72 research outputs found

    A New Approach for Mining Order-Preserving Submatrices Based on All Common Subsequences

    Get PDF
    Order-preserving submatrices (OPSMs) have been applied in many fields, such as DNA microarray data analysis, automatic recommendation systems, and target marketing systems, as an important unsupervised learning model. Unfortunately, most existing methods are heuristic algorithms which are unable to reveal OPSMs entirely in NP-complete problem. In particular, deep OPSMs, corresponding to long patterns with few supporting sequences, incur explosive computational costs and are completely pruned by most popular methods. In this paper, we propose an exact method to discover all OPSMs based on frequent sequential pattern mining. First, an existing algorithm was adjusted to disclose all common subsequence (ACS) between every two row sequences, and therefore all deep OPSMs will not be missed. Then, an improved data structure for prefix tree was used to store and traverse ACS, and Apriori principle was employed to efficiently mine the frequent sequential pattern. Finally, experiments were implemented on gene and synthetic datasets. Results demonstrated the effectiveness and efficiency of this method

    New approaches for clustering high dimensional data

    Get PDF
    Clustering is one of the most effective methods for analyzing datasets that contain a large number of objects with numerous attributes. Clustering seeks to identify groups, or clusters, of similar objects. In low dimensional space, the similarity between objects is often evaluated by summing the difference across all of their attributes. High dimensional data, however, may contain irrelevant attributes which mask the existence of clusters. The discovery of groups of objects that are highly similar within some subsets of relevant attributes becomes an important but challenging task. My thesis focuses on various models and algorithms for this task. We first present a flexible clustering model, namely OP-Cluster (Order Preserving Cluster). Under this model, two objects are similar on a subset of attributes if the values of these two objects induce the same relative ordering of these attributes. OPClustering algorithm has demonstrated to be useful to identify co-regulated genes in gene expression data. We also propose a semi-supervised approach to discover biologically meaningful OP-Clusters by incorporating existing gene function classifications into the clustering process. This semi-supervised algorithm yields only OP-clusters that are significantly enriched by genes from specific functional categories. Real datasets are often noisy. We propose a noise-tolerant clustering algorithm for mining frequently occuring itemsets. This algorithm is called approximate frequent itemsets (AFI). Both the theoretical and experimental results demonstrate that our AFI mining algorithm has higher recoverability of real clusters than any other existing itemset mining approaches. Pair-wise dissimilarities are often derived from original data to reduce the complexities of high dimensional data. Traditional clustering algorithms taking pair-wise dissimilarities as input often generate disjoint clusters from pair-wise dissimilarities. It is well known that the classification model represented by disjoint clusters is inconsistent with many real classifications, such gene function classifications. We develop a Poclustering algorithm, which generates overlapping clusters from pair-wise dissimilarities. We prove that by allowing overlapping clusters, Poclustering fully preserves the information of any dissimilarity matrices while traditional partitioning algorithms may cause significant information loss

    Mining subjectively interesting patterns in rich data

    Get PDF

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Broad Learning for Healthcare

    Full text link
    A broad spectrum of data from different modalities are generated in the healthcare domain every day, including scalar data (e.g., clinical measures collected at hospitals), tensor data (e.g., neuroimages analyzed by research institutes), graph data (e.g., brain connectivity networks), and sequence data (e.g., digital footprints recorded on smart sensors). Capability for modeling information from these heterogeneous data sources is potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Our works in this thesis attempt to facilitate healthcare applications in the setting of broad learning which focuses on fusing heterogeneous data sources for a variety of synergistic knowledge discovery and machine learning tasks. We are generally interested in computer-aided diagnosis, precision medicine, and mobile health by creating accurate user profiles which include important biomarkers, brain connectivity patterns, and latent representations. In particular, our works involve four different data mining problems with application to the healthcare domain: multi-view feature selection, subgraph pattern mining, brain network embedding, and multi-view sequence prediction.Comment: PhD Thesis, University of Illinois at Chicago, March 201

    Mining localized co-expressed gene patterns from microarray data

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Behavior-specific proprioception models for robotic force estimation: a machine learning approach

    Get PDF
    Robots that support humans in physically demanding tasks require accurate force sensing capabilities. A common way to achieve this is by monitoring the interaction with the environment directly with dedicated force sensors. Major drawbacks of such special purpose sensors are the increased costs and the reduced payload of the robot platform. Instead, this thesis investigates how the functionality of such sensors can be approximated by utilizing force estimation approaches. Most of today’s robots are equipped with rich proprioceptive sensing capabilities where even a robotic arm, e.g., the UR5, provides access to more than hundred sensor readings. Following this trend, it is getting feasible to utilize a wide variety of sensors for force estimation purposes. Human proprioception allows estimating forces such as the weight of an object by prior experience about sensory-motor patterns. Applying a similar approach to robots enables them to learn from previous demonstrations without the need of dedicated force sensors. This thesis introduces Behavior-Specific Proprioception Models (BSPMs), a novel concept for enhancing robotic behavior with estimates of the expected proprioceptive feedback. A main methodological contribution is the operationalization of the BSPM approach using data-driven machine learning techniques. During a training phase, the behavior is continuously executed while recording proprioceptive sensor readings. The training data acquired from these demonstrations represents ground truth about behavior-specific sensory-motor experiences, i.e., the influence of performed actions and environmental conditions on the proprioceptive feedback. This data acquisition procedure does not require expert knowledge about the particular robot platform, e.g., kinematic chains or mass distribution, which is a major advantage over analytical approaches. The training data is then used to learn BSPMs, e.g. using lazy learning techniques or artificial neural networks. At runtime, the BSPMs provide estimates of the proprioceptive feedback that can be compared to actual sensations. The BSPM approach thus extends classical programming by demonstrations methods where only movement data is learned and enables robots to accurately estimate forces during behavior execution

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p
    corecore