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Abstract

This paper addresses the problem of recognizing a hu-
man body posture from a cloud of 3D points acquired by
a Human body scanner. Motivated by finding a represen-
tation that embodies a high discrimination power between
posture classes, a new type of features is suggested, namely,
the wavelet transform coefficients (WTC) of the 3D data
points distribution projected on the space of the spherical
harmonics. A Feature selection technique is developed to
find the features with high discriminatory power. Integrated
within a Bayesian classification framework and compared
with other standard features, the WTC showed great capa-
bilities in discriminating between close postures. The qual-
ities of the WTC features were also reflected on the experi-
ment results carried out with artificially generated postures,
where the WTC got the best classification rate. To the best
of our knowledge, this work appears to be the first to treat
the posture recognition in the three-dimensional case and
to suggest WTC as features for 3D shape.

1. Recognizing a 3D Human Body posture:
Why ?

The recent years have seen the emergence of human
body scanners capable of capturing the whole shape as well
as the appearance of the human body (HB). New perspec-
tives were opened for the exploitation of this technology in
various sectors. In entertainment , scans of real persons can
be mapped to generic models and then integrated in video
games, TV or cinema production [1]. In clothing industry,
human body scans can substitute the real person for extract-
ing measurements [2, 3, 4]. Data bases of HB scans can be
useful for medical and anthropological surveys [5]. Many
of these applications need decomposing the body shape into
surfaces corresponding to the different parts of the human
body, namely the head, the upper arms, the lower arms, the

upper legs, the bottom legs and the torso.
There have been some attempts to segment automatically

human body shape [2, 3, 4] however these works treated the
particular case of a standard posture (Figure 1.(a)). Their
techniques were restrictive and cannot handle arbitrary pos-
tures. Our believe is that tackling the segmentation of hu-
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Figure 1. (a): the standard posture of a human body in a

reference frame (x; y; z) attached to the scanner. A rotation of the

whole HB is constrained to be around the z axis, affecting only

the angle �. (b):Meyer wavelet function. (c) The body parts ori-

entation are hierarchy defined . The rotation R12 between R1 and

R2 defines the orientation of the lower left arm with respect to the

upper left arm and this one’s orientation is defined by the rotation

R10 between R1 and R0 .

man body shape without any prior knowledge of the body
posture is a very difficult problem. Retrieving first the
HB posture will make the segmentation problem more ap-
proachable by providing information about the relative lo-
cations of the human body parts. This information is also
valuable for model conformation problems where we want
to fit a generic model to 3D HB scan. The posture knowl-
edge can be used in that case to find an initial rough confor-
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mation that can be refined afterwards. This task used to be
performed manually, as for instance in [1].

Therefore the aim of this work is to recognize a HB pos-
tures from 3D HB scans. We propose to achieve this objec-
tive within a model-based approach where the problem is
stated as follows: Given a set of posture models and given a
query posture, find which posture model corresponds to the
query posture. The paradigm followed to solve this problem
is built upon three elements: representation, feature extrac-
tion and classification or decision.

The rest of the paper is organized as follows, Section 2
emphasizes the important role of the representation and de-
scribes the WTC features. Section 3 presents a Bayesian
approach for classifying the postures. It also describes the
feature selection scheme based on which the best features,
in terms of discrimination power are chosen. Section 4 ex-
poses the experimental side of this work, it describes the
generation of the model postures and illustrates, within a
comparative study, the advantages of the features having a
high discrimination power, and show as well their impact
on the classification. The paper is concluded by discussing
the results, potential improvements and future work.

2. Representation

In shape recognition techniques, objects are represented
by numerical features in order to remove the redundancy
of the data and to reduce its dimension. The features are
often grouped into vectors. The data we deal with, is a scat-
tered 3D points representing the human body surface shape.
Most of the HB scanners provide a complete data that cov-
ers the whole surface of the body. This is encouraging
to investigate what global features can offer for 3D shape
identification. The moment features have been extensively
used in image analysis and description. The attention was
mainly oriented towards moments that are invariant with re-
spect to translation, rotation and scale. Such moments were
first proposed by Hu [6]. Then a variety of moments were
developed later, particularly the orthogonal moments [7] ,
such Legendre moments, Fourier-Mellin moments, Zernike
moments and pseudo-Zernike moments. The orthogonal
moments have shown to be less redundant,less sensitive to
noise and more informative than geometrical moments. A
nice survey and comparison of 2D moments can be found
in [8] where Zernike moments have shown to have the best
overall performance.

Less work has been done in exploiting moments in the
case of three-dimensional data However. One of the rea-
sons, is that most of the 3D Imaging devices so far do not
provide complete data in terms of surface covering. Condi-
tion which is necessary for any global feature based analy-
sis. Nnevertheless, there have been some attempts to define
frameworks for 3D moments construction. Sadjadi et al

[9] pioneered the development of 3D Geometric moment
invariants. Their framework built a family of three invari-
ant moments with a degree up to the second-order. Using
the notion of complex moments Lo et al [10] constructed
a family of twelve invariant moments with orders up to the
third degree. However, in these last works, moments were
used mainly to estimate 3D transformations and their per-
formances were not evaluated for classification tasks. Also,
these moments are not derived from a family of orthogonal
functions, they are therefore subject to correlation.

2.1. The Wav elet-basedrepresentation

The Wavelet concept was introduced by Morlet [11] as
time-scale analysis tool for non-stationary signals. It was
further developed by many authors [12, 13, 14] and rapidly
found applications in many areas. A wavelet function is a
function that is well localized in the space and the frequency
domain. From a mother function g(r) a family of wavelet
functions ga;b(r) =

1
a
g( r�b

a
); a > 0 is derived. This family

is obtained by shifting the wavelet mother by b (the shifting
parameter) and by dilating (stretching) it with a (the scaling
parameter). The wavelet transform at the scale a and the
shift b is:

R1
�1

f(r)ga;b(r)dr . The wavelet transform em-
bodies information about the regularity and the spectrum of
the frequency around the position b at the scale a. From this
perspective it is seen as a local operator, however by vary-
ing the parameter b along the domain of the function f(r)

we can get a global description of the function. Let con-
sider f(r; �; �) a 3D binary representation of the cloud of 3D
data points in the spherical coordinates. In its discrete form,
f(r; �; �) can be seen as spherical voxel representation. We
would like to analyze and identify the distribution of the
cloud of points over the space (r; �; �). Consider a sphere
of radius r, the points distribution at the sphere surface can
be described by the spherical harmonics via the transforma-
tion: Fmn(r) =

R 2�
0

R �
0
f(r; �; �)Um;n(�; �)r2sin�d�d�; 0 �

m � n where Um;n are the spherical harmonics of order m
and n defined on the unit sphere. they form an orthogonal
family [15], expressed by Um;n = ejm�Vn(�) where Vn(�) is
a polynomial function of order n in cos� and sin�. Fmn(r)

define therefore a sort of moments that describe the distribu-
tion of points on the spherical surface of radius r. We con-
sidered the first four spherical harmonic functions namely,
U0;0 = 1; U0;1 = cos�; U1;1 = ej�sin�; U1;2 = �3ej�sin�cos�.

Now what remains is to describe the variation of these
moments in function of r to obtain a 3D description of the
posture. This description should infers a multi-scale aspect
since the variation in the posture distributions manifests at
different scales. This can be seen, if we examine for ex-
ample, the pairs of postures (2; 18) and (6; 8) in Figure 2.
For the first pair, difference in data point distribution covers
more than the half of the posture space, whereas it is lim-
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T able1. (a) The first 12 best features ranked in descending

order. (b) the worst 12 features ranked in ascending order

ited to the volume around the right arm for the second pair.
Being a multi-scale operator, the wavelet transform satisfies
this requirement. We define therefore the WTC of the mo-
ment functions Fmn(r) as Cmn

ab
=
R1
0
Fmn(r) a;b(r)dr The

mother wavelet function we utilized is Meyer’s wavelet [14]
(Figure1.(b)), it is highly regular (has an infinite number of
vanishing moments), has a compact support and generates
an orthogonal basis of function  ab. This allows to form an
orthogonal family Fmn(r) a;b(r). The coefficients Cmn

ab
are

then derived from a family of orthogonal functions. They
can be seen as a particular type of orthogonal 3D moments.
We precise also that the feature we consider here is the mod-
ule of the wavelet transform coefficient (WTC) defined byp
< Cmn

ab
; C�mn

ab
> .

The invariance of the WTC with respect to translation
and scale is obtained by preprocessing the data in the Carte-
sian space before passing to the spherical space. From the
cloud of 3D data points a Cartesian voxel grid if formed.
Then the origin of the voxel grid is shifted to the centre of
mass of the data points. The scale invariance is obtained
by affecting the 3D points’ coordinates so that the data vol-
ume defined by the moment m000 =

P
x

P
y

P
z
f(x; y; z) is

equal to V0, where V0 is a predetermined value. The rota-
tion of the whole HB within the scanner has only one de-
gree of freedom that affects only �. It can be shown easily
thatkCmn

ab
k is invariant with respect to that rotation. The

negative side is that pairs of symmetric postures have very
close feature values. Such pairs have been associated to the
same class and the ambiguity can be removed after the clas-
sification using simple geometric procedures.

A dyadic discretization is adopted for a and
b, by choosing a = (Scale)2�p; p = 0; 1; 2; 3 and
b = qa=2; q = 0; 1; :::;2p+1, where Scale is the radius
of the sphere confining the data points. The scaling
parameter a takes the values Scale;Scale=2; Scale=4; Scale=8.
Values smaller than Scale=8 do not allow to extract sig-
nificant information. The shifting parameter b is varied
proportionally to the scale parameter within the range
[0; Scale]. The number of (p; q) pairs is then equal to 34,
which combined with 4 pairs (m;n) result in 136 WTC
features Cmn

pq .

3. The classification problem

The classification problem is stated as follows: Given a
set of posture classes C1; ::CN and given a query postureQ,
to which class the posture Q belongs. The query posture is
represented by an observation feature vector of dimension
d, X = [x1; x2; ::;Xd]. For each class Ci, let consider the dis-
criminative functions di(X). The observed feature vector
is associated to the class Ci if di(X) > dj(X) for all j 6= i.
The optimal discriminative function in the sense of Bayes
is the one defined as the aposteriori conditional probabil-
ity function P (CijX), expressed according to Bayes’ rule
by P (CijX) =

P (XjCi)P (Ci)
P (X)

. Since any monotonically
increasing function ofP (CijX) leads to identical classifi-
cation result the following function is rather considered:
di(X) = ln(P (XjCi)P (Ci)) ,defined as the logarithm of the
product of the likelihood of the class C i with respect to
X and the apriori probability function P (Ci). Assuming
that the P (XjCi) is a normal density N (�I ;�i) defined by
p(XjCi) = 1

2�j�ij
1=2 exp[�

1
2
(X � �i)

T��1i (X � �i)] , and the
the different classes have equal apriori probability, the ex-
pression of the discriminative function can be brought to
di(X) = � 1

2
(X � �i)T�

�1
i

(X � �i) �
1
2
lnj�ij . The statistics

(�i;�i) of class Ci are obtained from training process based
using the standard EM technique [16]

3.1. Selection of discriminative features

Naturally the set of wavelet coefficients has redundancy
since not all the coefficients contribute effectively in the
classification. There is a need to select the most useful fea-
tures that have a high discriminative power. The discrimina-
tive power is characterized by the interclass distance defined
as metric for measuring the separation between two classes.
A selection criterion based on that metric is therefore uti-
lized in the search for the optimal set of features. Extracting
the optimal set of features was subject of intensive work in
the literature [17]. There are mainly tow categories of tech-
niques the first operates on feature vectors, the second treats
each feature individually. We adopted a technique belong-
ing to the second one, it is sub-optimal but quite efficient.
The selection algorithm is as follows: Given a set of fea-
tures fx1; x2; ::; xdg and given a selection criterion J :

1) Compute the selection criterion value J(k) for each
feature xk , 2) rank the features in descending order with
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respect to J , 3) select the first best features and construct
with them the feature vector.

3.1.1 The interclass distance

The choice of the selection criterion is quite tight to the clas-
sification method in the sense that the interclass distance
should be defined in the same framework that of the classifi-
cation scheme. The interclass distance between two classes
Ci and Cj having the conditional probability density func-
tions P (xk; Ci) = N (�ki ; �

k
i ) and P (xk; Cj) = N(�kj ; �

k
j ) with

respect to the feature xk can be evaluated by the following

probabilistic separation: dk
ij

= 1
2
(
�kj

�k
i

+
�ki
�k
j

� 2) + 1
2
(�k

i
�

�k
j
)2( 1

(�k
i
)2

+ 1
(�k

j
)2
) .

This expression indicates that the larger the ratio of
the means difference and the variances sum, the wider
is the distance separating the two classes. The criterion
that evaluates the discriminative power of the feature xk is
then the sum of the pairwise interclass distance: J(k) =Pd

i=1

Pd

j=i+1
dkij . The larger the value of J , the better the

feature xk can discriminate between the classes.
This criterion is then used to rank the set of the 136 fea-

tures Cm;n
p;q . Table 2.1 shows the first 12 best features and

the 12 worst features. Although it not straightforward to in-
terpret these tables , some remarks can be noticed yet. For
example most the good features in Table 1.(a) have a rel-
atively large scale parameter,for instance the 2 first ones,
namely, C0;1

1;1 and C
1;2
1;1 have a scale parameter equal to

a = Scale=2. The scale parameter ofC 0;1
3;15 andC0;1

3;13 is equal
to Scale=16 however the shift parameters are high (15 Scale/16

and 13 Scale/16), so these features operate on the periphery
of 3D data points volume, area which is the most sensitive
to posture changes caused by the arms’ gesture in our mod-
els. For the worst features, in Table 1.(b), it can be noticed
that they share all the lowest scale parameter value, namely
(Scale/16). This reflects the poorness of information in the
low scale features.

4. Experiments

A set of experiments were carried out to assess the per-
formance of the WTC features in terms of power discrimi-
nation and classification rate. This was done within a com-
parative study that evaluated the performances of the WTC
features against the geometric moments developed by Lo et
al [10] and the 3D Zernike moments [18]

4.1. Generation of the posture models

The posters are generated from 3D Human body scan
obtained from Cyberware cite in the Web [19] . This scan
was segmented manually using a software package AMES

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18

Figure 2. The posture models

[20] developed in our Lab. The data was decomposed
into groups corresponding to the different parts of the HB
namely, two lower arms, two upper arms, two legs and the
torso (including the head). These parts were associated
to a hierarchical jointed structure model that satisfies the
kinematics constraints of the human body. This model was
created using the Software AHBM [21], developed also in
our lab, and offering an interactive animation of the human
body. In this model, a body segment location (position and
orientation) is defined relatively to the upper segment in the
body hierarchy, for instance the position and orientation of
the right lower arm are defined with respect to a reference
attached to the right upper arm (Figure 1.(c)) . The relative
orientations of the human body segments constitute the pa-
rameters of a given posture. By varying these parameters a
variety of postures having a reasonable human appearance
can be obtained. The statistic characteristic of each pos-
ture models are determined as follows, for each posture, 30
training data sets are generated, perturbing at each genera-
tion the posture parameters with a Gaussian noise and ran-
domly rotating the full data in a direction that affects the �
coordinate. The mean and the variance of the model vec-
tors are computed upon the 30 feature vectors associated
to the training sets. This methods leads to a more realistic
statistics than corrupting each 3D data point individually,
since in real conditions the deviations of the posture param-
eters with respect to the real ones are caused mainly by the
body movements rather than the HB scanner noise. Figure
2 shows the different posture models labelled from 0 to 18.

4.2. Comparison of the discriminative
power

The discriminative power for each of the geometric mo-
ments, Zernike moments and the WTC is assessed by ex-
amining how well the best features of each category can
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Figure 3. Distribution of best features for the three pairs of

close postures. (a) variation of the three best WTC features C0;11;1 ,

C1;1
1;2 and C0;1

2;1 . (b) variation of the two best Zernike moments

Z5;3 and Z7;1 . (c) variation of the geometric moment I222.

discriminate between close postures. The best features for
the geometric moments and Zernike moments were selected
using the same scheme than for the WTC. From the pos-
ture models we selected pairs of postures which are close,
namely (posture0; posture7); (posture2; posture11) and
(posture2; posture915). Then for the 30 training samples
of each posture in the pair, we plot the values of their cor-
responding best features. The distributions related to each
posture could then be visually compared.

Figure 3.a shows that the first three WTC features,
namely, C0;1

1;1 , C1;1
1;2 and C0;1

2;1 are clearly well separated for
the three pairs. The separation of the two best Zernike mo-
ments Z1

5;3 and Z1

7;1 plotted in a same figure for each pair
(Figure 3.b) is less clear although their distributions can be
distinguished. A more mixed close distributions are noticed
for the two other best Zernike moments.

The distributions of the best geometric moment I 2
22

in
Figure 3.c, look mixed, particularly for the two last pairs.
The distributions of the two other best geometric moments
have similar behaviour.

The figure revels that the WTC features are more capa-
ble to distinguish between close postures than Zernike mo-
ments whereas the geometric moments are far less competi-

tive. It is worth to mention also that the three best WTC fea-
tures were not selected specifically to discriminate between
these particular close postures, since the selection process
involved all the postures and consequently they might not
be the optimal features to discriminate between these par-
ticular ones, however these features still do separate them
quite reasonably.

4.3. Comparison of the Classi�cation rate

In these experiments, a set of query of test postures is
matched with the posture models, the performances of the
WTC features, Zernike moments and geometrical moments
are assessed by evaluating the rate of successful classifi-
cations. Query postures were obtained with AHBM soft-
ware, in the same way than the posture models, that is a 30
randomly perturbed and rotated version for each artificially
generated posture.

The first test involved the three categories of features.
The aim is to have a rough comparison between them rather
than assessing their individual performances. This test was
carried out with the best four features of each category. The
query postures are composed of 20 � 19 samples. The re-
sults are illustrated in Figure 4.(a) the WTC has best rating
followed by Zernike moments whereas the geometric mo-
ments have the lower rating . The other assessed aspect in
the experiments concerns how the classification rate evolves
in function of the number of features. This gives an idea
about the optimality of the selected set of features. In this
experiment, only the WTC and the Zernike moments were
assessed, as we decided not to carry with geometric mo-
ments, based on the results of the previous experiment. This
experiment used a set of query set of 30� 19 samples. The
experiment consists of many trials, in each one, the num-
ber of features involved in the classification is increased by
one, starting by 5 features and ending by 35. The classifica-
tion rate associated to the WTC and Zernike moments are
mapped in Figure 4.(b). The Figure shows that the WTC
have the best classification rate over all the number of fea-
tures, with a maximum rate of 98% reached with 23 fea-
tures. For Zernike moments the maximum rate of 94% is
obtained with 28 features. Also we notice that with 11 WTC
can guarantee a classification rate of 95% whereas a lower
rate of 93% needs 16 Zernike moments.

Although there is an overall improvement of the clas-
sification performances as the number of features get in-
creased, this improvement is not monotonous as there are
some fluctuations that start at the 10th feature . Also after a
certain number of features (25) the classification rate looks
stagnating. We believe that this phenomena has its roots in
the feature selection process, since the technique we used
guarantee only a sub-optimal set of features.
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5. Conclusion

This works described a framework and methodology to
solve the problem of recognizing human body posture from
a could of 3D data. A new 3D feature representation based
on the coefficients of a wavelet transform was suggested.
These fatures demonstrated very reasonable discriminative
power compared to those of Zernike moments and geo-
metric moments. The impact of the WTC performances
was reflected in the experiments carried out to evaluate
the classification rate of each category. The WTC had the
highest classification rate whatever number of features is
used. For some set of WTC features, the classification rate
reached 98% whereas a larger number of Zernike moments
is needed for the maximum rate of 94%. As improvement,
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Figure 4. Comparison of the classification rate of the three

categories of features. (a) classification rate associated to the four

geometric moments, 4 best WTC and 4 best Zernike moments. (b)

Classification rate of the WTC and the Zernike moments mapped

in function of the number of features.

the database of the training samples can be enriched by
adding a variety of human body shapes coming from differ-
ent scan sources. Naturally the number of model postures
we considered is far from being exhaustive. Many others
different postures can be added. This raises the question
of what is the maximum number of different postures that
could be successfully recognized. We believe that this is
linked to what extent the recognition process could distin-
guish between two close postures and how to quantify the
closeness of two postures. The adopted parametric descrip-
tion of the posture, mentioned in section 4.1, and describing
a posture in terms of the rotation parameters associated to
each body segment, can be used for that purpose. What re-
mains is to determine the minimum changes in the values
of the parameters that would produce a new distinguishable
posture, This is what we are currently investigating.
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