9,633 research outputs found

    Recognition of human body posture from a cloud of 3D data points using wavelet transform coefficients

    Get PDF
    Addresses the problem of recognizing a human body posture from a cloud of 3D points acquired by a human body scanner. Motivated by finding a representation that embodies a high discriminatory power between posture classes, a new type of feature is suggested, namely the wavelet transform coefficients (WTC) of the 3D data-point distribution projected on to the space of spherical harmonics. A feature selection technique is developed to find those features with high discriminatory power. Integrated within a Bayesian classification framework and compared with other standard features, the WTC showed great capability in discriminating between close postures. The qualities of the WTC features were also reflected in the experimental results carried out with artificially generated postures, where the WTC obtained the best classification rat

    Robust face recognition using convolutional neural networks combined with Krawtchouk moments

    Get PDF
    Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises

    Local And Semi-Global Feature-Correlative Techniques For Face Recognition

    Get PDF
    Face recognition is an interesting field of computer vision with many commercial and scientific applications. It is considered as a very hot topic and challenging problem at the moment. Many methods and techniques have been proposed and applied for this purpose, such as neural networks, PCA, Gabor filtering, etc. Each approach has its weaknesses as well as its points of strength. This paper introduces a highly efficient method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in different views (poses) of facial images. Feature extraction techniques are applied on the images (faces) based on Zernike moments and structural similarity measure (SSIM) with local and semi-global blocks. Pre-processing is carried out whenever needed, and numbers of measurements are derived. More specifically, instead of the usual approach for applying statistics or structural methods only, the proposed methodology integrates higher-order representation patterns extracted by Zernike moments with a modified version of SSIM (M-SSIM). Individual measurements and metrics resulted from mixed SSIM and Zernike-based approaches give a powerful recognition tool with great results. Experiments reveal that correlative Zernike vectors give a better discriminant compared with using 2D correlation of the image itself. The recognition rate using ORL Database of Faces reaches 98.75%, while using FEI (Brazilian) Face Database we got 96.57%. The proposed approach is robust against rotation and noise

    Technique for recognizing faces using a hybrid of moments and a local binary pattern histogram

    Get PDF
    The face recognition process is widely studied, and the researchers made great achievements, but there are still many challenges facing the applications of face detection and recognition systems. This research contributes to overcoming some of those challenges and reducing the gap in the previous systems for identifying and recognizing faces of individuals in images. The research deals with increasing the precision of recognition using a hybrid method of moments and local binary patterns (LBP). The moment technique computed several critical parameters. Those parameters were used as descriptors and classifiers to recognize faces in images. The LBP technique has three phases: representation of a face, feature extraction, and classification. The face in the image was subdivided into variable-size blocks to compute their histograms and discover their features. Fidelity criteria were used to estimate and evaluate the findings. The proposed technique used the standard Olivetti Research Laboratory dataset in the proposed system training and recognition phases. The research experiments showed that adopting a hybrid technique (moments and LBP) recognized the faces in images and provide a suitable representation for identifying those faces. The proposed technique increases accuracy, robustness, and efficiency. The results show enhancement in recognition precision by 3% to reach 98.78%

    Face Recognition Using Dct And Neural Micro-Classifier Network

    Get PDF
    Abstract— In this study, a proposed faces recognition methodology based on the neural micro-classifier network. The proposed methodology uses simple well known feature extraction methodology. The feature extraction used is the discrete cosine transformation low frequencies coefficients. The micro-classifier network is a deterministic four layers neural network, the four layers are: input, micro-classifier, counter, and output. The network provide confidence factor, and proper generalization is guaranteed. Also, the network allows incremental learning, and more natural than others. The proposed face recognition methodology was tested using the standard ORL data set. The experimental results of the methodology showed comparative performance
    • …
    corecore