2,369 research outputs found

    Impact of parameter variations on circuits and microarchitecture

    Get PDF
    Parameter variations, which are increasing along with advances in process technologies, affect both timing and power. Variability must be considered at both the circuit and microarchitectural design levels to keep pace with performance scaling and to keep power consumption within reasonable limits. This article presents an overview of the main sources of variability and surveys variation-tolerant circuit and microarchitectural approaches.Peer ReviewedPostprint (published version

    Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    Get PDF
    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort

    Design of a high-speed digital processing element for parallel simulation

    Get PDF
    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design

    Modified Level Restorers Using Current Sink and Current Source Inverter Structures for BBL-PT Full Adder

    Get PDF
    Full adder is an essential component for the design and development of all types of processors like digital signal processors (DSP), microprocessors etc. In most of these systems adder lies in the critical path that affects the overall speed of the system. So enhancing the performance of the 1-bit full adder cell is a significant goal. In this paper, we proposed two modified level restorers using current sink and current source inverter structures for branch-based logic and pass-transistor (BBL-PT) full adder [1]. In BBL-PT full adder, there lies a drawback i.e. voltage step existence that could be eliminated in the proposed logics by using the current sink inverter and current source inverter structures. The proposed full adders are compared with the two standard and well-known logic styles, i.e. conventional static CMOS logic and Complementary Pass transistor Logic (CPL), demonstrated the good delay performance. The implementation of 8-bit ripple carry adder based on proposed full adders are finally demonstrated. The CPL 8-bit RCA and as well as the proposed ones is having better delay performance than the static CMOS and BBL-PT 8-bit RCA. The performance of the proposed BBL-PT cell with current sink & current source inverter structures are examined using PSPICE and the model parameters of a 0.13 Âľm CMOS process

    Implementation of arithmetic primitives using truly deep submicron technology (TDST)

    Get PDF
    The invention of the transistor in 1947 at Bell Laboratories revolutionised the electronics industry and created a powerful platform for emergence of new industries. The quest to increase the number of devices per chip over the last four decades has resulted in rapid transition from Small-Scale-Integration (SSI) and Large-Scale-lntegration (LSI), through to the Very-Large-Scale-Integration (VLSI) technologies, incorporating approximately 10 to 100 million devices per chip. The next phase in this evolution is the Ultra-Large-Scale-Integration (ULSI) aiming to realise new application domains currently not accessible to CMOS technology. Although technology is continuously evolving to produce smaller systems with minimised power dissipation, the IC industry is facing major challenges due to constraints on power density (W/cm2) and high dynamic (operating) and static (standby) power dissipation. Mobile multimedia communication and optical based technologies have rapidly become a significant area of research and development challenging a variety of technological fronts. The future emergence or 4G (4th Generation) wireless communications networks is further driving this development, requiring increasing levels of media rich content. The processing requirements for capture, conversion, compression, decompression, enhancement and display of higher quality multimedia, place heavy demands on current ULSI systems. This is also apparent for mobile applications and intelligent optical networks where silicon chip area and power dissipation become primary considerations. In addition to the requirements for very low power, compact size and real-time processing, the rapidly evolving nature of telecommunication networks means that flexible soft programmable systems capable of adaptation to support a number of different standards and/or roles become highly desirable. In order to fully realise the capabilities promised by the 4G and supporting intelligent networks, new enabling technologies arc needed to facilitate the next generation of personal communications devices. Most of the current solutions to meet these challenges are based on various implementations of conventional architectures. For decades, silicon has been the main platform of computing, however it is slow, bulky, runs too hot, and is too expensive. Thus, new approaches to architectures, driving multimedia and future telecommunications systems, are needed in order to extend the life cycle of silicon technology. The emergence of Truly Deep Submicron Technology (TDST) and related 3-D interconnection technologies have provided potential alternatives from conventional architectures to 3-D system solutions, through integration of IDST, Vertical Software Mapping and Intelligent Interconnect Technology (IIT). The concept of Soft-Chip Technology (SCT) entails integration of Soft• Processing Circuits with Soft-Configurable Circuits . This concept can effectively manipulate hardware primitives through vertical integration of control and data. Thus the notion of 3-D Soft-Chip emerges as a new design algorithm for content-rich multimedia, telecommunication and intelligent networking system applications. 3•D architectures (design algorithms used suitable for 3-D soft-chip technology), are driven by three factors. The first is development of new device technology (TDST) that can support new architectures with complexities of 100M to 1000M devices. The second is development of advanced wafer bonding techniques such as Indium bump and the more futuristic optical interconnects for 3-D soft-chip mapping. The third is related to improving the performance of silicon CMOS systems as devices continue to scale down in dimensions. One of the fundamental building blocks of any computer system is the arithmetic component. Optimum performance of the system is determined by the efficiency of each individual component, as well as the network as a whole entity. Development of configurable arithmetic primitives is the fundamental focus in 3-D architecture design where functionality can be implemented through soft configurable hardware elements. Therefore the ability to improve the performance capability of a system is of crucial importance for a successful design. Important factors that predict the efficiency of such arithmetic components are: • The propagation delay of the circuit, caused by the gate, diffusion and wire capacitances within !he circuit, minimised through transistor sizing. and • Power dissipation, which is generally based on node transition activity. [2] Although optimum performance of 3-D soft-chip systems is primarily established by the choice of basic primitives such as adders and multipliers, the interconnecting network also has significant degree of influence on !he efficiency of the system. 3-D superposition of devices can decrease interconnect delays by up to 60% compared to a similar planar architecture. This research is based on development and implementation of configurable arithmetic primitives, suitable to the 3-D architecture, and has these foci: • To develop a variety of arithmetic components such as adders and multipliers with particular emphasis on minimum area and compatible with 3-D soft-chip design paradigm. • To explore implementation of configurable distributed primitives for arithmetic processing. This entails optimisation of basic primitives, and using them as part of array processing. In this research the detailed designs of configurable arithmetic primitives are implemented using TDST O.l3µm (130nm) technology, utilising CAD software such as Mentor Graphics and Cadence in Custom design mode, carrying through design, simulation and verification steps

    Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders

    Get PDF
    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology
    • …
    corecore