49 research outputs found

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing

    Development of a passive compliant mechanism for measurement of micro/nano-scale planar three DOF motions

    Get PDF
    This paper presents the design, optimization, and computational and experimental performance evaluations of a passively actuated, monolithic, compliant mechanism. The mechanism is designed to be mounted on or built into any precision positioning stage which produces three degree of freedom (DOF) planar motions. It transforms such movements into linear motions which can then be measured using laser interferometry based sensing and measurement techniques commonly used for translational axes. This methodology reduces the introduction of geometric errors into sensor measurements, and bypasses the need for increased complexity sensing systems. A computational technique is employed to optimize the mechanism’s performance, in particular to ensure the kinematic relationships match a set of desired relationships. Computational analysis is then employed to predict the performance of the mechanism throughout the workspace of a coupled positioning stage, and the errors are shown to vary linearly with the input position. This allows the errors to be corrected through calibration. A prototype is manufactured and experimentally tested, confirming the ability of the proposed mechanism to permit measurements of three DOF motions

    Micro motion stages with flexure hinges-design and control

    Get PDF
    The developments in micro and nano technologies brought the need of high precision micropositioning stages to be used in micro/nano applications such as cell manipulation, surgery, aerospace, micro fluidics, optical systems, micromachining and microassembly etc. Micro motion stages with flexible joints called compliant mechanisms are built to provide the needed accuracy and precision. This thesis aims to build compliant planar micro motion stages using flexure hinges to be used as micropositioning devices in x-y directions by applying new control methods. First 3- RRR planar parallel kinematic structure is selected which is also popular in the literature. Then the mechanism is developed to have a new structure which is a 3-PRR mechanism. The necessary geometric parameters are selected by using Finite Element Analysis (FEA). The displacement, stress and frequency behaviors of the mechanisms are compared and discussed. Modeling of the flexure based mechanisms is also studied for 3-PRR compliant stage by using Kinetostatic modeling method which combines the compliance calculations of flexure hinges with kinematics of the mechanism. Piezoelectric actuators and optical 2d position sensor which uses a laser source are used for actuation and measurement of the stages. After the experimental studies it's seen that the results are not compatible with FEA because of the unpredictable errors caused by manufacturing and assembly. We have succeeded to eliminate those errors by implementing a control methodology based on Sliding Mode Control with Disturbance Observer which is also based on Sliding Mode Control using linear piezoelectric actuator models. Finally, we have extracted experimental models for each actuation direction of the stage and used those models instead of piezoelectric actuator models which lowered our errors in the accuracy of our measurement and ready to be used as a high precision micro positioning stage for our micro system applications

    Affordable flexible hybrid manipulator for miniaturised product assembly

    Get PDF
    Miniaturised assembly systems are capable of assembling parts of a few millimetres in size with an accuracy of a few micrometres. Reducing the size and the cost of such a system while increasing its flexibility and accuracy is a challenging issue. The introduction of hybrid manipulation, also called coarse/fine manipulation, within an assembly system is the solution investigated in this thesis. A micro-motion stage (MMS) is designed to be used as the fine positioning mechanism of the hybrid assembly system. MMSs often integrate compliant micro-motion stages (CMMSs) to achieve higher performances than the conventional MMSs. CMMSs are mechanisms that transmit an output force and displacement through the deformation of their structure. Although widely studied, the design and modelling techniques of these mechanisms still need to be improved and simplified. Firstly, the linear modelling of CMMSs is evaluated and two polymer prototypes are fabricated and characterised. It is found that polymer based designs have a low fabrication cost but not suitable for construction of a micro-assembly system. A simplified nonlinear model is then derived and integrated within an analytical model, allowing for the full characterisation of the CMMS in terms of stiffness and range of motion. An aluminium CMMS is fabricated based on the optimisation results from the analytical model and is integrated within an MMS. The MMS is controlled using dual-range positioning to achieve a low-cost positioning accuracy better than 2µm within a workspace of 4.4×4.4mm2. Finally, a hybrid manipulator is designed to assemble mobile-phone cameras and sensors automatically. A conventional robot manipulator is used to pick and place the parts in coarse mode while the aluminium CMMS based MMS is used for fine alignment of the parts. A high-resolution vision system is used to locate the parts on the substrate and to measure the relative position of the manipulator above MMS using a calibration grid with square patterns. The overall placement accuracy of the assembly system is ±24µm at 3σ and can reach 2µm, for a total cost of less than £50k, thus demonstrating the suitability of hybrid manipulation for desktop-size miniaturised assembly systems. The precision of the existing system could be significantly improved by making the manipulator stiffer (i.e. preloaded bearings…) and adjustable to compensate for misalignment. Further improvement could also be made on the calibration of the vision system. The system could be either scaled up or down using the same architecture while adapting the controllers to the scale.Engineering and Physical Sciences Research Council (EPSRC

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Compliant mechanisms in lunar surface exploration: design and technology considerations for dust mitigation

    Get PDF
    The experience gained from Apollo lunar exploration and multiple robotic lunar missions has underscored the considerable challenges posed by the lunar environment for hardware operations. These challenges encompass a wide range of issues, including thermal extremes during the lunar day and night cycle, vacuum conditions limiting the choice of suitable materials (including lubricants), harsh radiation exposure, micro-meteorite impacts, and the prevalent issue of lunar dust and regolith. Lunar regolith, the surface material covering the Moon, consists of particles of varying dimensions, ranging from fine lunar dust with grain sizes measured in micrometres to larger pebbles and rock fragments. Lunar dust, in particular, has proven to be an exceptionally formidable obstacle for lunar exploration. The array of challenges it presents includes obstructed vision for both astronauts and cameras, potential inhalation and irritation of the respiratory system, loss of traction, false instrument readings, thermal control complexities, dust coating and contamination, abrasion, seal failures, and the vexing problem of clogged mechanisms. The primary focus of the work presented here lies in the realm of mechanism design, specifically targeting the pressing issue of mechanism clogging induced by the lunar dust. The solution proposed in this work can be characterised as implicit dust mitigation. It focuses on a deliberate design choice that employs compliant mechanisms to eliminate the most dust-sensitive components within mechanisms, namely, inter-element gaps. Unlike traditional mechanisms that rely on rigid-body joints, such as hinges and sliders, compliant mechanisms leverage elastic deformation to achieve motion. Consequently, they are free of the inter-element gaps susceptible to dust accumulation, which can lead to increased friction and eventual jamming. By replacing traditional tribological contacts with compliant hinges and flexures that facilitate motion through flexible deformation, this approach yields mechanisms that are inherently resistant to dust-induced jamming. However, the design of compliant mechanisms presents its own set of challenges. In this work, a range of design methodologies were explored, encompassing analytical and topology optimisation-based approaches. Additionally, various polymers suitable for additive manufacturing were examined in the context of their compatibility with the compliant mechanism design. The intricate relationship between material properties and design methodologies is discussed within this work, providing useful insight into the potential problems of various methodology and material choices. The culmination of these efforts resulted in the design, manufacturing, and testing of multiple compliant grippers. Early prototypes were tested to refine the methodology, test procedures, and ultimately design more sophisticated compliant grippers that aimed to emulate the functionality of the Apollo geological tool known as Tongs. The final design approach proposed here comprises a two-step process involving topology optimisation followed by an analytical re-design step. The latter is tailored towards reducing stress levels in the flexures and enhancing large-scale deformations. These advances were followed by a series of tests enhanced with the use of Digital Image Correlation tools, enabling the visualisation of deformation fields within the grippers. Finally, an additional set of tests was conducted using the lunar regolith simulant EAC-1A to validate the dust-resilient behaviour of the mechanisms and demonstrate their effectiveness in the lunar environment. This research not only contributes to addressing the specific challenges of lunar dust but also advances the broader understanding of compliant mechanisms, their design methodologies, and their applicability in lunar exploration

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    The 31st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms

    Design and fabrication of a multipurpose compliant nanopositioning architecture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 227-241).This research focused on generating the knowledge required to design and fabricate a high-speed application flexible, low average cost multipurpose compliant nanopositioner architecture with high performance integrated sensing. Customized nanopositioner designs can be created in ~~1 week, for 30x increase in sensing dynamic range over comparable state-of-the-art compliant nanopositioners. These improvements will remove one of the main hurdles to practical non-IC nanomanufacturing, which could enable advances in a range of fields including personalized medication, computing and data storage, and energy generation/storage through the manufacture of metamaterials. Advances were made in two avenues: flexibility and affordability. The fundamental advance in flexibility is the use of a new approach to modeling the nanopositioner and sensors as combined mechanical/electronic systems. This enabled the discovery of the operational regimes and design rules needed to maximize performance, making it possible to rapidly redesign nanopositioner architecture for varying functional requirements such as range, resolution and force. The fundamental advance to increase affordability is the invention of Non-Lithographically-Based Microfabrication (NLBM), a hybrid macro-/micro-fabrication process chain that can produce MEMS with integrated sensing in a flexible manner, at small volumes and with low per-device costs. This will allow for low-cost customizable nanopositioning architectures with integrated position sensing to be created for a range of micro-/nano- manufacturing and metrology applications. A Hexflex 6DOF nanopositioner with titanium flexures and integrated siliconpiezoresistive sensing was fabricated using NLBM. This device was designed with a metal mechanical structure in order to improve its robustness for general handling and operation. Single crystalline silicon piezoresistors were patterned from bulk silicon wafers and transferred to the mechanical structure via thin-film patterning and transfer. This work demonstrates that it is now feasible to design and create a customized positioner for each nanomanufacturing/metrology application. The Hexflex architecture can be significantly varied to adjust range, resolution, force scale, stiffness, and DOF all as needed. The NLBM process was shown to enable alignment of device components on the scale of 10's of microns. 150μm piezoresistor arm widths were demonstrated, with suggestions made for how to reach the expected lower bound of 25[mu]m. Flexures of 150[mu]m and 600[mu]m were demonstrated on 4 the mechanical structure, with a lower bound of ~~50[mu]m expected for the process. Electrical traces of 800[mu]m width were used to ensure low resistance, with a lower bound of ~~100[mu]m expected for the process. The integrated piezoresistive sensing was designed to have a gage factor of about 125, but was reduced to about 70 due to lower substrate temperatures during soldering, as predicted by design theory. The sensors were measured to have a full noise dynamic range of about 59dB over a 10kHz sensor bandwidth, limited by the Schottky barrier noise. Several simple methods are suggested for boosting the performance to ~~135dB over a 10kHz sensor bandwidth, about a <1Å resolution over the 200[mu]m range of the case study device. This sensor performance is generally in excess of presently available kHz-bandwidth analog-to-digital converters.by Robert M. Panas.Ph.D
    corecore