3,042 research outputs found

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    SSO Based Fingerprint Authentication of Cloud Services for Organizations

    Get PDF
    Access to a pool of programmable resources, such as storage space, applications, services, and on-demand networks, is made possible by cloud computing technology. Involving the cloud with the organization reduces its efforts to meet the needs of its customers. The Single Sign-On (SSO) method, which enables users to access various application services using a single user credential, is one of the key benefits of cloud computing. There are numerous problems and difficulties with cloud computing that need to be highlighted. However, protecting user agent privacy against security assaults is far more challenging. To combat security and privacy assaults, this study suggests SSO-based biometric authentication architecture for cloud computing services. Since end devices are computationally inefficient for processing user information during authentication, biometric authentication is effective for resources controlled by end devices at the time of accessing cloud services. As a result, the proposed design minimizes security attacks in cloud computing. An innovative strategy that establishes a one-to-one interaction between the user agent and the service provider is also included in the suggested design. In this case, user agents can use their fingerprint to access various cloud application services and seek registration. The highlights of the suggested architecture have been offered based on comparison analysis with a number of existing architectures

    Two-Factor Biometric Identity Verification System for the Human-Machine System Integrated Deep Learning Model

    Get PDF
    The Human-Machine Identity Verification System based on Deep Learning offers a robust and automated approach to identity verification, leveraging the power of deep learning algorithms to enhance accuracy and security. This paper focused on the biometric-based authentical scheme with Biometric Recognition for the Huma-Machinary Identification System. The proposed model is stated as the Two-Factor Biometric Authentication Deep Learning (TBAuthDL). The proposed TBAuthDL model uses the iris and fingerprint biometric data for authentication. TBAuthDL uses the Weighted Hashing Cryptographic (WHC) model for the data security. The TBAuthDL model computes the hashing factors and biometric details of the person with WHC and updates to the TBAuthDL. Upon the verification of the details of the assessment is verified in the Human-Machinary identity. The simulation analysis of TBAuthDL model achieves a higher accuracy of 99% with a minimal error rate of 1% which is significantly higher than the existing techniques. The performance also minimizes the computation and processing time with reduced complexity

    Comprehensive Survey: Biometric User Authentication Application, Evaluation, and Discussion

    Full text link
    This paper conducts an extensive review of biometric user authentication literature, addressing three primary research questions: (1) commonly used biometric traits and their suitability for specific applications, (2) performance factors such as security, convenience, and robustness, and potential countermeasures against cyberattacks, and (3) factors affecting biometric system accuracy and po-tential improvements. Our analysis delves into physiological and behavioral traits, exploring their pros and cons. We discuss factors influencing biometric system effectiveness and highlight areas for enhancement. Our study differs from previous surveys by extensively examining biometric traits, exploring various application domains, and analyzing measures to mitigate cyberattacks. This paper aims to inform researchers and practitioners about the biometric authentication landscape and guide future advancements

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks
    corecore