20,015 research outputs found

    Kinematic analysis of quick-return mechanism in three various approaches

    Get PDF
    Članak se bavi kinematičkom analizom Whitwordovog mehanizma koja je izvedena u tri različite metode. Suvremene metode su računalno potpomognute s posebnim softverom za analizu obrade, koji može simulirati ne samo gibanje mehanizma, već može odrediti i položaj, brzinu, ubrzanje, sile, momente te druge parametre u svakom trenutku vremena, ali je potrebna provjera i razumijevanje zakona mehanike. Cilj je kinematičke analize istražiti gibanje pojedinih komponenti mehanizma (ili njegovih važnih točaka) u ovisnosti o gibanju pobuđivača. Ovdje su opisani osnovni principi triju pristupa te prednosti i nedostaci prezentiranih rješenja. Dobiveni se rezultati mogu usporediti, ako su rabljeni isti ulazni parametri.The article deals with kinematic analysis of quick-return mechanism that is executed by three various methods. The modern methods are computer aided with the special software for analysis processing, which can simulate not only the motion of the mechanism, but can define the position, velocity, acceleration, forces, moments and other parameters at every moment of time, but verification and mechanics laws understanding are necessary. The goal of the kinematic analysis is to investigate the motion of individual components of mechanism (or its important points) in dependence on the motion of drivers. The article describes the basic principles of three approaches, as well as the advantages and disadvantages of presented solutions. The obtained results can be compared, if the same input parameters are used

    EyeRIS: A General-Purpose System for Eye Movement Contingent Display Control

    Full text link
    In experimental studies of visual performance, the need often emerges to modify the stimulus according to the eye movements perfonncd by the subject. The methodology of Eye Movement-Contingent Display (EMCD) enables accurate control of the position and motion of the stimulus on the retina. EMCD procedures have been used successfully in many areas of vision science, including studies of visual attention, eye movements, and physiological characterization of neuronal response properties. Unfortunately, the difficulty of real-time programming and the unavailability of flexible and economical systems that can be easily adapted to the diversity of experimental needs and laboratory setups have prevented the widespread use of EMCD control. This paper describes EyeRIS, a general-purpose system for performing EMCD experiments on a Windows computer. Based on a digital signal processor with analog and digital interfaces, this integrated hardware and software system is responsible for sampling and processing oculomotor signals and subject responses and modifying the stimulus displayed on a CRT according to the gaze-contingent procedure specified by the experimenter. EyeRIS is designed to update the stimulus within a delay of 10 ms. To thoroughly evaluate EyeRIS' perforltlancc, this study (a) examines the response of the system in a number of EMCD procedures and computational benchmarking tests, (b) compares the accuracy of implementation of one particular EMCD procedure, retinal stabilization, to that produced by a standard tool used for this task, and (c) examines EyeRIS' performance in one of the many EMCD procedures that cannot be executed by means of any other currently available device.National Institute of Health (EY15732-01

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight
    corecore