1,037 research outputs found

    Conformal invariants from nodal sets. I. Negative Eigenvalues and Curvature Prescription

    Full text link
    In this paper, we study conformal invariants that arise from nodal sets and negative eigenvalues of conformally covariant operators; more specifically, the GJMS operators, which include the Yamabe and Paneitz operators. We give several applications to curvature prescription problems. We establish a version in conformal geometry of Courant's Nodal Domain Theorem. We also show that on any manifold of dimension n≄3n\geq 3, there exist many metrics for which our invariants are nontrivial. We prove that the Yamabe operator can have an arbitrarily large number of negative eigenvalues on any manifold of dimension n≄3n\geq 3. We obtain similar results for some higher order GJMS operators on some Einstein and Heisenberg manifolds. We describe the invariants arising from the Yamabe and Paneitz operators associated to left-invariant metrics on Heisenberg manifolds. Finally, in the appendix, the 2nd named author and Andrea Malchiodi study the QQ-curvature prescription problems for non-critical QQ-curvatures.Comment: v3: final version. To appear in IMRN. 31 page

    WKB Approximation to the Power Wall

    Full text link
    We present a semiclassical analysis of the quantum propagator of a particle confined on one side by a steeply, monotonically rising potential. The models studied in detail have potentials proportional to xαx^{\alpha} for x>0x>0; the limit α→∞\alpha\to\infty would reproduce a perfectly reflecting boundary, but at present we concentrate on the cases α=1\alpha =1 and 2, for which exact solutions in terms of well known functions are available for comparison. We classify the classical paths in this system by their qualitative nature and calculate the contributions of the various classes to the leading-order semiclassical approximation: For each classical path we find the action SS, the amplitude function AA and the Laplacian of AA. (The Laplacian is of interest because it gives an estimate of the error in the approximation and is needed for computing higher-order approximations.) The resulting semiclassical propagator can be used to rewrite the exact problem as a Volterra integral equation, whose formal solution by iteration (Neumann series) is a semiclassical, not perturbative, expansion. We thereby test, in the context of a concrete problem, the validity of the two technical hypotheses in a previous proof of the convergence of such a Neumann series in the more abstract setting of an arbitrary smooth potential. Not surprisingly, we find that the hypotheses are violated when caustics develop in the classical dynamics; this opens up the interesting future project of extending the methods to momentum space.Comment: 30 pages, 8 figures. Minor corrections in v.

    A machine learning pipeline for discriminant pathways identification

    Full text link
    Motivation: Identifying the molecular pathways more prone to disruption during a pathological process is a key task in network medicine and, more in general, in systems biology. Results: In this work we propose a pipeline that couples a machine learning solution for molecular profiling with a recent network comparison method. The pipeline can identify changes occurring between specific sub-modules of networks built in a case-control biomarker study, discriminating key groups of genes whose interactions are modified by an underlying condition. The proposal is independent from the classification algorithm used. Three applications on genomewide data are presented regarding children susceptibility to air pollution and two neurodegenerative diseases: Parkinson's and Alzheimer's. Availability: Details about the software used for the experiments discussed in this paper are provided in the Appendix

    A study of the classification of low-dimensional data with supervised manifold learning

    Full text link
    Supervised manifold learning methods learn data representations by preserving the geometric structure of data while enhancing the separation between data samples from different classes. In this work, we propose a theoretical study of supervised manifold learning for classification. We consider nonlinear dimensionality reduction algorithms that yield linearly separable embeddings of training data and present generalization bounds for this type of algorithms. A necessary condition for satisfactory generalization performance is that the embedding allow the construction of a sufficiently regular interpolation function in relation with the separation margin of the embedding. We show that for supervised embeddings satisfying this condition, the classification error decays at an exponential rate with the number of training samples. Finally, we examine the separability of supervised nonlinear embeddings that aim to preserve the low-dimensional geometric structure of data based on graph representations. The proposed analysis is supported by experiments on several real data sets

    Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Full text link
    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \emph{flow} among sensors (the \emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \emph{gathering} measured by the sensors (the \emph{sensing} or \emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page
    • 

    corecore