
suggests a compromise of initiating training with a large update region and high learning 
parameter, and then reducing both until just the winning node and its immediate 
neighbours benefit from learning (Appendix 2). This establishes the larger clusters and 
then goes on to detect any fine scale clustering, thereby improving discrimination and 
better representing the true distribution of the data.

5.5.3.2 Map Size and Dimension
The Kohonen self-organising map, however trained, will always produce a valid 

clustering outcome, i.e. proximity on the map indicates proximity in the input space, 
though not necessarily vice versa. This is particularly true when the input and output 
spaces are of the same dimension (Fig. 5.4a). However, if the input space has higher 
dimensionality than the output space, two points which are close in the input space may 
not be adjacent in the output space (Fig. 5.4b) (Kohonen, 1990).

The map size and dimension can also result in anomalies, depending on data 
structure. Too large a grid may separate out many events and possibly produce areas of 
little or no activity, whereas too small a grid may not partition clusters. The translation of 
the SOM from p dimensions to two dimensions allows only primary reactions of nodes to 
be displayed (i.e. the class for which a nodes reaction is maximum). Thus, too small a grid 
may leave some classes under-represented, or, if in a region dominated by one class, a 
subordinate class may only be apparent from the secondary reaction of a node, not readily
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(a)

(b)

Figure 5.4 (a) Progression of a 6 by 6 Kohonen map, i.e. 36 nodes, learning to map 2 
dimensional data arranged in a circular area. At each stage of update, the Kohonen nodes 
become more representative of the data in the input space mapping similar input patterns to 
adjacent clusters of nodes (b) Progression of a one-dimensional Kohonen network, with 36 
nodes arranged in a line, learning to map the same data set. Despite the one-dimensional 
map approximating the circular data space, the dimensionality mismatch maps some 
points, which are close in the input space, to nodes which are a considerable distance from 
each other in the output space, i.e. a and b.
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obvious as part of a possible cluster.
Analysis is thus required to detect these minor ambiguities, and determine which 

areas of the map hold similarities despite their positions.

5.6 Boundary and Cluster Detection on the Kohonen SOM
The nature of the SOM allows multiple operators, using the same data, to produce 

similar, but not identical results, regarding topology preservation. The algorithm alleviates 
some of the difficulties mentioned in the cluster definition problem (Section 5.4) by 
minimising the amount of user-defined criteria required. Once the network is trained, the 
topologically preserved two-dimensional map provides a visual display of the distribution 
of the data in the output space. Probable cluster determination is achieved via boundary 
recognition within this space. This is not an easy process, and an area in which research is 
diverse.

The Unified Matrix Method (UMM) (Ultsch & Siemon, 1989) is one approach 
which constructs a three-dimensional landscape from a distance matrix, allowing 
visualisation of the topology of the Kohonen feature map. The weights of the nodes in the 
Kohonen layer are analysed and the distance between them depicted as heights, with areas 
of considered closeness shown as valleys and greater distances as hills. Similarly the 
distance matrix can be represented in grey scale, with greater distances represented by the 
lower end of the spectrum (Kraaijveld et al, 1992). It has been used successfully in a 
number of applications (e.g. livarinen et al., 1994; Vesanto et al., 1997). A similar 
approach has been employed for analysis of the phytoplankton data (Section 5.7.1.2).

Murtagh (1994) employed a different approach combining the SOM with 
contiguity-constrained clustering (CCC). Generally in agglomerative clustering techniques 
the two closest clusters, x and y, are replaced by their mean, w, and this process is 
continued until only one cluster remains. The CCC expands this method by clustering the 
two groups, or single vectors, only if there is some qe x and some q '€ y such that q and q' 
are contiguous. Murtagh (1995) used a set of variables, derived from four flux values 
recorded from the Infrared Astronomical Satellite, comprising readings at a number of 
wavelengths for approximately 250,000 objects, including nebulae, quasars and stars of 
different types. The method requires some input from the user as to the number of clusters
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or groups desired at the finish. Agglomerative clustering on the SOM is investigated 

further (Section 5.7.5).

Grid growing (Fritzke, 1991; Blackmore & Miikkulainen, 1993) adapts the basic 

two-dimensional grid produced by an SOM into a flexible map, where nodes can be added 

or subtracted, depending upon connect and disconnect thresholds. The threshold values 

are user defined and dependent upon an average measurement of closeness, introducing the 

possibility of loss of information due to the nature of mean value calculations. Other 

methods such as deterministic annealing, require a priori information as to the number of 

clusters present and selection of cluster centres.

A number of methods for boundary and cluster detection on the SOM have been 

investigated. The methodology and results of these approaches are discussed and 

compared, in relation to the difficulties with classical phytoplankton taxonomy when 

considering flow cytometric signatures.

5.7Boundary Detection Methods
5.7.1 Visualisation of Hyper-Dimensional Euclidean Distances

5.7.1.1 Borders between nodes
Once training is complete the Euclidean distance between nodes of the SOM can be 

visualised as borders of varying thickness. Using purpose written software (Wilkins et al., 

1994b), Euclidean distances can be shown either between nodes representing a particular 

class (if known), or between every node on the grid. In the case of a labelled data set, this 

allows not only the similarity between classes to be visualised, but also the within-class 

variation of flow cytometric signatures. Additionally, a threshold, t, can be imposed upon 

the Euclidean distances between nodes, allowing only those borders representing a distance 

greater than t to be plotted, thereby allowing the user control over the cluster membership 

and hence the number of clusters.

5.7.1.2 Grey Scale representation ofEuclideans
Once the network has approximated the data distribution, the Euclidean distances 

between the position vectors of the Kohonen nodes can be arranged in a distance matrix. 

The average Euclidean distance between a non-edge node and its 8 surrounding neighbours 

can be calculated (Kraaijveld et al, 1992). Areas where the Euclidean average is high, are
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shown as grey scale values at the darker end of the range, and those of lower values at the 
lighter end. Because of the SOM's competitive learning, those nodes representative of the 
inter-object similarity within a cluster are moved towards that cluster, and those not 
representative pushed away, perhaps towards their own clusters. This partitioning creates a 
region of high Euclidean distances in an area that offers the possibility of representing a 
boundary. However, the problem with this method is that of information loss through an 
average calculation, where for example, high Euclidean distances on one side of a node 
may be lost if the values on the opposite side are low. This subsequently produces a grey 
scale value that is not actually representative of the particular area.

To counter this, a second grey scale image is produced here that illustrates the four 
Euclidean distances between a node and its four corner neighbours. This second image 
shows four grey scale blocks for each node, thus preserving the information around the 
central kernel. Both methods are employed using an exaggerated scale to emphasise 
possible boundaries. Interpretation of the grey scale as a boundary is left to the user.

5.7.1.3 Edge Detection
Differentiation of the grey scale images can be furthered by the employment of 

image processing techniques. The different areas of grey scale representing high 
Euclidean distances and average Euclidean distances (Section 5.7.1.2), can be considered 
as borders between homogenous image regions. These possible borders can be enhanced 
by the application of an edge detection algorithm. The Sobel edge detection algorithm 
(Pitas, 1993), the mathematics of which will not be discussed here, has been utilised for 
this purpose.

5.7.2 Redundant Nodes
Natural clusters are described as continuous regions appearing in a z-dimensional 

space, where each of the z variables represent the axes of a z co-ordinate system, defined in 
the space by the range of values for each of the parameters representative of the input data. 
These probable clusters are considered to hold a high density of data points, separated from 
other clusters by regions of low density (Dillon and Goldstein, 1984). With the 
employment of competitive learning and the gradual reduction of the update region, nodes 
within the SOM are moved away from sparsely populated regions and closer to denser
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areas. However, if the nodes fall within an area between two probable clusters, where the 
density of points is extremely low, it is possible that some nodes will not be assigned to 
either of the groups, producing redundant nodes which are not representative of any data. 
Using a large Kohonen map allows a greater number of nodes to be available for modelling 
the training data. This will leave more low density areas on the map, forcing some of the 
nodes into these relatively empty zones. Using the purpose-written software (Wilkins et 
al, 1994b), these regions of redundant nodes can be visualised on a two-dimensional grid, 
showing possible areas for the more distinctive cluster boundaries.

5.7.3 Proportional Node Responses
Although competitive learning allows all nodes to model the data, there are still 

those that respond more frequently than others. These nodes are naturally found in areas of 
high density, where similar patterns are repeatedly mapped to the same area or within its 
proximity. As the update region decreases during training, the node central to the region is 
the last and most frequently updated, consequently resulting in a higher proportional node 
response than its neighbours. By imposing a threshold upon proportional node response, a 
number of these nodes can be considered as possible cluster centres. From the number 
produced it is then possible to assess whether certain nodes selected may, in fact, be 
representative of the same cluster, and therefore only one of which should be chosen as the 
probable centre. Clusters can then be built up around the nodes by considering their 
proximity to the cluster centre through Euclidean distances.

5.7.4 Visual Population Density
Although competitive learning gives distant nodes a chance to model the data, it 

does not ensure that every class within the data set is represented by one of the most 
frequently updated nodes. As node adjustment would be towards the more tightly packed 
regions, where greater mappings of patterns occur, the majority of nodes above the chosen 
threshold will inevitably exist in densely populated areas. For this reason, it is more 
beneficial to select a threshold value giving a greater number of nodes than one per 
expected number of clusters. This initiation provides an idea of cluster density and can be 
coupled with a visual selection process to give a variation to the proportional node 
response method.
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Once training is complete, the two-dimensional map approximating the distribution 
of the input data, will provide a visual representation of region densities. It is then possible 
to assess whether certain high responding nodes, may in fact be representative of the same 
cluster, and therefore only one of which should be chosen as the probable centre. Nodes 
can be visually selected at or near the centre of the regions, and clusters built up around 
them as before (Section 5.7.3). There may of course exist areas of lower density, with no 
high responding nodes located within their proximity but empty regions surrounding them, 
indicating a possible cluster. Centres can be visually selected within these areas, thus 
attempting to minimise the number of nodes chosen from the same cluster to represent 
different classes.

5.7.5 Agglomerative Clustering
As already discussed (Chapter 1, Section 1.6.1), there are a number of statistical 

methods of hierarchical clustering that use a minimum distance rule. The particular 
algorithm used here, takes the actual position vectors of the trained Kohonen nodes and 
uses them to produce a matrix of Euclidean distances. The minimum distance between any 
two nodes is discovered, and the respective nodes are fused to establish the first cluster. 
Nodes are then either added to the existing cluster, or another containing a further two 
nodes is formed. The criteria for membership to a cluster depend on whether the distance 
between the unclustered node and a node in the cluster, is less than the distance between 
the two unclustered nodes (i.e. single linkage; Krzanowski, 1993). Remaining nodes are 
either added to an existing cluster or new clusters are formed. This procedure continues 
until a particular number are discovered or all objects belong to a single group.

5. 7.6 Decomposition
Decomposition involves partitioning the data set into a number of individual sub­ 

sets (e.g. Raghavan et al, 1991; Yang et. al., 1996). Once the SOM is trained, each node, 
providing it is not redundant, represents a certain number of patterns. As the network is 
initiated with a user-defined number of nodes, the data represented by an individual node 
can be filtered into the same number of sub-sets. The method has been investigated for 
two reasons. Firstly, if a data set comprises a number of distinct groups, it serves as an 
initial primary partitioning of the data space, indicating coarse clusters. The resulting N
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sub-sets can then be used as N separate input files for a further N SOMs. These additional 
SOMs can then be decomposed further if required, or used to detect finer clusters using 
one of the above methods. Secondly, to illustrate empirically, the lack of correlation 
between the flow cytometric data of some species and their classical taxonomic groupings.

5.7. 7 Notes on Boundary Detection Methods
The data sets used for this research are labelled with class membership. However, 

this has no influence on network learning and are present only to demonstrate both the 
methods, and the relationships between flow cytometric signatures and morphology of 
phytoplankton. The boundary detection methods presented, develop clusters of Kohonen 
nodes from the two-dimensional map and not the data directly. As an individual data point 
can influence cluster formation, the clustering of the nodes makes the approach less 
sensitive to anomalies or outliers that may be present in the data. Once boundaries have 
been finalised, actual data classifications are constructed from those data points 
represented by a particular cluster of nodes.

It was considered that methods 5.7.3 (Proportional Node Response), 5.7.4 (Visual 
Population Density) and 5.7.5 (Agglomerative Clustering), whose final groupings are 
based on Euclidean distances, may incorporate ambiguous groupings due to the obscure 
placement of redundant nodes. The position vectors of these nodes are located in sparsely 
populated regions and would experience little if any update. As all nodes are clustered by 
the methods, those that are redundant will inevitably be grouped into the nearest cluster. 
This information is extraneous and therefore discarded in the analysis. In the above 
mentioned methods the redundant nodes are highlighted, and not included in cluster 
formation.

By similar means, the agglomerative method will attempt to cluster the redundant 
nodes into an existing, or new group. With some redundant nodes a considerable distance 
from any cluster and possibly close to each other, they may be merged into their own 
group, again forming ambiguous clusters. To remedy this sensitivity the agglomerative 
clustering method is initiated with a high number of groups, and the redundant nodes again 

discarded.
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5.8 Experimental procedure 
5.8.1 Training Files

Preparation of the flow cytometric data was as described in Chapter 2 (Section 2.6). 
To investigate the boundary detection methods, four separate data sets were generated. 
The initial set consisted of eleven separable species (Table 5.1), selected from the results of 
Chapter 3 (Section 3.8.2, Table 3.7). The eleven species were chosen based on their high 
identifications, and were rigorously gated to exclude any possible outliers or noise events, 
producing tight distinct distributions with 300 events per species (Fig. 5.5). To clarify 
their high separability they were analysed using a 1 node per class RBF network, 
employing a Mahalanobis distance metric and no optimisation procedure, producing an 
overall identification success of 99%. Although the eleven species were separable there 
were areas of minor overlap, so a fictitious seven-dimensional data set was generated, to 
produce two completely differentiable classes (Fig. 5.6). Each class contained 300 events.

The third data set comprised thirty species of phytoplankton with 300 events per 
species (Table 5.2; Fig. 5.7). The species were selected at random from the optimum 
network in Chapter 3 (Section 3.8.2; Table 3.7), exhibiting a range of identification 
success, from 99.4% for Micromonas pusilla, to 45.6% for Ochrosphaera neopolitana.

Finally, the fourth data set comprised sixty of the sixty-two species database, with 
300 events per species (Table 5.3; Fig. 5.8). Software restrictions allowed a maximum of 
sixty classes, therefore, Gymodinium micrum and Gymodinium veneficum were excluded, 
as this overlapping genus was already well represented.

5.8.2 Kohonen Network Training
To investigate the performance of the boundary detection methods, independent of 

map size and initialisation, two Kohonen SOMs were produced for analysis of the 
generated two class data: an 8 by 8 map, containing 64 nodes, and a 24 by 24 map, 
containing 576 nodes. For the eleven species data set three Kohonen maps were trained, 
an 18 by 18, 22 by 22 and a 24 by 24. Square grids were chosen for simplicity, although 
the methods are not restricted by map configuration. All networks were trained three times 
to ensure reproducibility.

To investigate the methods for larger data sets four networks were trained, two for 
the 30 species data set and two for the 60 species data set. A 24 by 24 (576 nodes) and a
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Table 5.1 Eleven species data set. Class numbers indicate labelling shown on the 
Kohonen two dimensional grids. Individual species identification by a RBF network 
trained on the eleven species data set with 300 events and 1 node per class.

Taxonomic 
Group
Cryptomonads

Flagellates

Prymnesiomonads
Diatom

Species

Chroomonas sp.
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis virescens
Micromonas pusilla
Porphyridium pupureum
Tetraselmis tetrathele
Emiliania huxleyi Bll
Phaeodactylum tricornutum

Class Number

1
2
3
4
5
6
7
8
9
10
11

Size 
Urn
8-10
15-25
10-15
18-25
16-25
5-8
1-3
4-6

10-16
5-7
8-35

Individual 
i.d. (%)

99.7
98

97.3
99

99.3
99.7
100
100
99.3
99.3
100

o

ff

0 Forward Light Scatter 0
Depolarised Light Scatter

Figure 5.5 Scatter plot depicting two-dimensional views of two sets of optical parameters 
for the eleven species data set (Table 5.1).
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-2 -20246 

Parameter 4

Figure 5.6 Scatter plot showing two-dimensional views of two sets of parameters for the 
generated two class data set. n.b. Although there appears to be some areas of overlap, it is 
attributed to the two-dimensional images of the seven-dimensional data.
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Table 5.2 Thirty species data set. Class numbers indicate labelling shown on the Kohonen 
two dimensional grids. Individual identification by the optimum RBF network from 
Chapter 3 (Overall identification - 77.6%).

Taxonomic 
Group
Cryptomonads

Flagellates

Prymnesiomonads

Diatoms

Dinoflagellates

Species

Cryptomonas calceiformis
Cryptomonas maculata
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Chlamydomonas reginae
Dunaliella primolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Porphyridium pupureum
Tetraselmis tetrathele
Tetraselmis verrucosa
Chrysochromulina camella
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Ochrosphaera neopolitana
Pleurochrysis carterae
Prymnesium parvum
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Thalassiosira weissflogii
Amphidinium carterae
Aureodinium pigmentosum
Gymodinium simplex
Prorocentrum micans
Scrippsiella trochoidea

Size |J.m

10-15
12-20
5-8
4-9
5-8
6-9

11-20
5-12
1-3
4-7
6-8
4-6

10-16
3-11
6-12
6-10
6-8
5-6

8-10
10-18
8-10
10-20
4-6
8-35
12-20
15-20
7-12
6-10

30-40
30-42

Class
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Individual 
i.d. (%)

93.6
90.8
65

64.4
95.8
92

91.8
85.2
99.4
71
54

95.2
94.6
60.2
85.4
46.2
60

80.8
45.6
92.2
79.8
88

87.6
93.4
92.8
77.8
88.2
69

81.2
51.2
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0 Forward Light Scatter
0 Depolarised Light Scatter

Figure 5.7 Scatter plot showing two-dimensional views of two sets of optical parameters 
for the thirty species data set (Table 5.2).
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Table 5.3 Sixty species data set. Class numbers indicate labelling shown on the Kohonen 
two-dimensional grids. Individual identification by the optimum RBF network from 
chapter 3 (Overall identification - 77.6%).

Taxonomic 
Group
Cryptomonads

Flagellates

Prymnesiomonads

Diatoms

Species Name

Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas ccdceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.
Chlorella salina
Chlamydomonas reginae
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pseudopedinella sp.
Pelagococcus subviridis
Porphyridium pupureum
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bll
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Size |im

8-10
5-12
15-25
10-15
12-20
18-25
16-25
5-8
4-9
5-8
6-9
8-13
4-8

11-20
3-12
5-12
6-12
1-3
4-7
6-8
3-12
8-10
2-3
4-6
5-10
4-8
7-24
5-8

11-19
6-8
6-15
10-16
3-11
6-12
5-9
6-10
6-8
5-6
5-7
8-10
4-6
3-6

10-18
8-10
10-20
4-6
8-35
3-5

12-20

Class 
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Individual 
i.d. (%)

95.2
92.4
97.6
93.6
90.8
95

99.4
65

64.4
95.8
92

93.4
52.2
91.8
67.4
85.2
82.4
99.4
71
54

57.4
76
87

95.2
67.4
64
93

67.6
94.8
76
87

94.6
60.2
85.4
61.2
46.2
60

80.8
97.6
45.6
77.6
59.4
92.2
79.8
88

87.6
93.4
76.2
92.8
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Table 5.3 continued

Taxonomic 
Group
Dinoflagellates

Species Name

Amphidinium carterae
Aureodinium pigmentosum
Gymodinium simplex
Gymnodinium vitiligo
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum minimum
Prorocentrum nanum
Scrippsiella trochoidea
Gyrodinium aureolum

Size Jim

15-20
7-12
6-10
7-22
15-27
9-15
30-40
16-18
8-10

30-42
35-45

Class 
No.
50
51
52
53
54
55
56
57
58
59
60

Individual 
i.d.
77.8
88.2
69

66.4
72.4
70

81.2
61.6
56.4
51.2
86

1•I
33

0
Forward Light Scatter

0
Depolarised Light Scatter

Figure 5.8 Scatter plot showing two-dimensional views of two sets of optical parameters 
for the sixty species data set (Table 5.3).
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30 by 30 (900 nodes) for the 30 species data sets and a 22 by 22 (484 nodes) and a 30 by 
30 (900 nodes - the largest the software would allow) for the 60 species data set.

To investigate the decomposition method a 1 by 11 network was trained for the 

eleven species data set, and a 1 by 5 network for the 60 species data set. The size of the 
latter network was chosen to establish the lack of definitive separability of the flow 
cytometric signatures for the 5 taxonomic groups.

All maps were generated using the purpose written software (Wilkins et al, 1994b) 
which employed Kohonen's recommendations for training an unsupervised network with 
competitive learning (Appendix 2).

For all boundary detection methods, any parameters that require stating are noted in 
the results section. The following section presents the results for the particular boundary 
detection method, followed by the subsequent images relating to it. On figures depicting 
superimposition of the data sets on the two-dimensional maps (i.e. Fig's 5.9, 5.10, 5.14, 

5.15, 5.18 5.19, 5.24 & 5.25), positions marked with •, indicate nodes chosen as centres for 

the visual population density approach only and are not related to other methods.

5.9 Results
5.9.1 Visualisation of Hyper-Dimensional Euclidean Distances
5.9.1.1 Borders between nodes

The plot of the two group data set superimposed on the two-dimensional 8 by 8 
map (Fig. 5.9), shows a very obvious separation of 2 distinct clusters. However, the 24 by 
24, map of the same data set, does not infer the same results (Fig. 5.10). Without any prior 
knowledge, there appear to be two relatively sparse areas that could represent possible 
boundaries, implying three clusters. Figures 5.11 and 5.12 show the Kohonen grids for the 
two maps. Euclidean distances between allocated nodes are depicted as borders with 
varying thickness, whether they represent different or same class members. The class 
membership numbers indicate primary class allocation to a particular node. Once a 

threshold is imposed upon the Euclidean distances (Table 5.4), the distinction between 

them is more obvious (Fig. 5.13 & 5.14).
Despite the variation in physical outcome, the topology of the eleven species data 

was preserved, i.e. for the three networks trained the general layout of classes and their
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neighbours remained similar, if not always in identical physical areas. From these results 
the 22 by 22 map was chosen for analysis of the boundary detection methods. The 
superimposition of data points, displays 11 distinct probable clusters, separated by areas of 
little or no data points with a few areas of minor overlap (Fig. 5.15). This is supported by 
the node allocation grid (Fig. 5.16) and the threshold grid (Fig. 5.17), where boundaries 
below the threshold coincide with areas of slight overlap on the two-dimensional map. For 
example Cryptomonas calceiformis (label 3) and Cryptomonas reticulata (label 4).

Clusters on both the 24 by 24 (Fig. 5.18) and 30 by 30 (Fig. 5.19) two-dimensional 
maps for the 30 species data set are less visually discernible. Although the grids with and 
without threshold for the 24 by 24 (Fig. 5.20 & 5.21) and 30 by 30 (Fig. 5.22 & 5.23) show 
some areas of distinction, it appears to represent coarser clustering. However, in 
comparing the two grid sizes (Fig. 5.20 & 5.22), the consistency of physical placement 
between similar classes is evident despite map size. A number of probable coarse clusters 
appear when thresholds are imposed on both maps (Fig. 5.21 & 5.23). For example 
species Hemiselmis brunnescens, Hemiselmis rufescens and Plagioselmis punctata (3, 4 
and 6 respectively) cluster together on both maps as do Cryptomonas calceiformis and 
Cryptomonas maculata (1 and 2), as well as others.

As the class numbers are increased to 60, overlap becomes considerable and real 
cluster definition is unclear on both the 22 by 22 and 30 by 30 maps (Fig. 5.24, 5.25). 
Topology preservation is again evident between the map sizes, without and with threshold 
(Fig. 5.26, 5.27, 5.28 & 5.29). However, as the class number increase some species are not 
allocated a node's primary reaction and are therefore not present on the map. This is more 
apparent with the 22 by 22 map, where less nodes are available to represent the data. 
Threshold imposition depicts only areas of low density when compared to the Kohonen 
maps (Figs 5.24 & 5.25), but reinforces the coarse allocation between both maps.
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Figure 5.9 8 by 8 Kohonen map produced for the two group data set after training. 
+ Dimension of map, + data points superimposed in two-dimensional. An obvious area of 
low density offers the possibility of 2 distinct clusters (• shows nodes chosen as centres for 
visual population density method).
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Figure 5.10 24 by 24 Kohonen map produced for the two group data set after training. 
+ Dimension of map, + data points superimposed in two-dimensional. Areas of low 
density imply a presence of three possible clusters. (• shows centres chosen for visual 
population density method).
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Figure 5.11 8 by 8 Kohonen grid produced for the two class data set.

Figure 5.12 24 by 24 Kohonen grid produced for the two class data set.

Note : The numbers depicted on the above two diagrams are for visual purposes only and 
depict primary allocation, by each node, to a particular class. Euclidean distances between 
nodes are represented as borders with varying thickness. Black lines are shown between 
nodes allocated to different classes, and grey between nodes allocated to the same class. 
Redundant nodes, i.e. nodes that have no events allocated to them are shown as * . This 
applies to all images depicting Kohonen grids, with and without thresholds.
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Table 5.4 Range of Euclidean distances between nodes on each map(s) trained for each 
particular data set. Threshold values imposed to illustrate the "borders between nodes' 
detection method.

Data Set Map size Threshold range Threshold value
Two Group 8 by 8 0.038667-0.216181 ols
Two Group 24 by 24 0.020960-0.245549 0.14
Eleven Species 22 by 22 0.008449-0.335903 0.06
Thirty Species 24 by 24 0.008007-0.436095 0.06
Thirty Species 30 by 30 0.013200-0.510127 0.05
Sixty Species 22 by 22 0.015437-0.293154 0.07 
Sixty Species_____30 by 30_____0.008976-0.384128_________0.06_____
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2 2

2 i

Figure 5.13 8 by 8 Kohonen grid produced for the two class data set with threshold 
imposed on Euclidean distances between nodes as recorded in Table 5.4.

Figure 5.14 24 by 24 Kohonen grid produced for the two class data set with threshold 
imposed on Euclidean distances between nodes as recorded in Table 5.4
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Figure 5.15 22 by 22 Kohonen map produced for the eleven species data set after training. 
+ Dimension of map, + data points superimposed in two-dimensional. High areas of 
density coupled with empty regions indicates clearly the presence of 11 possible clusters. 
(• shows centres chosen for visual population density method).
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Figure 5.16 22 by 22 Kohonen grid produced for the eleven species data set.
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11 11 11 11 ii 
11 11 11 11 11

7 7 7 7 7111 11 11 11 11 11

Figure 5.17 22 by 22 Kohonen grid produced for the eleven species data set with threshold 
imposed on Euclidean distances between nodes as recorded in Table 5.4

Figure 5.18 24 by 24 Kohonen plot produced for the thirty species data set after training. 
Some wide unpopulated regions are evident between areas of high density, obvious cluster 
are less visually discernible. (• shows centres chosen for visual population density 
method).
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Figure 5.19 30 by 30 Kohonen plot produced for the thirty species data set after training. 
Greater areas of low density are apparent as the map size increases (• shows centres chosen 
for visual population density method).

15 IS 15 15 15

15 15 15 15 15 
ST]|15[2T|15 15

26 26 26 26 26 26 26 22

27|26 26 26 26 26 2618 18 18
18 18 18 18 26 26 26 26 26

13 13 13 13120 201*120 20
13 13 13 13 13 13 13 13 13 20 20 20 20 20 20 20 30

Figure 5.20 24 by 24 Kohonen grid produced for the thirty species data set.
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Figure 5.21 24 by 24 Kohonen grid produced for the thirty species data set with threshold 
imposed on Euclidean distances between nodes as recorded in Table 5.4. Distinct cluster 
allocation is seen for Micromonas pusilla (label 9) and Porphyridium pupureum (label 12)
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Figure 5.22 30 by 30 Kohonen grid produced for the thirty species data set.

162



Chapter 5
i 2525 25 25 
i_25j* 25 7 

15 7

20202020202021
20 202020 20 2021

31313I* 
3131313 

13131313
_dbtb lib 2626 26 13 13 13 13 _. _ _

_^^^^^-, __ _ S26??l£5?3fl50l3 13 13 13T7 * __ 
L5 15 « !Jb J?5T7T?26 26 26 27 27 27 S6 29 27 30TT13 13 13 13 13 13 

i.l5™252522 15T?26 26^5*27 26 28 28 2728 1430141313 13 13 
i|25 252522 1515T?2626 26 2727 28 2728 28 14303013 14 8 
IJ25 25 257r*"jl5 15 15 26 19 27 27 27 23 28 14 14 14 3014 * 8 
J25 25^y'Ji! 'J'JjlS 15 15TT772719 27 2727 281414303030 8 
125^722 22 22 15 15T319 1!J I'J 19 272728 27231414303030 

r222222?nyTTT?19 191919TT2827 272328 1414 * 30 
! 222222 2lWgTl919 191919 19TT * 281428 1428 3014 

12 22 227T212T21 19 It It Ib IV 19TT28 16 19 27 1428 30 14 
22.2212.21 21 21 21TT16 16 16 16 19 19 16 16 14 14 1914 30 30 

^21 21 21 2116 16 1617 17 17 16 17 14 17 * 19 18 18 
f 24W21 2121 2116 16 1717 17 16 16 16 1418 18 18 18 14 

J24 24 « 2l3^T21^Tl61717 17 17 16 18 18 18 18 18 16 14 
* 24242323?^^ffpni717 17 1717 181819 1818 18 30 

i* * » 24 23 23 23^T?4irTpni7T!ri8 18 13 8 818 8 * 30 
*l24 23 23 23 241011 il
«P32323101110TU11*

232310111011111111
nrii 10101111101010

1101010 10 1011 1111 
5 r blO 10 10 1010 11|10

555 5101010 * 
5555 5^^ * 

5 5 5 5 5 5 51 
55555 5ll8|

L8 18 18 13 18 814 8 8 
81813181818 8 8 
81813181818 8 8 
8181318 8181813

318 8 8 830 
388888 

* 3 8 8 8 8TT 
;l 3 8 8 8HT * 
121) 8 81* 
5|21 2l| *

Figure 5.23 30 by 30 grid produced for the thirty species data set with a threshold imposed 
on Euclidean distances as recorded in Table 5.4. Distinct cluster allocation is seen for 
Micromonas pusilla (label 9) and Porphyridium pupureum (label 12).

Figure 5.24 Two-dimensional plot showing 22 by 22 Kohonen plot produced for the sixty 
species data set after training. (• shows centres chosen for visual population density 
method - black and red points represent the positions of the 40 and red and yellow the 16 
centres).
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Figure 5.25 Two-dimensional plot showing 30 by 30 Kohonen plot produced for the sixty 
species data set after training. (• shows centres chosen for visual population density 
method - black and red points represent the positions of the 49, red and yellow the 36 
centres and blue the 11 — where overlap is seen between red and blue the position of both 
is red).

Figure 5.26 22 by 22 Kohonen grid produced for the sixty species data set.
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Figure 5.27 22 by 22 grid produced for the sixty species data set with a threshold imposed 
on Euclidean distances between nodes as recorded in Table 5.4. Distinct cluster allocation 
is still evident for Micromonas pusilla (label 18) and Porphyridium pupureum (label 24) 
with an increased number of classes.
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Figure 5.28 30 by 30 Kohonen grid produced for the sixty species data set.
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Figure 5.29 30 by 30 grid produced for the sixty species data set with a threshold imposed 
on the Euclidean distances between nodes as recorded in Table 5.4.
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5.9.1.2 Grey Scale Representation of Euclidean Distances.
As the separation of the two class data was so distinct, a grey scale plot of 

Euclidean distances and Euclidean averages was not generated. Figures 5.30a, 5.32a, 
5.34a, 5.36a and 5.38a depict Euclidean distances as grey scale images for all maps 
representing the 11, 30 and 60 species data sets. The darker end of the scale illustrates 
areas of higher Euclidean averages. While Figures 5.3la, 5.33a, 5.35a, 5.37a and 5.39a 
show the images produced using four Euclidean distances to represent each node. The 
images illustrating four values for each node, show the same areas of high Euclidean 
distance as that of the images using the average value only, but also exhibit some less 
pronounced boundaries not evident on the image of averages. When compared to the 
Kohonen threshold grids for each respective set (Figs. 5.17, 5.21, 5.23, 5.27 & 5.29), areas 
of similarity are evident with the primary correlation existing in those areas of obvious low 
density.

5.9.1.3 Edge Detection
Image b in Figures 5.30 - 5.39 show the affects of applying the Sobel edge 

detection algorithm to all grey scale images. The lighter end of the scale depicts possible 
boundaries. The construction of any definitive clusters from these images is, however, 
very much at the discretion of the reader. The method serves as a verification, when 
compared to the Kohonen grids, that less populated areas are distanced from populated 
regions.
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(a) (b)
Figure 5.30 (a) Grey scale image of each node represented as the average Euclidean 
distance between it and its eight neighbours on the 22 by 22 map for the eleven species 
data set. (b) Image produced after applying the Sobel edge detection algorithm.

(a) (b)

Figure 5.31 (a) Grey scale image of each node as four blocks representing the Euclidean 
distance between a node and its four corner neighbours on the 22 by 22 map for the eleven 
species data set. (b) Image produced after applying the Sobel edge detection algorithm.
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(a) (b)

Figure 5.32 (a) Grey scale image of each node represented as the average Euclidean 
distance between it and its eight neighbours on the 24 by 24 map for the thirty species data 
set. (b) Image produced after applying the Sobel edge detection algorithm.

(a) (b)

Figure 5.33 (a) Grey scale image of each node as four blocks representing the Euclidean 
distance between a node and its four corner neighbours on the 24 by 24 map for the thirty 
species data set. (b) Image produced after applying the Sobel edge detection algorithm.
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(a) (b)

Figure 5.34 (a) Grey scale image of each node represented as the average Euclidean 
distance between it and its eight neighbours on the 30 by 30 map for the thirty species data 
set. (b) Image produced after applying the Sobel edge detection algorithm.

(a) (b)

Figure 5.35 (a) Grey scale image of each node as four blocks representing the Euclidean 
distance between a node and its four corner neighbours on the 30 by 30 map for the thirty 
species data set. (b) Image produced after applying the Sobel edge detection algorithm.
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(a) (b)

Figure 5.36 (a) Grey scale image of each node represented as the average Euclidean 
distance between it and its eight neighbours on the 22 by 22 map for the sixty species data 
set. (b) Image produced after applying the Sobel edge detection algorithm.

(a) (b)

Figure 5.37 (a) Grey scale image of each node as four blocks representing the Euclidean 
distance between a node and its four corner neighbours on the 22 by 22 map for the sixty 
species data set. (b) Image produced after applying the Sobel edge detection algorithm.
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(a) (b)

Figure 5.38 (a) Grey scale image of each node represented as the average Euclidean 
distance between it and its eight neighbours on the 30 by 30 map for the sixty species data 
set. (b) Image produced after applying the Sobel edge detection algorithm.

(a) (b)

Figure 5.39 (a) Grey scale image of each node as four blocks representing the Euclidean 
distance between a node and its four corner neighbours on the 30 by 30 map for the sixty 
species data set. (b) Image produced after applying the Sobel edge detection algorithm.
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5.9.2 Redundant Nodes
From a comparison of the Kohonen plots (Figs. 5.9, 5.10, 5.15, 5.18, 5.19, 5.24 & 

5.26 ) to their respective grids (Figs. 5.11, 5.12, 5.16, 5.20, 5.22, 5.26 & 5.28), it is evident 
that areas of sparsely populated regions are represented by nodes, whose distance from any 
data is such that they have little or no reaction during the training and update process. The 
areas occupied by these redundant nodes can be seen to represent very definite boundaries 
between probable clusters. Redundant nodes are evident, to some extent, on all maps. The 
two and eleven class data sets show definitive results, where the redundant nodes appear to 
indicate very obvious boundaries (Figs. 5.11, 5.12 and 5.16). However, as the number of 
classes increases so does the quantity of data and inevitably the data overlap, leaving fewer 
sparsely populated areas and subsequently less possibility of redundant nodes.

5.9.3 Proportional Node Responses
In order to assess this method threshold values were chosen that imposed the same 

number, or as close to the same number, of classes present in the respective data sets. The 
thresholds imposed for this method, and as a starting point for over-selection of centers in 
the visual population density method, are shown in Table 5.5 Node allocation to the 
chosen centres are shown in Figures 5.40-5.48. The 8 by 8 map produced almost ideal 
clustering of the two group data set (Fig. 5.40), while the 24 by 24 indicated some areas of 
discrepancy (Fig. 5.41). Comparing the results to the threshold grids (Figs 5.13, 5.14, 
5.17, 5.21, 5.23, 5.25 & 5.27) indicates only slight similarity. Even where cluster 
distribution is distinct (e.g. 11 species data set) this method heavily partitions many 
obvious groups, while others are merged together.
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Table 5.5 Threshold values chosen for the four data sets on each respective map size for 
the Proportional Node Response Method (PNR) and as a starting point for the Visual 
Population Density Method (VPD). Due to software limitations only the 22 by 22 map for 
the 60 species data set was considered for the proportional node response method.

Data set

Two group
it

n

it

Eleven speciesM
Thirty species

it

M

11

"

II

Sixty species
"

Map size

8 by 8
n

24 by 24
tl

22 by 22
ti

24 by 24
ii

n

30 by 30
it

il

22 by 22
n

Threshold 
range

0 - 0.068
n

0-0.01
M

0-0.021
M

0-0.021
it

it

0-0.0165
tl

ti

0-0.01777
11

Threshold

0.045
0.02
0.01

0.006
0.009
0.005
0.006
0.005
0.004
0.007
0.004
0.003
0.01

0.005

Centers

2
21
2

20
14
64
17
34
84
7
30
54
5

29

Method

PNR
VPD
PNR
VPD
PNR
VPD
PNR
PNR
VPD
PNR
PNR
VPD
PNR
PNR
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Figure 5.40 Groupings produced by the proportional node response method on the 8 by 8 
Kohonen map for the two class data set. A threshold value of 0.045 selected 2 centres. 
Each group generated by the method are shown in different colours with the centres 
selected by the method depicted by *.

Figure 5.41 Groupings produced by the proportional node response method on the 24 by 
24 Kohonen map for the two class data set. A threshold value of 0.01 selected 2 centres. 
Each group generated by the method are shown in different colours with the centres
selected by the method depicted by *.

Note : On the above and following figures (i.e. Fig's 5.40-5.75) nodes allocated to the 
same class, by the method being discussed, are indicated as the same colour. These 
colours are not indicating particular species or taxonomic groupings.
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Figure 5.42 Groupings produced by the proportional node response method on the 22 by 
22 Kohonen map for the eleven species data set. A threshold value of 0.009 selected 14 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by 4 (black or white dependent upon background colour).

iiiiiiiiiiiliHiiiiNiilliiNiiiiiiiiiiii^liiHiliiiilliiiiiiii!!!!!!!!!!!!

Figure 5.43 Groupings produced by the proportional node response method on the 24 by 
24 Kohonen map for the thirty species data set. A threshold value of 0.006 selected 17 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by * (black or white dependent upon background colour).
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Figure 5.44 Groupings produced by the proportional node response method on the 24 by 
24 Kohonen map for the thirty species data set. A threshold value of 0.005 selected 34 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by * (black or white dependent upon background colour).

Figure 5.45 Groupings produced by the proportional node response method on the 30 by 
30 Kohonen map for the thirty species data set. A threshold value of 0.007 selected 7 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by « (black or white dependent upon background colour).
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Figure 5.46 Groupings produced by the proportional node response method on the 30 by 
30 Kohonen map for the thirty species data set. A threshold value of 0.004 selected 30 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by 4 (black or white dependent upon background colour).

Figure 5.47 Groupings produced by the proportional node response method on the 22 by 
22 Kohonen map for the sixty species data set. A threshold value of 0.01 selected 5 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by * (black or white dependent upon background colour).
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Figure 5.48 Groupings produced by the proportional node response method on the 22 by 
22 Kohonen map for the sixty species data set. A threshold value of 0.0055 selected 29 
centres. Groups generated by the method are shown in different patterns with the centres 
selected by the method depicted by * (black or white dependent upon background colour).
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5.9.4 Visual Population Density
The lower threshold values indicated in Table 5.5, were chosen to over select nodes 

as an indication of possible centres for this method. Those that are assumed to be high 
responders because of their proximity to the winning nodes during training, are possibly 
members of the same cluster, and were therefore ignored and others selected visually from 
the two-dimensional plots (Figs. 5.9, 5.10, 5.14, 5.18, 5.19, 5.24 & 5.26). With the two 
group 8 by 8 map (Fig. 5.9) and eleven group 24 by 24 map (Fig. 5.15), visual selection 
was easy, producing similar results to the networks own allocated groupings (Fig. 5.49 & 
5.50). To support the method and provide clarification regarding node proximity, the 
analysis of the 24 by 24 map of the two class data was performed twice, using different 
nodes as centres. From the Kohonen map (Fig. 5.10) implying 3 possible clusters, 2 
centres were initially chosen, and nodes assigned accordingly (Fig. 5.5la). This displayed 
groupings around probable centres identical to that of the Kohonen grid (Fig. 5.12). Two 
further positions were then chosen for the second analysis, selecting a different centre for 
the cluster which appears to have been separated. Again the groupings produced were 
identical to the network's allocation, supporting the theory that nodes on opposite sides 
may still belong to the same class (Fig. 5.51b).

The overlap of data on the 24 by 24 and 30 by 30 map, of the 30 species data set, 
makes visual identification of 30 centres very difficult. Despite the fact that generally 
class number would not be known, centres are chosen to compare the method to the 
groupings produced by the SOM. Therefore, 28 and 27 various centres were chosen 
respectively (Fig. 5.18 & 5.19) at the author's interpretation as 30 could not visually be 
detected. The surrounding nodes were clustered accordingly (Fig. 5.52 & 5.53).

Node selection for the 60 species data set on both the 22 by 22 and 30 by 30 maps 
was also difficult. The spread and overlap of data makes it hard to visually infer 
boundaries. Sets of centres were chosen for each map indicated on the two-dimensional 
plots (Figs.5.24 & 5.26). For the 22 by 22 map, 40 and 16 centres were selected, and for 
the 30 by 30 map, 49, 36 and 11 centres were chosen, with groupings shown accordingly 
(Fig. 5.54, 5.55, 5.56, 5.57 & 5.58). The selection of 16 and 11 centres on each map 
respectively, allowed closer analysis of the variation between flow cytometric signatures 
and the taxonomic divisions of phytoplankton, originating from morphometric similarities.
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Figure 5.49 Groupings produced by the visual population density method on the 8 by 8 
Kohonen map for the two class data set. Two centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by *.

Figure 5.50 Groupings produced by the visual population density method on the 22 by 22 
Kohonen map for the eleven species data set. 11 centres were chosen. Groups generated 
by the method are shown in different patterns with the centres selected depicted by * 
(black or white dependent upon background colour).

181



Chapter 5

Figure 5.51a Groupings produced by the visual population density method on the 24 by 24 
Kohonen map for the two class data set. Two centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).

Figure 5.51b Groupings produced by the visual population density method on the 24 by 24 
Kohonen map for the two class data set. Two centres were chosen. Groups generated by 
the method are shown in different patterns with the centres selected depicted by « (black 
or white dependent upon background colour).
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Figure 5.52 Groupings produced by the visual population density method on the 24 by 24 
Kohonen map for the thirty species data set. 28 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).

Figure 5.53 Groupings produced by the visual population density method on the 30 by 30 
Kohonen map for the thirty species data set. 27 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).
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Figure 5.54 Groupings produced by the visual population density method on the 22 by 22 
Kohonen map for the sixty species data set. 40 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).

Figure 5.55 Groupings produced by the visual population density method on the 22 by 22 
Kohonen map for the sixty species data set. 16 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).
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Figure 5.56 Groupings produced by the visual population density method on the 30 by 30 
Kohonen map for the sixty species data set. 49 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).

Figure 5.57 Groupings produced by the visual population density method on the 30 by 30 
Kohonen map for the sixty species data set. 36 centres were chosen. Groups generated by 
the method are shown in different colours with the centres selected depicted by * (black or 
white dependent upon background colour).

185



Chapter 5

Figure 5.58 Groupings produced by the visual population density method on the 30 by 30 
Kohonen map for the sixty species data set. 11 centres were chosen. Each group generated 
by the method are shown in different colours with the centres selected depicted by * 
(black or white dependent upon background colour).
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5.9.5 Agglomerative Clustering
As mentioned (Section 5.8.3), the inclusion of redundant nodes into this method 

requires the initiation of a large number of groups. Figures 5.59 - 5.75 show the images 

produced by the method, where greatest partitioning appears mainly in the sparsely 
populated regions of the map. Using 20 agglomerative clusters for the 8 by 8 map of the 

two group data set, gives almost identical results to that of the network's allocation (Fig. 
5.59). Clusters containing individual or small numbers of nodes, tend to be on areas 
indicated as possible boundaries by the other methods. They appear to lie on both sparsely 

populated regions and redundant nodes, indicating their lack of association with the 
position vectors of the nodes allocated to larger clusters. For this reason, any group not 
allocated at least 4 nodes is indicated in white.

This is also apparent in the 24 by 24 map for the two group data set (Fig. 5.60), 

where 20 agglomerative groups indicate 3 possible clusters, with small groups of 3 nodes 
or less lying next to or within the proximity of redundant nodes or areas of low density. 
Using 100 agglomerative groups to initiate clustering of the 11 species data set, implies 
less than the number of classes known to be present (Fig. 5.61). As this number increases 
to 150, merged areas separate and more resemblance to the networks allocations are 
evident (Fig. 5.62). Further than this, the method begins to generate greater partitioning of 
data, and a greater number of clusters containing 3 nodes or less appear (Fig. 5.63).

The clusterings apparent for the 30 and 60 species data sets (Figs. 5.64-5.75), imply 
probable clusters that cover large areas of the map. Increasing the number of required 
groups causes the areas of low density, which have been allocated a smaller number of 
nodes to partition further, while the denser areas lose members only at their edges.

5.9.6 Decomposition
The 1 by 5 map trained on all 60 species as five taxonomic groups, exhibits a 

complete break up of the classes. The maximum representation by a node is 47% to the 
Dinoflagellates (Fig. 5.76). For the 1 by 11 map, not all 11 species are represented as 

primary reactions of the nodes (Fig. 5.77). Approximately 100% of Micromonas pusilla 
and Cryptomonas rostrella are allocated to individual nodes. The remaining classes are 

spread between either two or three nodes, with at least 50% of each species allocated to 

any one node (Fig. 5.78).
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Figure 5.59 Groupings produced for the two class data set on the 8 by 8 map using the 
agglomerative method to cluster node position vectors. 20 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.60 Groupings produced for the two class data set on the 24 by 24 map using the 
agglomerative method to cluster node position vectors. 20 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.61 Groupings produced for the 11 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 100 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.62 Groupings produced for the 11 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 150 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.63 Groupings produced for the 11 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 200 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.64 Groupings produced for the 30 species data set on the 24 by 24 map using the 
agglomerative method to cluster node position vectors. 100 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.65 Groupings produced for the 30 species data set on the 24 by 24 map using the 
agglomerative method to cluster node position vectors. 150 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.66 Groupings produced for the 30 species data set on the 24 by 24 map using the 
agglomerative method to cluster node position vectors. 200 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.67 Groupings produced for the 30 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 100 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.68 Groupings produced for the 30 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 150 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.69 Groupings produced for the 30 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 200 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.70 Groupings produced for the 60 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 100 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.71 Groupings produced for the 60 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 150 groups were used for 
initialisation.

Figure 5.72 Groupings produced for the 60 species data set on the 22 by 22 map using the 
agglomerative method to cluster node position vectors. 200 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.73 Groupings produced for the 60 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 100 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.

Figure 5.74 Groupings produced for the 60 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 150 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.75 Groupings produced for the 60 species data set on the 30 by 30 map using the 
agglomerative method to cluster node position vectors. 200 groups were used for 
initialisation. Redundant nodes are shown in black and possible agglomerative boundaries 
in white.
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Figure 5.76 Percentage of each of the five taxonomic groups allocated, after training, to 
the 5 nodes in the Kohonen 1 by 5 map. • Cryptomonads • Dinoflagellates • Diatoms 

Prymnesiomonads • Flagellates.
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Figure 5.77 Primary node allocation to each of the 11 classes present in the eleven species 
data set by the 1 by 11 map. Euclidean distances are shown as black borders between 
nodes allocated to different classes and grey borders between nodes allocated to the same 
class.
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Figure 5.78 Percentage of each of the eleven species allocated, after training, to the 11 
nodes in the Kohonen 1 by 11 map. • Chroomonas sp. • Cryptomonas appendiculata
• Cryptomonas calceiformis • Cryptomonas reticulata Cryptomonas rostrella
• Hemiselmis virescens • Micromonas pusilla • Porphyridium pupureum • Tetraselmis 
tetrathele • Emiliania huxleyi Bll Phaeodactylum tricomutum.
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5.10 Discussion
5.10.1 Visualisation of Euclidean Hyper-Dimensional distances
5.10.1.1 Borders between nodes

When the data set contains separable classes, the imposition of a threshold upon 
Euclidean distances offers a very obvious cluster analysis method. The between class 
borders tend to be greater than the within-class borders, for the two group and eleven 
species data sets, illustrated by the threshold grids (Fig. 5.13, 5.14 & 5.17). As expected, 
the two group data set produces very definite borders on both maps, with no overlap of 
classes. The eleven species network also offers definitive boundaries around class 
allocated nodes, there are however some areas of discrepancy. A number of boundaries 
appear between nodes allocated to the same class, possibly due to either insufficient gating 
(i.e. removal of noise or outliers) or more probably the diversity between some same 
species cells. Minor overlap is evident between Cryptomonas reticulata and Cryptomonas 
rostrella (labels 4 & 5), Cryptomonas calceiformis and Cryptomonas reticulata (labels 3 & 
4) and Cryptomonas appendiculata and Cryptomonas calceiformis (labels 2 & 3). Despite 
these species being correctly identified to at least 90% by supervised networks (Table 5.1), 
they are from the same genus and the small amount of overlap indicates some underlying 
optical similarities.

The overlap between species becomes more evident as class numbers increase, 
forcing the networks to generalise. Some of the placements are common to genus or 
taxonomic group, but others seem more obscure and threshold imposition demonstrates 
how realistic physical proximity actually is. Distinct species such as Micromonas pusilla 
(label 9) and Porphyridium pupureum (label 12), are quite obviously separated from all 
other classes when members of the 30 species data sets (Fig. 5.21 & 5.23). As class 
numbers are increased to 60 and the network is further forced to generalise, both species 
still exhibit their seperability (Fig. 5.27 & 5.29. Micromonas pusilla - label 18 and 
Porphyridium pupureum - label 24).

The method works well for a small number of separable classes and a network large 
enough to allow adequate representation of all data. As the class numbers increase so does 
data overlap, and imposition of high threshold values will show only coarse scale 
clustering. If the threshold value is decreased, fine scale clustering should become more 
apparent, but will increase the number of borders making interpretation of coarse
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clustering more difficult. It would therefore be wise to employ an iterative process, 
beginning with a small threshold and increasing, thereby producing a hierarchy of probable 
clusters.

Although map size will not affect physical placement, if too small it may be 
necessary to consider a node's secondary reaction (i.e. the class for which its overall 
proportional response is second to highest) when discovering probable clusters of under- 
represented classes. This seems appropriate, as the secondary reaction of a node for a 
small map, is found to be the primary reaction of its neighbouring nodes when the map size 
is increased.

5.10.1.2 Grey scale representation
Using grey scale to represent the average Euclidean distance between a node and its 

eight neighbours, illustrates clearly that areas of greater Euclidean distances generally 
follow the path of sparsely populated regions. Using the four corner Euclidean distances 
for each node, gives insight into areas of finer borders, not apparent from the plot of 
average Euclidean distances. As the number of classes increases, overlap becomes more 
apparent and differences in grey scale are harder to detect. Variation in shading can be 
very slight and other than the obvious boundaries, interpretation is difficult. Employment 
of the Sobel algorithm offers little improvement in identifying possible edges and, in fact, 
appears to lose some information on finer boundaries, that was evident prior to application.

5.10.2 Redundant Nodes
The redundant nodes offer not only areas of probable boundaries, but information 

regarding extent of class similarity. As the grey scale representation indicates, redundant 
nodes are distanced from allocated nodes, making it therefore safe to assume that species 
separated by redundant nodes are relatively different. The eleven species data set exhibits 
this through a lack of redundant nodes between the species of the genus Cryptomonas 
(labels 2,3,4 and 5) (Fig. 5.16). Although species Porphyridium pupureum (label 8) and 
Tetraselmis tetrathele (label 9) are both Flagellates, they are separated by a very definite 
number of redundant nodes. This is explained in their optical parameters where 
Porphyridium pupureum has a much higher orange fluorescence, indicating its high 
phycoerythrin content. Hemiselmis virescens (label 6), which is non-typical of the
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Cryptomonads in this database due to its low red fluorescence (Chapter 1, Fig. 1.3), 
migrates away from its group (labels 1-5), with fewer redundant nodes between it and the 
Prymnesiomonad, Emiliania huxleyi Bll (10), than there are between it and the 
surrounding Cryptomonads. The difference in the flow cytometric signature of this species 
and its taxonomic group is again evident when present in the 30 (label 5; Fig. 5.21 & 5.23) 
and 60 group data sets (label 10; Fig. 5.27 & 5.29), where the nodes closest to it are 
allocated to Flagellates.

As the data size increases, sparsely populated regions decrease as more nodes 
required to model the data, thereby leaving fewer redundant nodes. However, with 
software limitations governing maximum map size (30 by 30) and number of classes (60), 
it is not surprising that the map is forced to generalise and allocate almost all nodes. With 
a larger map there would be more freedom to approximate the data distribution, possibly 
leaving more redundant nodes as probable boundaries. The 24 by 24 map trained on the 2 
group data set exhibits this clearly (Fig. 5.10 & 5.11). A larger map has forced greater 
areas of redundancy than were apparent on the 8 by 8 map (Fig. 5.9), producing 3 very 
distinct clusters. However, the obvious problem is that through lack of generalisation, one 
of the groups has been divided. This does not mean the allocation is incorrect, but that 
class 2 is capable of further partitioning. This then requires some prior knowledge as to 
class number, or just the inference that there are 3 distinct separations. Knowing that there 
are 2 groups leaves the question of which two out of the three are actually one class. This 
is addressed in Section 5.10.4.

5.10.3 Proportional Node Response
Using this method alone for any data set, even one with distinct classes, produces 

very poor results. The 24 by 24 map trained using the two group data set, indicates that the 
two highest responding nodes are both located within the nodes allocated to class 2 (Fig. 
5.41). The grouping produced thereafter is not representative of what is known to be the

network's allocation.
This is reiterated with the eleven species data set. Despite consisting of well 

partitioned clusters, the 14 groups indicated by this method (Fig. 5.42) have little 
resemblance to the node allocation by the SOM (Fig. 5.17). On comparison with the two- 
dimensional plot (Fig. 5.15), the positions of nodes selected as centres are identified in
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areas of high density, indicating as expected that high responding nodes are members of 
the same update region and therefore are probable members of the same cluster.

For the 11 species data set Micromonas pusilla and Tetraselmis tetrathele are 
allocated the least number of nodes by the SOM (Fig. 5.17, labels 7 & 9). As the number 
of events are equal for all classes, the internal variance of these two species must be 
minimal, and yet they are partitioned into 8 groups by this approach. Consequently, 
searching for only the required number of clusters, will inevitably partition highly 
populated regions into more groups than may be present, subsequently combining less 
populated areas that are obviously separate. For example, Cryptomonas appendiculata, 
Chroomonas sp. and Porphyridium pupureum (labels 2, 1 & 8 respectively, in the 11 
species data set).

5.10.4 Visual Population Density
When the number of classes are small this approach gives almost identical 

clustering to the node allocation by the SOM. There are areas of minor discrepancy for the 
11 species data set (Fig. 5.50), where class membership of points that appear to lie between 
possible clusters is questionable (Fig. 5.15). This is particularly apparent amongst the 
genus Cryptomonas. Allocation, by the SOM, of a node to Hemiselmis virescens amongst 
majority node allocation to Tetraselmis tetrathele, may be due to outliers possessing 
similarities more akin to Tetraselmis tetrathele (Fig. 5.16). This is confirmed by the visual 
population density method, which clusters the node as Tetraselmis tetrathele. Although the 
physical location of this particular node implies its classification to be correct, the 24 by 24 
map of the 2 group data set indicates that close physical location on the two-dimensional 
map does not necessarily imply close Euclidean distance. The two groups produced from 
the alternate centre selections are identical, despite the physical placement of the chosen 
centres, and the obvious partitioning of one of the classes (Fig. 5.50a & 5.50b). This 
implies that, although the SOM is topologically preserving, the projection of what in this 
case is seven-dimensional space onto a two-dimensional map, does not necessarily 
translate directly. This occurrence is especially evident in nodes located at the edge of the 
map, where mapping into two-dimensional has placed some away from possible 
neighbours. This dimensionality mismatch has been discussed in Section 5.5.
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Both the 30 and 60 species data sets have some similar groupings to the SOM's 
node allocation, but the number of classes makes it difficult to interpret (Fig. 5.52-5.57). 
Again there is evidence that some classes, which are not close physical neighbours on the 
two-dimensional map, are actually grouped into the same cluster.

Using only 11 centres for the 60 species data set on the 30 by 30 map (Fig. 5.58), 
produces groups that can be interpreted with some comparability to the threshold grid (Fig. 
5.29). Again the minor anomalies of the topology preservation are shown in particular 
areas, where for example the group constructed by the top centre position chosen, forks 
outwards encompassing nodes that lie between the heavier borders on the threshold plot. 
Although species belonging to the same taxonomic group are placed within close 
proximity, there are a number of probable groupings comprising a mix of taxonomic 
members, questioning their flow cytometric labels.

5.10.5 Agglomerative Clustering
Using 100 agglomerative clusters for the 11 species data set, groups the nodes 

allocated to the three species of the genus Cryptomonas together (Fig. 5.61, 5.17 Labels 3, 
4 & 5). A slight partitioning of less than 4 nodes is present between Cryptomonas 
calceiformis and Cryptomonas rostrella (Fig. 5.17 Labels 3 & 5), but not between 
Cryptomonas calceiformis and Cryptomonas reticulata (Fig. 5.17 Labels 3 & 4). This 
would imply an area of lower density between the first two species. Similarities are also 
depicted between Hemiselmis virescens and Emiliania huxleyi Bll (Fig. 5.17 6 & 10), 
where the nodes allocated to these classes are merged. These two species have a common 
size range, but no other obvious similarities. As the number of agglomerative clusters is 
increased from 100 to 150, and finally to 200, the number of small groups allocated 3 
nodes or less increases and appear on the outskirts of larger clusters, or surrounding 
redundant nodes. Also generated at these same points are smaller groups of 4/5 nodes, 
where clusters appear to be partitioned into finer groupings (Fig. 5.62 & 5.63). The same 
observations are made for both the 30 and 60 species data sets, (Figs. 5.64-5.75), however, 
as the number of classes increases the overlap becomes much more intense and

problematic.
Although increasing the number of required groups partitions the heavily merged 

areas, it is minimal and dominates the borders, while smaller groups already clustered are
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split into finer components. As this is a basic single linkage agglomerative technique, this 
result is expected. The process of adding nearest neighbours to a cluster, and the topology 
preserving properties of the SOM, will successively group those nodes on the outskirts 
first. As the required number of groups is increased, the build up of clusters halts sooner, 
and the relationship between individual nodes becomes gradually apparent. When the data 
comprises a mixture of densities, greater partitioning will be evident in sparsely populated 
regions, where higher Euclideans dominate the map. Thus, on completion, the clustering is 
more representative of the distances between individual nodes, than the map as a whole.

5.10.6 Decomposition
The results of this procedure further demonstrate the lack of similarity between the 

criteria used to construct morphometric groupings, and flow cytometric signatures. Using 
all 60 species from the 5 taxonomic groups (i.e. Cryptomonads, Flagellates, Diatoms, 
Dinoflagellates and Prymnesiomonads) produces primary reactions to only Flagellate and 
Prymnesiomonad species, with no more than half of any group allocated to any one node 
(Fig. 5.76). However, using only 5 nodes for 60 classes enforces considerable 
generalisation, resulting in a completely uneven distribution of all groups.

Despite the relatively distinct clusters of the 11 class data set, separation of the 
individual species is apparent on the 1 by 11 map (Fig. 5.77). Cryptomonas calceiformis 
(3) and Porphyridium pupureum (8) are not represented as the primary reaction of any 
node, whereas Micromonas pusilla and Cryptomonas rostrella, whose characteristics 
produce high supervised identification, are represented approximately 100% (Fig. 5.78). 
The split of the species, and apparent overlap, may be attributable to insufficient gating, 
However, the division is always between a species' primary node reaction and adjacent 
nodes as a secondary or tertiary reaction, indicating minor similarities due to the 
considerable generalisation.

5.11 Summary
There are both advantages and disadvantages to any boundary/cluster detection 

method. Whatever algorithm is employed, whether it is statistical, neural or otherwise, it 
will require some degree of user input. This input may be in a number of forms, but the 
more user defined parameters, the greater chance of error. As the purpose of the
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unsupervised network is to determine underlying similarity and model the data 

accordingly, the output of any SOM for any suitable data set is 'correct', thereby 

alleviating the problem of inappropriate algorithm selection.

The proportional node response method gives the poorest results, even for a small 

separable set. A similar approach to this method was used for the analysis of residential 

property (Lewis, et. al. 1997), where a large set of historical data collected from mortgage 

transactions was used as inputs to a SOM. This experienced the same problem of possible 

centres belonging to the same group, causing incorrect clustering. In order to counter this 

the authors investigated the Gamma Test (Stefansson, et. al. 1997). This is a data analysis

routine that strives to estimate the best mean squared error that can be achieved, by any 

continuous or smooth modelling technique using the data. The mathematics of the 

algorithm will not be discussed, but the basic procedure is to select a highest responding 

node and, using the Gamma test, calculate the variance of all data represented by that node. 

Data are then sequentially added from n surrounding nodes and the Gamma test run again. 

Like other methods, inclusion or exclusion of the node is based on a pre-defined variance 

threshold, upon which the procedure continues until all neighbours within the threshold are 

accounted for, and the boundaries of the cluster are set. This is then repeated for the next 

highest responding node outside the cluster, and the process continues until either all nodes 

are clustered or all high responding nodes are accounted for, possibly resulting in a number 

of excluded outliers.
The most informative procedure appears to be the use of the boundary detection 

methods in conjunction with each other. The redundant node method offers an obvious 

partition where scarcity dominates regions of the map. Although map size is restricted by 

this particular software, a larger network will improve the method, offering greater areas of 

low population for larger more overlapping data sets, thereby indicating possible 

boundaries.
The visual population density method will give accurate clustering around a 

probable centre if the chosen centre is appropriate. This can be difficult with heavily 

overlapping data, but will again become more apparent with a larger map size. However, it 

must be considered, that flow cytometric characteristics of some species, may be too 

similar to ever allow adequate separation. As this approach is user-dependent, increased
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overlap may make interpretation of probable centres more varied, and node allocations to 
possible groups may differ as a result of this.

Agglomerative clustering of the position vectors of nodes requires, perhaps the 
least amount of defined user input. Although a pre-determined number of classes are 

needed, no definite a priori knowledge is implied, except for that of user requirement. The 
initial selection of a larger number of groups than is assumed present, produces a range of 
small clusters allocated less than four nodes. Despite the appearance of some of these 

existing along redundant nodes or regions of high Euclidean distances, the method offers 
little in the way of conclusive boundaries, as the variety of inter-group relationships results 

in the partitioning of sparse areas and the merging of dense. This could be improved if the 
data was initially coarsely clustered, to remove the division of hierarchical differences, and 
possibly through employment of a mean vector as a measure of cluster membership. 
However, there is still a high risk of ambiguous groupings being produced, where some 
points are clustered through indirect relationships. This can result from the placement of 
an updated mean centre, being closer to an outsider than one of the original cluster is to 
another group.

While the redundant node method, Euclidean distances as boundaries and grey 
scale imagery give indications of the boundaries and distances relative to each other, the 
visual population density method compensates for any input/output dimensionality 
mismatch. This ensures that nodes mapped to different areas of the grid are grouped 
together if, in hyper-dimensional space their position vectors are neighbouring. As the 
methods define the areas of the map rather than individual data points or means, the 
problem of closeness experienced by some methods when clusters are not spherical is 

eliminated.
When a data set comprises both dense and sparsely populated regions, attempts to 

partition it may result in loss of information, especially where the within-class similarities 
vary greatly between different clusters. For example, the methods for visualising 
Euclidean distances (Section 5.7.1), indicate greater distances as either thicker borders 
(Section 5.7.1.1), or darker areas (Section 5.7.1.2). As the boundaries are depicted in 

relation to each other, only areas of maximum Euclidean distances may be illustrated, 
leaving denser areas, that may contain clusters, untouched. Similarly, an approach that 
starts with minimum Euclidean distance and builds up (Section 5.7.5) may reach the same
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conclusion, as attempts to partition sparse areas will inevitably cluster dense areas in the 

process. To avoid this, somewhat, the decomposition method can be used as a front end 

procedure, where primary partitioning can discover coarse clusters, producing sub-sets of 

data comprising finer clusters that can be sequentially detected by one of the other 

methods. However, in proceeding in this manner the hierarchical structure must be 

maintained, and within-group and between-group similarities and dissimilarities of subsets, 

must be held relative to their parent or same level group. This is of particular importance 

when considering the possibility of an alternative structuring system where the 

relationships between hierarchies would be relative.

5.12 Conclusion

The class membership of the data sets used for this research were known. In a 

natural classification process, unless similarities are being compared, this will very rarely 

be the case and some form of external knowledge may be necessary. However, clustering 

procedures will always require some degree of a priori knowledge or pre-defined user 

requirement, such as number of clusters or a similarity criteria. Even if a number of 

clusters is defined during analysis, unless the data are identical, further partitioning will 

always be possible. If an algorithm separates data to a high (or low) degree, it does not 

indicate a poor method but simply that further partitioning (or merging) may be possible, 

and it is up to the user to define how much of a similarity is required. This has been 

apparent for some species of phytoplankton, where map placement is not due to translation 

from seven-dimensional to two-dimensional, but diversity within the strain itself. It may 

be possible to employ a similarity coefficient, such as distance coefficient, association 

coefficient or correlation coefficient, which may serve to assess the extent to which a 

partitioned group can be considered as one (not discussed here).
The easy and flexible detection of clusters and cluster boundaries, is not only 

necessary in furthering the use of SOMs, but because classification is a continual process, 

demanding constant revision as requirements change. The lack of similarity between the 

flow cytometric signatures and morphological groupings has been demonstrated, as well as 

how and why a possible alternative structuring system could be introduced. Automated 

flow cytometry groupings may provide a basis for a functional classification, and thereby 

introduce a more appropriate division, consequently improving supervised identification.

206



Chapter 6

6 Biological Variation
6.1 Introduction

The experiments documented have been performed solely on PRiME 1 data 
(phytoplankton grown under a light source of SO^imol quanta m'V1 ). In order to provide 
an idea of natural variation, particularly in pigment content, a new data set was cultured by 
Plymouth Marine Laboratory (PRiME 2), using a different illumination of 12|j.mol quanta 
m'V1 . This chapter examines the performance of both the original multi-class network and 
the multiple network architecture, when presented with the new data set. Overlap and 
differentiation between PRiME 1 and PRiME 2 data sets are also examined.

In addition to the laboratory grown cultures, the performance of both architectures 
was compared when analysing laboratory cultured mixtures and field samples.

The results of field studies carried out in the North Atlantic are also documented. 
However, these provide information on the generalisation ability of the original multi-class 
network only, and are not considered for the alternative multiple network architecture.

6.2 Illumination Variance
As the illumination condition under which cells are grown affects pigmentation, the 

optical parameters of some species will inevitably alter. To assess the generalisation 
ability of both architectures on this change alone, a number of experiments were 
performed.

6.2.1 Experimental Procedure
The PRiME 2 data set, supplied by Plymouth Marine Laboratories, consisted of the 

same species as that of PRiME 1, excluding Scrippsiella trochoidea and Prorocentrum 
minimum, which were too dilute to be analysed by the flow cytometer. Culturing 
conditions were also the same with the exception of illumination, which was reduced to 
12(imol quanta m'V1 . Data preparation and pre-processing was as in Chapter 2 (Section 

2.6).

6.2.1.1 Multi-Class Network Architecture
Three training files were created for the original multi-class architecture. The first 

comprised 500 events per species (60 species) from the PRiME 2 data set only. 500
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unseen events from PRiME 2 were used as a test file. The second file was constructed of 
60 species from PRiME 1 and the same 60 species, but grown under different conditions, 
from PRiME 2. This meant each species was represented twice, but they were treated as 
separate classes, i.e. 120 in total. Each class contained 500 events, as did an unseen test 
file constructed in the same manner. Finally, a training file containing 60 classes was 
created with 600 events per class, 300 events from a PRiME 1 species and 300 events from 
the same species in PRiME 2. An unseen test file of the same structure was used to asses 
performance.

Each of the respective files was used to train an RBF network, (Chapter 2, Section 
2.7.3), with 6 hidden layer nodes per class, employing a Mahalanobis distance metric. All 
networks were trained three times from different initialisation points.

Additionally, the optimum network trained on PRiME 1 data from Chapter 3 
(Section 3.8) was presented with the PRiME 2 test file. This was repeated, using the 
PRiME 1 test file applied to the network above trained solely on PRiME 2 data.

6.2.1.2 Multiple Network Architecture
Nine sets of 60 single species training files were created as described in Chapter 4 

(Section 4.6.1). The exact structure of each file is shown in Table 6.1, where class A refers 
to a particular species of interest, whether it is events from PRiME 1, PRiME 2 or both, 
and class B to the structure of the background class. Unseen test files, of the same content 
as the class of interest in the training files, were constructed to assess performance. Nine 
sets of 60 single species networks were trained as described in Chapter 4 (Section 4.6.2), 
using a random kernel placement strategy of 10 nodes for the class of interest and 1 node 
for the background class, all employing a Euclidean distance metric.

A separate set of 120 training files was also created, representing the 60 species 
from PRiME 1 and the 60 species from PRiME 2 as 120 separate classes of interest. Each 
training file contained 500 events for the class of interest and 250 events for each of the 
remaining 119 species representing the background class. A test file of unseen events was 
constructed, containing 500 events per species from PRiME 1 and 500 events per species 
from PRiME 2. 120 single species networks were trained, again using a random placement 
strategy of 10 nodes in the class of interest and 1 node in the background class, all 

employing a Euclidean distance metric.
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Table 6.1 Event numbers for each of the 9 sets of 60 files constructed for training the 9 
sets of 60 single species networks. Overall identification and confidence of identification 
from the RBF decision networks subsequently trained on the outputs of the single species 
networks.

Class A Class B Percentage Confidence 
(Total events) (Events per class) successful

identification
PRiMEl

0
0
500
250
250
500
0
250
500

PRiME 2

500
500
0
250
250
0
500
250
500

PRiME 1
0
500
0

500
0

250
250
250
500

PRiME 2
500
0
500
0

500
250
250
250
500

77.8
76.9
78.1
66.3
66.4
77.9
77
66.8
67.1

77.9
76.7
79
67.9
67.9
78.1
76.5
65.6
67.5
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From the outputs of the nine sets of 60 single species networks, nine input files 
were constructed to train RBF decision networks (Chapter 4, Section 4.4.3). These 
comprised 60 parameters and 300 events per class. The outputs from the 120 single 
species networks were converted into a 120 parameter, 300 event per class training file.

Independent test files of 500 events per class were constructed accordingly, 
dependent upon the primary identification requirements of the particular RBF decision 
network. All RBF decision networks used 3 hidden layer nodes per class, employing a 
Euclidean distance metric. All networks were trained three times from different 
initialisation points.

Additionally, the 60 single species networks trained using PRiME 2 data were 
presented with a PRiME 1 test file. The results were converted to form an input file for the 
RBF decision network trained on the 60 parameter PRiME 2 data. This was then 
performed in reverse, replacing PRIME 1 with PRIME 2, and vice versa.

6.2.2 Results
6.2.2.1 Multi-Class Network Architecture

The overall identification success for PRIME 2 data was 78.4% with a 77.8% 
confidence. Individual species identification ranged between 42.1% for Prorocentrum 
nanum and 99% for Micromonas pusilla (Table 6.2). Hidden layer nodes remaining after 
the OLS procedure (Chapter 2, Section 2.4.2.1) varied from 135 to 150. Differences were 
apparent between the identification of a species under PRiME 2 conditions, to that of 
PRiME 1. For example, Prorocentrum nanum was identified with 56.4% success as a 
PRiME 1 species, dropping to 42.1% when cultured under the illumination conditions of 
PRiME 2. Conversely, Hemiselmis brunnescens improved from 65% success under 
PRIME 1 conditions, to 94% success under PRiME 2. Assessing a network trained on 
PRiME 2 data with a PRiME 1 test file, produced an overall identification value of 40.9% 
and a confidence of 41.2%. The reverse produced equally poor results of 40.8% correct 
identification, with a confidence of 40.7%. Overall network performance when species 
from both culturing conditions were combined into individual classes was 69.1%, with 
confidence of identification at 68.3%. While treating each species from PRiME 1 as a 
separate class to that of PRiME 2, producing 120 classes, gave overall identification 
success and confidence of 59.5% and 59.4% respectively.
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Table 6.2 Comparison of individual identification of species by the optimum original 
multi-class network (78.4%) and the optimum multiple network architecture (77.8%) for 
the PRiME 2 data.

Taxonomic Group
and Species Name

Cryptomonads
Chroomonas sp.
Chroomonas salina
Cryptomonas appendiculata
Cryptomonas calceiformis
Cryptomonas maculata
Cryptomonas reticulata
Cryptomonas rostrella
Hemiselmis brunnescens
Hemiselmis rufescens
Hemiselmis virescens
Plagioselmis punctata
Rhodomonas sp.

Average

Flagellates
Chlamydomonas reginae
Chlorella salina
Dunaliella minuta
Dunaliella primolecta
Dunaliella tertiolecta
Micromonas pusilla
Nephroselmis pyriformis
Nephroselmis rotunda
Ochromonas sp.
Pelagococcus subviridis
Porphyridium pupureum
Pseudopedinella sp.
Pyramimonas grossii
Pyramimonas obovata
Rhodella maculata
Stichococcus bacillaris
Tetraselmis impellucida
Tetraselmis striata
Tetraselmis suecica
Tetraselmis tetrathele
Tetraselmis verrucosa

Average _________

Original
Multi-class

Corr

86.2
76.2
94.4
80.8
80.6
78.8
74.4
94.0
92.0
93.2
84.6
82.8

84.8

77.4
49.4

91
83.6
86.6

99
62.4
65.2
43.2
82.6

99
48.1
75.8

72
94
65

85.8
64.2
89.4

96
90.4

77.1

Conf

80.9
85.8
83.4
88.2
78.8
83.8
89.2
93.6
91.5
67.9
85.0
81.8

84.2

64.6
59.8
80.4
81.6
87.8
73.2
56.5
60.8
66.3

80
97.4
59.8
78.8

60
95.3
75.1
96.6
75.5
85.8

95
93

77.3

Multiple
Network

Corr

85.0
70.5
95.2
90.5
71.4
76.0
81.5
95.0
92.5
93.0
79.5
84.0

84.5

76
51.5

89
82
80

96.5
63
65

38.5
80
97

46.5
75
63

89.5
75

85.5
63
97
99

88.5

76.2

Conf

81.0
83.9
94.8
88.0
79.1
83.5
84.5
90.9
79.1
71.0
92.4
79.2

84.0

62.3
61.7
91.8
82.4
89.4
81.5
60.5
60.5
66.2
85.1

99
52.8
68.8
56.8
95.7
69.6

92
64.3
82.2
96.1
97.3

77.0

Taxonomic Group
and Species Name

Prymnesiomonads
Chrysochromulina camella
Chrysochromulina chiton
Chrysochromulina cymbium
Chrysochromulina polylepis
Emiliania huxleyi 92
Emiliania huxleyi Bll
Ochrosphaera neopolitana
Pavlova lutheri
Phaeocystis pouchetii
Pleurochrysis carterae
Prymnesium parvum

Average

Diatoms
Amphora coffaeformis
Chaetoceros calcitrans
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii

Average

Dinoflagellates
Amphidinium carterae
Aureodinium pigmentosum
Gymodinium micrum
Gymodinium simplex
Gymodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum nanum

Average

Original
Multi-class

Corr

70.0
86.2
57.2
61.0
70.4
98.7
67.0
61.8
60.4
92.4
54.8

70.9

87.0
91.0
96.0
69.6
88.9

86.5

82.4
91.2
70.4
76.4
85.2
93.8
79.4
85.4
63.0
83.2
42.1

77.5

Conf

89.9
74.4
56.2
58.2
76.9
98.2
67.9
66.7
62.3
98.7
61.1

73.7

89.8
76.5
85.1
62.8
76.7

78.2

77.7
79.0
79.1
63.7
80.6
84.9
95.4
85.4
72.9
73.2
64.0

77.8

Multiple
Network

Corr

81.0
85.0
61.0
56.0
67.5
99.0
67.5
48.5
61.5
95.5
40.5

69.4

88.0
89.5
96.0
63.4
83.5

84.1

80.0
88.5
70.5
73.5
81.2
92.5
78.0
84.0
58.5
82.5
58.2

77.0

Conf

89.5
69.8
53.4
61.2
69.5
97.2
60.0
62.4
58.4
96.5
62.8

71.0

84.2
80.6
81.2
59.4
69.5

75.0

76.9
84.6
78.3
66.8
79.6
85.8
95.4
89.8
79.6
58.3
62.0

77.9
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6.2.2.2 Multiple network Architecture
Using 500 events per species for the class of interest and 500 events per species in 

the background class, for PRiME 2 data only, produced an overall identification success of 
77.8% and a confidence of identification of 77.9%. As with the original multi-class 
architecture, identification success varied between species, with a minimum of 38.5% for 
Ochromonas sp. and a maximum of 99% success for Emiliania huxleyi Bl 1 (Table 6.2).

Again variances in identification success were evident for individual species when 
cultured under different conditions. For example, Hemiselmis brunnescens improved 
100% from 40.4% success under PRiME 1 conditions, to 95% success under PRiME 2 
conditions. A network trained on PRiME 2 data presented with a PRiME 1 set, produced 
an overall identification and confidence of identification of 37.9% and 36.8% respectively. 
The reverse situation was even lower, at 23.6% correct identification and 25.4% 
confidence of identification. Varying the background class content in the single species 
training files, has negligible influence on the final identification of the decision RBF 
network. However, combining both culturing conditions for one species into a class of 
interest, reduced the identification success by approximately 10%. Training 120 single 
species networks, i.e. 60 species from PRiME 1 and 60 species from PRiME 2, produced 
an overall identification success of 58.2% and a confidence of 61.1%.

6.2.3 Discussion
Identification of the PRiME 2 data set only, through both architectures, were 

comparable throughout all experiments. Differences arose in certain species where one 
structure performed better than the other. However, overall identification of the species 
cultured under PRiME 2 conditions, was approximately the same as that of PRiME 1. The 
poor results produced from presenting a network trained on PRiME 2 data with a PRiME 1 
data file, and vice versa, indicates the variation in characteristics of species when cultured 
under different illumination conditions. This variation is further supported by the 
difference in the individual identification of some species, when cultured under PRiME 1 
conditions, to their identification when cultured under PRiME 2 conditions, implying some 
species have become more, or less, distinct. The extent of this distinction can be 
dependent upon any overlapping species that may, or may not, have also experienced a 
change in their flow cytometric signatures. The increase in identification success of
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Hemiselmis brunnescens can be attributed primarily to a variation in its orange 

fluorescence (phycoerythrin content) when cultured under a different illumination 

intensity. Under the initial culturing conditions (PRiME 1) the distributions of orange 

fluorescence for Hemiselmis brunnescens and Hemiselmis rufescens are very similar (Fig. 

6.la & c). When cultured under PRiME 2 conditions, a shift in the distribution of 

Hemiselmis brunnescens subsequently removes the peak from existing at the same position 

as that of Hemiselmis rufescens (Fig 6.1b & d), a species for whom orange fluorescence 

distribution is the same, regardless of illumination conditions. The mutual misidentity that 

previously existed between these two species is now reduced and both identify to >90%. 

This was also apparent within the Gymnodinium genus, where the species Gymnodinium 

veneficum, which previously identified to less than 40% has also doubled its distinction 

under PRiME 2 culturing conditions. Of course, this is a positive result due to a change in 

culturing conditions, other species exhibit a decrease in identification success due to a shift 

into another species' parameter range.

When treating each species cultured under different conditions as two separate 

classes, both architectures produce an overall identification of approximately 58%. Out of 

120 classes, 22 identified to less than 40% correct, with only 11 exhibiting a misidentity 

with 'itself under different culturing conditions. Misidentities were evident between 

groups, across both cultures. Although the overall performance seems low, this analysis 

involves a high number of classes. On closer investigation over half the species still 

identify to over 60% and naturally, when classes are added to any pattern recognition 

system, the overlap will increase and identification will inevitably reduce. Combining the 

events for a species from both data sets (i.e. PRiME 1 and PRiME 2) into one class 

improves performance in comparison to when the cultures are treated separately. Despite 

this appearing an acceptable approach, the data set now contains only 60 classes and in 

comparison to the identification of each PRiME set separately (62 classes in PRiME 1 and 

60 in PRiME 2), performance has dropped by approximately 10%. Grouping those 11 

species which misidentify with themselves across the two sets will improve results. 

However, not all species will have similarities across varying culturing conditions, and 

combining them simply because they are the same will prolong the training process and 

restrict the network from reaching a global minimum error.
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Figure 6.1 Orange Fluorescence distribution for (a) Hemiselmis brunnescens under 
PRIME 1 conditions, (b) Hemiselmis brunnescens under PRiME 2 conditions, (c) 
Hemiselmis rufescens under PRiME 1 conditions and (d) Hemiselmis rufescens under 
PRiME 2 conditions.
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6.3 Laboratory Cultured Mixtures
To allow comparison between the two network architectures when determining the 

proportion of species in an unlabelled sample, seven mixtures were constructed, by 
Plymouth Marine Laboratories, from 27 separately cultured species (Table 6.3). With the 
exception of an increase in illumination intensity to 100jj,mol quanta m'V 1 , the culturing 
conditions for both the training and testing data were the same as that of PRiME 1.

6.3.1 Experimental Procedure
A 27 class data set containing 500 events per species, was used to train an original 

multi-class network, using 6 hidden layer nodes per class employing a Mahalanobis 
distance metric.

27 files were created to train 27 single species networks. Each file contained 500 
events for the class of interest and 500 events per species in the background class.

Networks were trained using 10 nodes placed randomly within the class of interest, 
all employing a Euclidean distance metric. A 27 input parameter RBF decision network 
was trained on the outputs from the 27 single species networks, using 3 hidden layer nodes 
per class and employing a Euclidean distance metric.

As well as the supervised networks, an unsupervised 26 by 26 Kohonen map was 
trained, using Kohonen's recommendations (Appendix 2), to discover the natural 
classification of the 27 species. To provide further information regarding species overlap, 
a threshold of 0.07 was imposed on the boundaries between allocated nodes, which ranged 
between 0.014 and 0.413 Euclidean metrics (Fig. 6.2).

All networks were trained three times from different initialisation points and tested 
using independent test sets.

The research undertaken for this thesis was run in parallel to studies performed on 
the same data using Wavelet Analysis (Cohen & Kovacevic, 1996; Vidakovic, 1999). In 
brief, wavelets are mathematical functions that partition data into varying frequency 
components, which are subsequently studied with a resolution matched to its scale. Final 
results of the wavelet analysis for the laboratory grown mixtures were available for 

comparison (Collins, 2000).
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Table 6.3 27 separately cultured species used to train neural networks for identification of 
the 7 constructed mixes. References depict species label on the Kohonen Grid (Fig. 6.2) 
and subsequent charts (Fig. 6.3).

Taxonomic 
Group
Cryptomonad

Diatom

Dinoflagellate

Flagellate

Prymnesiomonad

Species Name

Cryptomonas rostrella
Hemiselmis rufescens
Rhodomonas sp.
Phaeodactylum tricornutum
Skeletonema costatum
Thalassiosira weissflogii
Amphidinium carterae
Aureodinium pigmentosum
Gymnodinium micrum
Gymnodinium simplex
Gymnodinium veneficum
Gymnodinium vitiligo
Gyrodinium aureolum
Heterocapsa triquetra
Prorocentrum balticum
Prorocentrum micans
Prorocentrum nanum
Chlorella salina
Dunaliella minuta
Rhodella maculata
Tetraselmis tetrathele
Chrysochromulina chiton
Chrysochromulina polylepis
Emiliania huxleyi 92
Isochrysis galbana
Ochrosphaera neopolitana
Phaeocystis pouchetii

Order

Cryptomonadidan
"
Bacillariophyceae
11

11

Dinoflagellida
11

"

it

it

t

i

1

i

t

1

VolvocidaM
Rhodomonadida
Prasinomonadida
Prymnesiida"
M
M
11
H

Size
(Jim)
16-25
4-9
8-13
8-35
3-5

12-20
15-20
7-12
8-15
6-10
9-16
7-22
35-45
15-27
9-15

30-40
8-10
4-8
3-12
7-24
10-16
5-9
6-8
5-6
4-8
8-10
3-6

Chart 
Ref.

F
N
X
T
Y

AA
A
B
I
J
K
L
M
O
R
U
V
C
G
W
Z
D
E
H
P
Q
S

Kohonen 
Ref.

6
14
24
20
25
27

1
2
9
10
11
12
13
15
18
21
22
3
7

23
26
4
5
8
16
17
19
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Figure 6.2 Kohonen grid produced from the 27 group data set showing borders above the 
threshold value (0.07) between classes allocated to different nodes in black, and between 
same class allocated nodes in grey.
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6.3.2 Results

The percentage of species identified as present in the seven mixtures were compared 
using figures depicting the results of both network architectures and wavelet analysis (Figs. 
6.3a - g). Each figure also shows the percentage of species estimated to be present in the 
mixtures. The estimations were carried out by Dr. G. Tarran (PML) through flow 
cytometric analysis. The analysis involved the production of multiple two-dimensional 
scatter plots, with different parameter combinations. Clusters were subsequently identified 
from the seven mixtures based on their parameter values, they were then gated, counted 
and the proportions recorded. The results of both network architectures, for all mixtures are 
generally good, with many indicating mixture content to a similar percentage as that of the 
proportional analysis. A number of discrepancies are apparent in both architectures, either 
over-estimation or under-estimation of some species. For example, Isochrysis galbana and 
Ochrosphaera neopolitana in mixes 2, 6 and 7 (Fig's.6.3b, f and g).

6.3.3 Discussion
After further investigation of the misidentification matrices, produced by both 

architectures (not shown), it was evident that the species for whom network assumptions 
were less accurate than the gated analysis, were those exhibiting low individual 
identification success and high misidentity with other species. For example, 
Chrysochromulina chiton is underestimated in mix 4 and 7. This species misidentifies 
with Prorocentrum nanum, which in both cases is determined present when not in the 
mixture. Skeletonema costatum is constantly overestimated in each of the mixes and is one 
of the less well identified species, at approximately 73% correct with a confidence of 
approximately 71%, by both architectures. The Kohonen map shows this species as being 
scattered amongst nodes that are not all within close proximity of each other. This 
indicates similarities with a number of other species and considerable variation within the 
particular strain itself. When Isochrysis galbana and Ochrosphaera neopolitana are 
present together, the latter is overestimated while the former underestimated. These two 
species are mutually misidentified by the networks and have a common location on the 
Kohonen map. The overlaps and misidentities of species, results in the overestimation of 
one at the expense of another. This again indicates that combining those species for whom 
overlap is high and consistent, must be a consideration in order to improve performance 

and definitive analysis.
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Figure 6.3 Percentage of individual species assumed present in each mixture by the 
varying methods of analysis. • Gated data (Tarran, G), • Original multi-class architecture, 
L Multiple network Architecture, • Wavelet analysis (Collins, 2000) (a) Mix 1, (b) Mix 2.
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6.4 Field Tests 
6.4.1 PRIME Cruise

The PRIME Cruise took place in the North Atlantic during June and July 1996. 

Departing from Southampton, the RRS Discovery followed a transect to 59°N on the 20°W 

meridian (Fig. 6.4), This leg of the cruise involved a Lagrangian time series study of the 

dynamics within a single community. Along the 20°W meridian the transect then 

proceeded to 37°N, with plankton sampling throughout.

Unfortunately, neural network investigation was very limited. The southern part of 

the transect did not contain sufficient material to allow sorting to take place and so no 

analysis was performed. The remainder of the transect had abundant phytoplankton, but 

the species present were primarily Synechococcus sp., Prochlorococcus sp. and 

picoeucaryotes, none of which were present in the lab grown cultures and therefore not 

available for training or testing the networks ability to generalise. Other species were 

assumed to be present in the area by Dr. G. Tarran, and therefore, based on a brief 

microscopic analysis of gravity sampled seawater, 46 out of the 62 species database were 

chosen to train networks. This selection excluded the Diatoms and a number of species 

from the remaining 4 groups. As confirmation of the few phytoplankton species present 

was unavailable, a summary of the findings is presented for two samples, using the original 

multi-class network architecture to identify them. Consequently, the following 

comparisons were based on assumptions made by Dr. G. Tarran (PML) through two- 

dimensional scatter plot observations.

6.4.1.1 Procedures and Results
From a selection of samples taken at depths of 2m, 10m, 20m and 30m, a cluster of 

data was identified, through its distinct side scatter and red fluorescence, as Coccolithus 

pelagicus (Fig. 6.5). It was gated from the samples and used to create a new class, which 

was subsequently added to the training file, comprising now 47 species. Original multi- 

class RBF networks were trained and tested as described in Chapter 2 (Section 2.7.3) and 

an optimum chosen. Identification of Coccolithus pelagicus by the RBF network was 

extremely high due to its obvious separability.
The four samples taken for analysis were chosen for two reasons (Fig. 6.6 & 6.7). 

Firstly, the two-dimensional positioning and distinction of the clusters gave a presumed
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Figure 6.4 Transect of PRiME cruise from Plymouth to 59°N on the 20°W meridian (Leg 
1) then South to 37°N (Leg 2).

cence

Rl

10° 10 1 102 10 1

Side Scatter

10*

Figure 6.5 Region assumed to be Coccolithus pelagicus. The data cluster was 
subsequently gated and added to the species database.

224



Chapter 6

I n° 
I *

10* 10 1 102 10 1 10*

Side Scatter

I

Noise
10* 10' 102 10 J

Side Scatter
o4

Figure 6.6 Scatter plots depicting red fluorescence against side scatter for sample 1. 
Regions R2 to R7 indicate data clusters of which probable identity was determined through 
these scatter plots.
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Figure 6.7 Scatter plots depicting red fluorescence against side scatter for sample 2. 
Regions R8 to Rll indicate data clusters of which probable identity was determined 
through these scatter plots.
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indication of what was present. Secondly, the species suspected to be present in the 

samples were held on the laboratory cultured database. From the first two samples, six 

clusters were gated for analysis and their probable identity determined from their two- 

dimensional scatter plots (by Dr. G. Tarran) (Fig. 6.6). The first region identified (R2) was 

confirmed by the networks to be Coccolithus pelagicus. Although unseen data from this 

species identified extremely well (98%), it is with the knowledge that not only are the 

parameters distinct, but it is the only network class, within the database, trained on natural 

sea cultures. Region 3 was determined to be small coccolithophores (by Dr. G Tarran). 

The networks provided some confirmation of this, identifying region 3 as 68% Emiliania 

huxleyi, and a small percentage of large Coccolithophores and various others. Region 7 

was assumed to be Flagellates within the size range l-4|im, of which the network 

identified 98% as the species Micromonas pusilla (l-3jim). The remaining regions were 

suspected to be larger Flagellates, primarily identified by the network as Stichococcus 

bacillaris, with a mixture of others.

Dinoflagellates were suspected to be the main constituents of the four regions 

indicated in the second two samples (Fig. 6.7). The upper gate was assumed to be 

exclusively Dinoflagellates, indicated by the network to be primarily large Dinoflagellates 

and the lower gate both Dinoflagellates and some Flagellates.

Unfortunately, without definitive microscopic confirmation and no approximate 

proportions for comparisons, this field study provides limited information upon the 

network's ability to generalise. Particular clusters assumed to be certain species identify 

relatively well, but again these are distinct clusters that can be recognised visually by their 

scatter plots. For example, Coccolithus pelagicus and especially Micromonas pusilla, 

which has already shown to be a highly separable species.

6.4.2 Plymouth's Coastal Waters
With confirmation of content or quantity of the cruise field samples unavailable, 

the network analysis was inconclusive. Thus, further field studies were carried out at 

Plymouth's coastal areas. Varying depths and transects were chosen in order to study both 

the vertical and horizontal spatial structure of phytoplankton communities in late summer. 

To assess changes in composition the process was repeated over two days.
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6.4.2.1 Experimental Procedure
Identical field sampling was carried out at mid-morning on both days, by Dr. G. 

Tarran aboard the RV Squilla (PML). The initial location was at a site SW of Plymouth 

(Station 1), where four samples were taken at depths of 9m, 13m, 30m and 43m. Four 

further sites were sampled at a depth of 2m along a transect between Station 1 and 

Plymouth (Table 6.4). 2 litre acid rinsed polycarbonate bottles were used to hold the 
samples in a refrigerator until analysed. The bottles were gently inverted several times and 

a 2ml sub-sample removed with a l-5ml finnipipette and placed in a polystyrene sample 

tube. Samples were then analysed by the flow cytometer. For all samples 30ml of 

seawater was preserved with 400|ol of hexamine buffered formaldehyde (=0.5% final 

concentration) and stored in the refrigerator for subsequent microscopic analysis.
Networks for both architectures were trained on 35 probable species from PRiME 

1, suggested by Dr. G. Tarran to be present in the area. These included the species 
Micromonas pusilla, the genera Hemiselmis and Emiliania, and large and small 
Dinoflagellates. The original multi-class architecture used 500 events and 6 hidden layer 
nodes per class, employing a Mahalanobis distance metric. For the multiple network 
approach, the results from the appropriate 35 single species networks from Chapter 4, were 
combined to produce a 35 parameter input file to train a decision RBF network (Chapter 4, 

Section 4.4).
Unlabelled data files were constructed from the seawater samples at each station. 

Network analysis for the multi-class architecture was performed using the unlabelled file to 
produce an evaluation of sample content. For the multiple network approach each of the 
unlabelled data files were presented to the 35 trained single species networks, and the 

outputs combined to form a test file for the trained RBF decision network.
In order to achieve an improved approximation of sample content, disregarding 

ambiguous or borderline patterns, a threshold of 0.725 was imposed upon the hidden layer 

nodes of the original multi-class network, and a threshold of 0.4 upon the output layer 

nodes of the RBF decision network.
The values produced for comparison to the network's approximations, are achieved 

through the same process of gating and counting as performed for the laboratory grown 

mixtures (Section 6.3). For example, Figure 6.8 shows two scatter plots for a sample taken 

at station 1 on the second day, at a depth of 30m. Regions Rl and R2 are assumed to be
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Table 6.4 Stations locations and depths for field sample analysis around Plymouth's 
coastal areas. Identical sampling was repeated at mid morning on both days by Dr. G. 
Tarran on board the RV Squilla (PML).

Station

la
Ib
Ic
Id
2
3
4
5

Latitude

50°15.08'N
50°15.08'N
50°15.08'N
50°15.08'N
50° 16.27' N
50°17.18'N
50°18.13'N
50°20.55'N

Longitude

4°12.55'W
4°12.55'W
4°12.55'W
4°12.55'W
4°11.9'W
4°9.74'W
4°8.51'W
4°8.18'W

Depth 
(m)

9
13
30
43
2
2
2
2

CJ n
a £

§ 8.

(Ue*
« - 
O °

Side Scatter
(a)

10' 10J 10'
Red Fluorescence

(b)

o4

Figure 6.8 Two-dimensional scatter plots of the sample taken at station 1 at a depth of 
30m on the second day. Marked regions show clusters gated within the sample assumed to 
be (a) Micromonas pusilla, Rl and (b) Hemiselmis virescens, R2.
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Micromonas pusilla and Hemiselmis rufescens respectively. These two clusters were 
therefore gated, sorted and counted.

6.4.2.2 Results
The results of the field samplings are compared using line charts depicting the 

percentage of each species determined present at the various stations (Figs. 6.9a-e, 6.10a-e 

&6.11a-e).

6.4.2.3 Discussion
Vertical and horizontal spatial variation of all species is within 5%, with the 

exception of Micromonas pusilla at station 1, where a reduction in the species is evident. 

This species is consistently the dominant component of the area across all depths and 

stations. As with all experiments, identification of this species has always been high. The 

primary results of this chapter (Section 6.2) have shown that altering the illumination value 

when culturing Micromonas pusilla has negligible variance on any of its optical 

parameters (Fig. 6.12 & 6.13). Although in a natural environment this will not be the only 

condition influencing cell formation and structure, the small size and distinct optical 

characteristics implies identification of this species will always be high. With the 

exception of the small dinoflagellates and Micromonas pusilla on day 2, all methods 

indicate less than 5% content of Emiliania huxleyi, Hemiselmis virescens and large 

Dinoflagellates. This low quantity would make separation by sorting more crucial, where 

missed or added species will have a large impact on percentage determination.

Identification by both network architectures are fairly consistent, with each 

identifying to within 2% of the other. The variation is expected, as it has already been 

shown that individual identification for particular species varies, depending on the 

architecture used. Excluding Micromonas pusilla, the results show species content on an 

exaggerated scale. This gives an impression of larger differences, between percentage 

determined by gating and percentage determined by the networks, than are actually

present.
The species Emilian huxleyi and Hemiselmis virescens are both identified relatively 

well, despite the presence of only a small percentage of both. With the exception of the 

multiple network architecture without a threshold, the content of both is slightly
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Figure 6.9 Percentage of species determined to be present in the field samples taken at the 
five stations on Day 1 . n.b. axes scale varies between figures. * Gating (Dr. G. Tarran), A 
Original architecture, A Original architecture with threshold, • Multiple network 
architecture, O Multiple network architecture with threshold, (a) Emiliania huxleyi, (b) 
Micromonas pusilla, (c) Hemiselmis virescens, (d) Small Dinoflagellates (<20 |im), (e) 
Large Dinoflagellates (>20|om) .
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Figure 6.10 Percentage of species determined to be present in the field samples taken at 
the five stations on Day 2. n.b. axes scale varies between figures. + Gating (Dr. G. 
Tarran), A Original architecture, A Original architecture with threshold, • Multiple 
network architecture, O Multiple network architecture with threshold, (a) Emiliania 
huxleyi, (b) Micromonas pusilla, (c) Hemiselmis virescens, (d) Small Dinoflagellates (<20 
Urn), (e) Large Dinoflagellates (>20nm).
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Figure 6.11 Percentage of species determined to be present in the Day 1 field samples after 
2 days incubation in the refrigerator, n.b. axes scale varies between figures. ^ Gating (Dr. 
G. Tarran), A Original architecture, A Original architecture with threshold, • Multiple 
network architecture, O Multiple network architecture with threshold, (a) Emiliania 
huxleyi, (b) Micromonas pusilla, (c) Hemiselmis virescens, (d) Small Dinoflagellates (<20 

), (e) Large Dinoflagellates
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Figure 6.12 Orange fluorescence distribution against event number for Micromonas 
pusilla cultured under (a) PRiME 1 conditions and (b) PRiME 2 conditions. The distinct 
low phycoerythrin content in this species, is not affected by a change in illumination 
conditions and may account for its high identification.
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Figure 6.13 Two-dimensional scatter plot of optical flow cytometric parameters for 
Micromonas pusilla cultured under (a) PRiME 1 conditions and (b) PRiME 2 conditions, 
depicting little variation.
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underestimated. The opposite is true in the case of small and large dinoflagellates, where 
overestimation by both architectures is evident. Naturally with no threshold imposed, all 
cells will be forced into a class, identifying them as one species or another. Introducing a 
threshold reduces misidentification, where species with low hidden layer node outputs that 
were allocated as possible Dinoflagellates were rejected. Increasing this threshold would 
bring the identification closer to that assumed, but may further the underestimation of 
Emiliania huxleyi and Hemiselmis virescens.

Identifying individual species provides less ambiguity and more information on 
known overlaps than assuming the existence of a size range of one group. This offers 
more explanation when considering those species known to constantly misidentify and 
overlap, indicating again the improvements that can be achieved through combinations of 
some species. With specific knowledge of the Dinoflagellate composition and any 
remaining species in the sample, more explanation could be offered to the overestimation 
of the group, where overlap with unnamed species may have introduced discrepancies. In 
all cases a percentage of Cryptomonads and Flagellates were also identified, but 

unfortunately no gating indication was provided for comparison. Cyanobacteria (>l(4m) 

are also assumed to be a component of the phytoplankton, distinguished by their small 
size. However, they are not held on the database and thus not of interest here.

Variation between day 1 and day 2 for most species is minimal. The small 
Dinoflagellates are an exception to this, where network determination of this class is much 
higher on day 2, for all depths at station 1. Although the architectures both overestimate 
this class, it is to within 1-3 % for day 1 increasing to between 11 and 17% for day 2. This 
may be attributed to incorrect gating percentages, or species being misidentified as small 
Dinoflagellates by the network. However, the latter appears less likely as threshold 
imposition does not reduce misidentities to a level comparable to that of day 1. A third 
possibility may be attributed to some environmental change, therefore reducing the 
network's identification as species sorted are now uncharacteristic of day 1 conditions, 

although this seems less likely.
An important consideration when attempting to identify phytoplankton, is the 

extent a population may alter during incubation periods. However, day 1 repetition implies 
only minor fluctuations in all results, again with the exception of small Dinoflagellates. 

Despite the variation between percentage determined through gating, and that determined
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7 Synthesis
7.1 Introduction

Most areas of research involving neural network analysis of flow cytometric data, 

has centred around small numbers of species. An unrealistic assumption in the natural 

environment. The abundance and complexity of phytoplankton requires constant revision 

of multi-class automatic identification systems (in this instance ANNs). The work reported 

in this thesis introduces an alternative multiple network approach, more suitable to this 

variable community. Additionally, the research documented illustrates how an alternative 

structuring system could be initiated, based on flow cytometric characteristics, through 

boundary and cluster recognition on the SOM. This chapter summarises the conclusions 

drawn from this research and makes suggestions as to how the work may progress in the 

future.

7.2 Paradigm Selection
In a basic analysis of 12 species, the superiority of the RBF network over the MLP 

was established, the two main reasons for superiority being:
1. The distinction and overlap of flow cytometric data for phytoplankton cells 

varies considerably between species, conforming to linearly separable clusters 

only when the class number is small. Unlike the hyperplanes of the MLP, 

boundary formation by the RBF network constructs non-linear decision regions, 

making it more suitable for modelling the data distribution.

2. The infinite, linear decision boundaries of the MLP will inevitably assign a high 

level of identification to an unknown pattern. Rejection of ambiguous patterns 

by threshold imposition is consequently often low, reducing overall confidence 

of identification. Conversely, as the boundaries of an RBF are localised and 

finite, identification levels are dependent upon a pattern's proximity to the 

centre of the basis functions, therefore assigning smaller values to unknown 

patterns, resulting in their rejection.

7.3 Training Set Size
The difficulties in field data acquisition will inevitably result in an under- 

representation of some species. When analysis is required of these species against those
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that are easily obtainable, the training set constructed may contain imbalanced event 

numbers. For this reason, the effect on performance when event numbers are varied was 

considered for both balanced and imbalanced data sets. The increase of data overlap that 

inevitably occurs as class numbers are added, will naturally have an affect on overall 

performance. The research has illustrated that a balanced set of events per class is 

preferable, however this is not always possible. When this is the case, the distribution of 

classes with minimal event numbers, representative of less discriminable species, will be 

obscured by the abundance of data and may not be adequately modelled by the network. 

Despite this, the identification of a distinct species is still high, even when event numbers 

are few. Providing the data is sufficient enough to ensure full representation of the 

biological variation, and not too few so as to cause memorisation, the data distribution of a 

distinct species can be efficiently modelled. However, with high numbers of classes and 

the heterogeneous nature of phytoplankton, such seperability is rarely evident, and 

balanced training sets should be employed if possible.

7.4 Multi-class RBF Network
The potential of the multi-class RBF network, was further realised in the high 

identification success of 62 species of phytoplankton. The process of scaling up class 

number becomes increasingly complex, requiring greater periods of training and 

optimisation. Although longer training times may not be a consideration, it is envisaged 

that optimisation procedures may become more problematic as class numbers increase.

Despite the performance of the network, its rigid architecture restricts its potential 

in a number of areas. With the number of phytoplankton species unbounded, the 

possibility of encountering a new one is inevitable. The multi-class network is unable to 

encompass this novel species without complete retraining, involving long optimisation 

procedures. If certain species are known not to inhabit a particular body of water they can 

be excluded from the analysis. This is not a simple process with the multi-class network, 

as again it requires retraining of a complex algorithm. It is these limitations, and the 

inflexible nature of the original multi-class network, that has initiated the need for the 

alternative multiple network approach.
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7.5 Multiple Network Architecture
The multiple network architecture presents a flexible system of simple, single 

identification networks, each responsible for an individual species, culminating in a final 
decision process. The single species networks are very basic RBF architectures, which 
require no optimisation techniques. From the two procedures investigated for combining 
the outputs of the single species networks for final identification, the RBF decision 
network was the most appropriate. This process is independent of the architecture of the 
single species networks, and exhibits negligible affect on overall performance, even when 
the single species training files comprise a heavy imbalance in event numbers.

Despite the probability of a greater number of dimensions than the seven optical 
parameters, the distribution of the input data generated to train the RBF decision network, 
are far less complex. Optimisation procedures are at an absolute minimum, encompassing 
very short periods of training time and no necessary expertise. The completed technique 
provides a library of pre-trained single species networks, to which more can be easily 
added each time a new species is encountered. This subsequently allows users to 
dynamically select subsets of single species networks as and when required, as well as the 
option of increased parameters possibly adding discriminatory information. The multiple 
network approach performs as well as the original multi-class network, but with advantage 
of being an adaptable, simple and flexible structure.

7.6 Morphology versus Flow Cytometry Signatures
The migration of certain species away from their taxonomic group, has been 

illustrated through employment of the SOM. This demonstrates the difference between the 
criteria used for classical morphological groupings of some species, and their flow 
cytometric signatures. The performance of both the multi-class and multiple network 
architectures, trained on the complete database, has been improved by combining some 
species for whom overlap is heavy and consistent, where not all constructed classes 
contained species from the same group or genus and in many cases comprise a mix of taxa. 
The construction of network groups from the supervised dendrogram analysis, allows 
greater improvements in identification than those achieved from forcing morphometric 

groupings.
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The lack of correlation between the morphological characteristics and the optical 
properties of some species, implies that the primary, and possibly secondary, classical 
divisions may not be the most suitable for this analysis. A more appropriate labelling 
system, representative of flow cytometric similarities, will improve identification by 
supervised networks and offer more explanation towards species overlap.

7.7 Boundary Recognition on the SOM
When presented with a data set, the SOM is capable of adapting itself to the 

distribution of the input data, thus preserving the relationship between multi-dimensional 
variables. While this network provides the basis for classification, distinction between 
probable clusters in the output space can be difficult.

The methods presented for boundary detection offer an alternative approach 
to classical clustering, by considering the hyper-dimensional distances between the 
position vectors of the Kohonen nodes, and not the data. This reduces the risk of 
ambiguous clusters that may be a result of irregularities in the data. Once node clusters 
have been determined, actual data classification can be achieved by grouping the particular 
data allocated an individual cluster of nodes. Although definitive clustering may not be 
obtainable, areas of correlation exist between the methods, providing insight into the 
natural overlaps and distinctions of phytoplankton species. Use of the approaches 
iteratively, to establish coarse clustering first and then discover finer clustering, will 
provide a starting point for a hierarchy of divisions based on flow cytometric similarities. 
In addition, the data used to evaluate clustering by the SOM is limited to seven 
dimensions. The procedures and therefore definition of clusters may be improved, if an 
increased number of parameters are employed for analysis.

As classification is a continual process, it is always possible to further partition or 
merge a data set, thus some degree of stopping criteria or threshold determination must be 
defined. This can take various forms, but increasing the number of user-defined 
assumptions increases the chance of cluster formations that are not reflective of the true 
data similarities. Although some degree of input is required for the methods presented, it 
is no more than other algorithms, and less a priori information is needed as the proximity 
of data distribution has already been established by the SOM. This preservation of the 
spatial distribution of data, will improve the similarities concluded by individual users
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employing the boundary detection methods. This will alleviate discrepancies caused by 
inappropriate algorithm selection.

7.8 Culture Variation and Field Data

Phytoplankton data are inherently variable. The multi-modal distribution of a 

laboratory cultured sample indicates the presence of sub-populations. This is multiplied 

when the species are in a natural habitat, where cells exhibit considerable variation in their 

optical characteristics as a result of diverse environmental conditions and varying stages of 

growth.
Without definitive confirmation of sample content, the field trials comparison 

cannot be conclusive. Both network architectures have demonstrated moderate 

generalisation ability. However, the poor identification of Prime 2 data by a network 

trained on the Prime 1 data set (and vice versa), and the increase or decrease of some 

species identification under different culturing conditions, indicates the extent of 

biodiversity when illumination alone is altered. Therefore, to achieve maximum 

generalisation and produce a system capable of identifying natural cultures, training data 

must be available for both field samples, and laboratory grown species cultured under a 

greater range of conditions.

7.9 Conclusions and Future Work
This research has suggested and tested an alternative multiple neural network 

architecture, for identifying phytoplankton from flow cytometric data. With the 

advantages of the multi-class RBF, the multiple network allows easy addition of novel 

species and the rapid selection of subsets of networks. The lack of influence of the 

background class on the final identification by the decision RBF network, has been 

demonstrated for this data. Theoretically, a relationship between output ranges should 

exist, providing there is consistency between the structure of the single species training 

files and the architecture of the associated networks. However, although the number of 

species analysed here (74 in total) may be more representative of a field number than 

previous research, it is still small compared to that encountered in the natural environment. 

Therefore, to fully realise the potential of the approach, further studies need to be 

performed on both the architecture of the single species networks and the content and
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quantity of the training data. Whilst no notable problems were encountered when 
identifying 74 species, as numbers increase the content of the background class may 
influence performance.

The initiation of an alternative structuring system, would provide a more 
appropriate class membership reflected by the flow cytometric similarities, thereby 
improving identification to group and genus level. This requires further study and 
correlation between neural network analysts and phytoplankton taxonomists. Information 
regarding optical similarities can be acquired, after clustering on the SOM, by extracting 
flow cytometric parameters of a set of clustered data. Its variance and distribution can be 
assessed and similarity measures established. This procedure can also be useful in 
establishing similarities in data collected from the field, where some insight could be 
provided of the influence of environmental conditions on flow cytometric variation.

Although groupings constructed from flow cytometric similarities will improve 
network performance, there are some species for which overlap is such that complete 
separation may never be possible. Further improvements can be achieved through the 
combination of some species, where incorrect identification of individual points, especially 
in the overlapping boundaries of similar species, reduces identification and confidence of 
identification. Conclusive identification can then be performed on a delimited set via 
alternative methods such as microscopy or increased optical parameters.
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Appendix 1

Appendix 1 - Phytoplankton Characteristics

Table Al.l Some of the primary physical features used to identify phytoplankton cells by 
morphology.

Cell Feature Description

Cell Shape 

Cell dimensions

Cell Wall

Can be either a common or variable factor between cells of the 
same species.

Microplankton and nanoplankton consist of both zooplankton and 
phytoplankton, with a maximum size scale of 20-200|im and 2- 
20jjm respectively. Picoplankton contains only algae and bacteria 
with sizes less than 2|0.m.

Not always present; may be replaced by a plasma membrane. 
Requires high magnification to ascertain presence. Identification 
of some species can be evident from the walls containing 
inorganic substances, such as silica. This is detected through 
horizontal light scatter, forming either scales or a continuous 
cratered wall.

Only visible by light microscopy when stained with Indian ink 
(Boney, 1989). An extension of the cell wall

Chlorophyll bearing cell constituents distinctive by colour, size 
and number giving a means of identifying a cell. The various 
pigments present in a particular cell are represented by the colour 
of the chloroplasts, for example some phytoplankton appear 
yellow due to the presence of xanthophyll pigments overlying the 
green chlorophylls. Chlorophyll a is the primary chlorophyll. It 
is the receptor of radiant energy and common to all photosynthetic 
organisms. It is used not only for identification of species through 
colour but also as a measure of phytoplankton biomass. 
Fluorescence per unit chlorophyll a is an indicator of species type 
but must be measured in a mixture of pigments including 
chlorophyll b, chlorophyll c and chlorophyll derivatives, some of 
which interfere with analysis (Sakshaug, 1980)

Flagella Whip-like protrusions from a cell varying in position, number and 
_____________physical appearance. _______________________

Mucilage Layer 

Chloroplasts
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Table A1.2 Characteristics of some of the phytoplankton classes used in this research. 

Group Details

Bacillariophyceae 
(Diatoms)

Dinophyceae 
(Dinoflagellates)

Chlorophyceae 
(Green algae)

Prasinophyceae 
(Green algae)

Euglenophyceae
(Euglenoid
flagellates)

Chrysophyceae 
(Golden-brown 
phytoflagellates)

Commonly found in marine or freshwater areas, Bacillariophyceae 
exist as single cells or chains, with flagella present only in male 
gametes. The cell forms an external silica skeleton and has one to 
many chloroplasts. Pigments are primarily chlorophyll a and c as 
well as xanthophyll, which gives the cell a yellow-brown 
appearance; Diatoms with a raphe are capable of independent 
movement.

Extensively found in marine and freshwater areas, the 
Dinoflagellates exist generally as single cells or chains, with a few 
being filamentous. Each cell has two dimorphic flagella, one 
transverse and one longitudinal, as well as a characteristic theca 
(cell covering) distinguishing them from other groups (Steidinger & 
Tangen, 1997). Cells contain one to many chloroplasts. As well as 
chlorophyll a and c, the cells contain fucoxanthin and peridinin 
(xanthophyll pigments) giving them a yellow-green or yellow- 
brown appearance.

Characteristic of coastal and freshwater environments, 
Chlorophyceae can be single or colonial with a solitary chloroplast. 
Some species are motile, possessing two or four flagella, smooth 
and equal in length. Chlorophylls a and b are the photosynthetic 
pigments present, giving the algae their green colour.

Evident in marine and freshwater areas, Prasinophyceae exist as 
single cells with an individual chloroplast. They commonly 
possess two or four flagella, which are thicker than those of 
Chlorophyceae due to a covering of organic scales. As with 
Chlorophyceae the green colour comes from the chlorophylls a and 
b; cells are motile.

Found mainly in freshwaters, Euglenoid flagellates are bright green 
in colour, existing as individual cells with one to many chloroplasts 
of various shapes. The cells posses one, two or four flagella, aiding 
homo or heterodynamic movement (Throndsen, 1997), and contain 
chlorophylls a and b.

Mainly freshwater, Chrysophyceae exist either independently or in 
a colonial state, with some cells exhibiting a covering of silicified 
or organic scales. These phytoflagellates possess two rough 
flagella of unequal lengths and may be motile. Each cell houses 
one or more chloroplasts where, as well as chlorophylls a and b, the 
presence of a number of carotenoid pigments give the species a 
golden-brown or yellow appearance._________________
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Table A1.2 continued.....

Group Details

Prymnesiophyceae
(Brown
phytoflagellates)

Cryptophyceae 
(Brown flagellate)

Cyanophyceae 
(Cyanobacteria; 
blue-green algae)

Rhodophyceae 
(Red algae)

Phaeophyceae 
(Brown seaweeds)

Principally a marine class of species but can be found in 
freshwater areas. Existing either individually or as colonies, 
Prymnesiophyceae contain one or two chloroplasts and the 
pigments chlorophyll a and b. The species have two, generally 
smooth, flagella of equal lengths, aiding motility, and are yellow 
to golden-brown in colour.

This is mainly a freshwater class with few coastal inhabitants. The 
cells exist individually possessing two, rough, unequal flagella. 
Cryptophyceae normally have one or two chloroplasts and the 
presence of the phycobilin pigments, phycoerythrin (red) and 
phycocyanin (blue), gives the cells a variety of colours, including 
brown, green, red and blue. Cells are motile.

A marine and freshwater group living as single cells, colonies or 
filaments. The absence of a distinct nucleus in these cells 
produces characteristics more akin with bacteria, i.e. prokaryotic, 
than algae. Cells contain subsidiary pigments, phycobilins, 
phycocyanin and carotenoids accompanying the chlorophyll, 
giving the more common blue-green colour with variations of 
olive and sometimes yellow and red.

Rhodophyceae are primarily marine algae and are non-motile. 
The cells contain carotenoids and phycobilin pigments dominated 
by phycoerythrin, producing the distinctive red colour.

Phaeophyceae are marine inhabitants with two lateral unequal 
flagella. The cell colour is characterised by the presence of the 
yellow xanthophyll pigment, fucoxanthin._______________
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Appendix 2 - Biological Glossary

Term

Carotenoid

Chlorophylls 

F/2 Medium

F/10 Medium

Fluorochrome

Heterodynamic 
movement

Homodynamic 
movement

Phycobilin

Raphe 
Zooplankton

Definition

Orange, brown, red or yellow photosynthetic pigments 
comprising Xanthophylls and Carotenes pigments.

Photosynthetic pigments present in all plants. Comprises 
Chlorophyll a, b, c, d and Chlorophyll derivatives.

Sterilised seawater with the addition of nutrients, trace 
elements and vitamins to ensure phytoplankton growth. Major 
nutrients are sodium nitrate and sodium hydrogen phosphate. 
Trace elements include iron, copper, zinc, cobalt, manganese 
and molybdenum as various salts. Vitamins include vitamin 
B12 (Cyanocobalamine), Bl (Biotin) and B6 (Thiamin 
hydrochloride) (Guillard, 1975).

F/2 medium with all the nutrient concentrations divided by 5 
for oceanic phytoplankton (mimics oceanic conditions). 
(Tarran, pers. comm.)

Fluorescent compound

Flagella of individual cell used in different ways to produce 
movement

Flagella of individual cell used in the same way to produce 
movement

Photosynthetic pigments comprising Phycoerythrin (red) and 
Phycocyanin (blue) pigments.

Slit found in Diatom valves 
Animal constituent of Plankton
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Appendix 3 - Kohonen's Self Organising Map

Notation
x = (xj,X2, .... ..,xp) p-dimensional feature vector of the input pattern.

Wj = (wi,w2,......,wp) Position (weight) vector of node; in the Kohonen layer.

D(X,WJ) Euclidean distance between input pattern, x, and node j.

D'(X,WJ) Euclidean distance between input pattern, x, and node ;' after bias

has been employed. 

/ Winning node.

d(Wj,wj) Euclidean distance between winning node J and node/ 

f(d(Wj,wj)) Neighbourhood function, generally Gaussian, where

o(t) Neighbourhood radius - standard deviation of the Gaussian.

bj Bias term.

N Number of nodes in the Kohonen layer.

Fj Winning frequency of node j.

B Constant chosen to ensure frequency does not mirror anomalies in

	the data 0<B«1 (DeSieno, 1988).

y Constant controlling the bias factor.

a Learning parameter.

Algorithm
Step 1 The weight vectors of the Kohonen nodes are initially set to small random

values of the same dimension as the input data. Network parameters are set 

(see below - Kohonens Recommendations).

Step 2 Present randomly chosen input pattern, x, to network.

Step 3 For each Kohonen nodey in the lattice, do steps 3.1 and 3.2.

Step 3.1 Calculate D(X,WJ~) = .1^ -wjt(t}f
IM

Step 4 Find the node J such that D(X,WJ) is a minimum.
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Step 5 For all Kohonen nodes j, do steps 5.1 and 5.2.

Step 5.2 Update all nodes within the specified neighbourhood of node J. 

Wji (t + l) = Wji (0 + a(t)f(d(Wj , wj ))[*,• (0 - Wji

Steps 2-5 are repeated until either stopping condition is reached or procedure is halted.

Algorithm — with conscience

Step 1 The weight vectors of the Kohonen nodes are initially set to small random

values of the same dimension of the input data.

Network parameters are set (see below - Kohonens Recommendations). 

Step 2 Present randomly chosen input pattern, x, to network. 

Step 3 For each Kohonen node; in the lattice, do steps 3.1 and 3.2.

Step 3.1 Calculate

Step 3.2 Calculate D'(x,Wj)=D(x,Wj)-bj

where b

Step 4 Find the node J such that D'(X,WJ) is a minimum. 

Step 5 For all Kohonen nodes j, do steps 5.1 and 5.2.

Step 5.1 Calculate d(Wj,wj)

Step 5.2 Update all nodes within the specified neighbourhood of node J.

Wji (t + 1) = Wji (0 + (x(t)f(d(Wj, wj ))[*,• (0 - Wji (t)\

Step 6 Winning frequencies are updated for all nodes ;

Fj(t +1) = Fj(t)Q.-B) otherwise 

Steps 2-6 are repeated until either a stopping condition is reached, or procedure is halted.

257



Appendix 3

Kohonen's Recommendations (Kohonen, 1990)

The following recommendations are set out by Kohonen for unsupervised learning 

by the Kohonen self-organising map.

Step 1 Initial period of global ordering

(a) Train for approximately 1000 presentations with the following parameter 

recommendations.

(b) The learning parameter, a(tj, should be close to 1 and decrease monotonically. 

This reduction can be linear, exponential or inversely proportional to t

(c) To maximise cluster representation the training should initiate with a large 

neighbourhood region, which can be greater than the longest dimension of the 

Kohonen lattice, and shrink linearly during training to 1 node update. 

Step 2 Fine adjustment
(a) Kohonen recommends training for approximately 500 x N presentations in total 

for good statistical accuracy. Parameter recommendations for the further 

training period are shown below.

(b) The learning parameter, a(t), should be <=0.01, with reduction either linear or 

exponential.
(c) The neighbourhood update region can remain at 1 node allowing those nodes 

immediately adjoining the winning node to continue being updated.
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