982 research outputs found

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    English Broadcast News Speech Recognition by Humans and Machines

    Full text link
    With recent advances in deep learning, considerable attention has been given to achieving automatic speech recognition performance close to human performance on tasks like conversational telephone speech (CTS) recognition. In this paper we evaluate the usefulness of these proposed techniques on broadcast news (BN), a similar challenging task. We also perform a set of recognition measurements to understand how close the achieved automatic speech recognition results are to human performance on this task. On two publicly available BN test sets, DEV04F and RT04, our speech recognition system using LSTM and residual network based acoustic models with a combination of n-gram and neural network language models performs at 6.5% and 5.9% word error rate. By achieving new performance milestones on these test sets, our experiments show that techniques developed on other related tasks, like CTS, can be transferred to achieve similar performance. In contrast, the best measured human recognition performance on these test sets is much lower, at 3.6% and 2.8% respectively, indicating that there is still room for new techniques and improvements in this space, to reach human performance levels.Comment: \copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Development of a speech recognition system for Spanish broadcast news

    Get PDF
    This paper reports on the development process of a speech recognition system for Spanish broadcast news within the MESH FP6 project. The system uses the SONIC recognizer developed at the Center for Spoken Language Research (CSLR), University of Colorado. Acoustic and language models were trained using Hub4 broadcast news data. Experiments and evaluation results are reported

    Investigating cross-language speech retrieval for a spontaneous conversational speech collection

    Get PDF
    Cross-language retrieval of spontaneous speech combines the challenges of working with noisy automated transcription and language translation. The CLEF 2005 Cross-Language Speech Retrieval (CL-SR) task provides a standard test collection to investigate these challenges. We show that we can improve retrieval performance: by careful selection of the term weighting scheme; by decomposing automated transcripts into phonetic substrings to help ameliorate transcription errors; and by combining automatic transcriptions with manually-assigned metadata. We further show that topic translation with online machine translation resources yields effective CL-SR

    Impact of ASR performance on free speaking language assessment

    Get PDF
    In free speaking tests candidates respond in spontaneous speech to prompts. This form of test allows the spoken language proficiency of a non-native speaker of English to be assessed more fully than read aloud tests. As the candidate's responses are unscripted, transcription by automatic speech recognition (ASR) is essential for automated assessment. ASR will never be 100% accurate so any assessment system must seek to minimise and mitigate ASR errors. This paper considers the impact of ASR errors on the performance of free speaking test auto-marking systems. Firstly rich linguistically related features, based on part-of-speech tags from statistical parse trees, are investigated for assessment. Then, the impact of ASR errors on how well the system can detect whether a learner's answer is relevant to the question asked is evaluated. Finally, the impact that these errors may have on the ability of the system to provide detailed feedback to the learner is analysed. In particular, pronunciation and grammatical errors are considered as these are important in helping a learner to make progress. As feedback resulting from an ASR error would be highly confusing, an approach to mitigate this problem using confidence scores is also analysed

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Improving Speech Recognition for Interviews with both Clean and Telephone Speech

    Get PDF
    High quality automatic speech recognition (ASR) depends on the context of the speech. Cleanly recorded speech has better results than speech recorded over telephone lines. In telephone speech, the signal is band-pass filtered which limits frequencies available for computation. Consequently, the transmitted speech signal may be distorted by noise, causing higher word error rates (WER). The main goal of this research project is to examine approaches to improve recognition of telephone speech while maintaining or improving results for clean speech in mixed telephone-clean speech recordings, by reducing mismatches between the test data and the available models. The test data includes recorded interviews where the interviewer was near the hand-held, single-channel recorder and the interviewee was on a speaker phone with the speaker near the recorder. Available resources include the Eesen offline transcriber and two acoustic models based on clean training data or telephone training data (Switchboard). The Eesen offline transcriber is on a virtual machine available through the Speech Recognition Virtual Kitchen and uses an approach based on a deep recurrent neural network acoustic model and a weighted finite state transducer decoder to transcribe audio into text. This project addresses the problem of high WER that comes when telephone speech is tested on cleanly-trained models by 1) replacing the clean model with a telephone model and 2) analyzing and addressing errors through data cleaning, correcting audio segmentation, and adding words to the dictionary. These approaches reduced the overall WER. This paper includes an overview of the transcriber, acoustic models, and the methods used to improve speech recognition, as well as results of transcription performance. We expect these approaches to reduce the WER on the telephone speech. Future work includes applying a variety of filters to the speech signal could reduce both additive and convolutional noise resulting from the telephone channel
    corecore