892 research outputs found

    An approach to safety analysis of clinical workflows

    Get PDF
    A clinical workflow considers the information and processes that are involved in providing a clinical service. They are safety critical since even minor faults have the potential to propagate and consequently cause harm to a patient, or even for a patient's life to be lost. Experiencing these kinds of failures has a destructive impact on all the involved parties. Due to the large number of processes and tasks included in the delivery of a clinical service, it can be difficult to determine the individuals or the processes that are responsible for adverse events, since such an analysis is typically complex and slow to do manually. Using automated tools to carry out an analysis can help in determining the root causes of potential adverse events and consequently help in avoiding preventable errors through either the alteration of existing workflows, or the design of a new workflow. This paper describes a technical approach to safety analysis of clinical workflows, utilising a safety analysis tool (Hierarchically-Performed Hazard Origin and Propagation Studies (HiP-HOPS)) that is already in use in the field of mechanical systems. The paper then demonstrates the applicability of the approach to clinical workflows by applying it to analyse the workflow in a radiology department. We conclude that the approach is applicable to this area of healthcare and provides a mechanism both for the systematic identification of adverse events and for the introduction of possible safeguards in clinical workflows

    A safety analysis approach to clinical workflows : application and evaluation

    Get PDF
    Clinical workflows are safety critical workflows as they have the potential to cause harm or death to patients. Their safety needs to be considered as early as possible in the development process. Effective safety analysis methods are required to ensure the safety of these high-risk workflows, because errors that may happen through routine workflow could propagate within the workflow to result in harmful failures of the system’s output. This paper shows how to apply an approach for safety analysis of clinic al workflows to analyse the safety of the workflow within a radiology department and evaluates the approach in terms of usability and benefits. The outcomes of using this approach include identification of the root causes of hazardous workflow failures that may put patients’ lives at risk. We show that the approach is applicable to this area of healthcare and is able to present added value through the detailed information on possible failures, of both their causes and effects; therefore, it has the potential to improve the safety of radiology and other clinical workflows

    Integrating model checking with HiP-HOPS in model-based safety analysis

    Get PDF
    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system

    SAFE-FLOW : a systematic approach for safety analysis of clinical workflows

    Get PDF
    The increasing use of technology in delivering clinical services brings substantial benefits to the healthcare industry. At the same time, it introduces potential new complications to clinical workflows that generate new risks and hazards with the potential to affect patients’ safety. These workflows are safety critical and can have a damaging impact on all the involved parties if they fail.Due to the large number of processes included in the delivery of a clinical service, it can be difficult to determine the individuals or the processes that are responsible for adverse events. Using methodological approaches and automated tools to carry out an analysis of the workflow can help in determining the origins of potential adverse events and consequently help in avoiding preventable errors. There is a scarcity of studies addressing this problem; this was a partial motivation for this thesis.The main aim of the research is to demonstrate the potential value of computer science based dependability approaches to healthcare and in particular, the appropriateness and benefits of these dependability approaches to overall clinical workflows. A particular focus is to show that model-based safety analysis techniques can be usefully applied to such areas and then to evaluate this application.This thesis develops the SAFE-FLOW approach for safety analysis of clinical workflows in order to establish the relevance of such application. SAFE-FLOW detailed steps and guidelines for its application are explained. Then, SAFE-FLOW is applied to a case study and is systematically evaluated. The proposed evaluation design provides a generic evaluation strategy that can be used to evaluate the adoption of safety analysis methods in healthcare.It is concluded that safety of clinical workflows can be significantly improved by performing safety analysis on workflow models. The evaluation results show that SAFE-FLOW is feasible and it has the potential to provide various benefits; it provides a mechanism for a systematic identification of both adverse events and safeguards, which is helpful in terms of identifying the causes of possible adverse events before they happen and can assist in the design of workflows to avoid such occurrences. The clear definition of the workflow including its processes and tasks provides a valuable opportunity for formulation of safety improvement strategies

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    An Integrated FTA-FMEA Model for Risk Analysis of Engineering Systems: A Case Study of Subsea Blowout Preventers

    Get PDF
    Engineering systems such as energy production facilities, aviation systems, maritime vessels, etc. continue to grow in size and complexity. This growth has made the identification, quantification and mitigation of risks associated with the failure of such systems so complicated. To solve this problem, several advanced techniques such as Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), Reliability-Block Diagram (RBD), Reliability-Centered Maintenance (RCM), Monte-Carlo Simulation (MCS), Markov Analysis (MA) and Bayesian Networks (BN) have been developed in the literature. In order to improve the strengths and eliminate the drawbacks of classical techniques, some hybrid models have been recently developed. In this paper, an integrated FTA and FMEA model is proposed for risk analysis of safety-critical systems. Minimal cut sets derived from the fault trees are weighted based on Birnbaum’s measure of importance and then the weights are used to revise Risk Priority Numbers (RPNs) obtained from the use of traditional FMEA techniques. The proposed model is applied to a Blowout Preventer (BOP) system operating under erratic and extreme conditions in a subsea oil and gas field. Though those failures caused by kill valves and hydraulic lines remain among the top risks in the BOP system, significant differences are revealed in risk rankings when the results from the hybrid approach are compared with those obtained from the classical risk analysis methods

    A hybrid Bayesian network for medical device risk assessment and management

    Full text link
    ISO 14971 is the primary standard used for medical device risk management. While it specifies the requirements for medical device risk management, it does not specify a particular method for performing risk management. Hence, medical device manufacturers are free to develop or use any appropriate methods for managing the risk of medical devices. The most commonly used methods, such as Fault Tree Analysis (FTA), are unable to provide a reasonable basis for computing risk estimates when there are limited or no historical data available or where there is second-order uncertainty about the data. In this paper, we present a novel method for medical device risk management using hybrid Bayesian networks (BNs) that resolves the limitations of classical methods such as FTA and incorporates relevant factors affecting the risk of medical devices. The proposed BN method is generic but can be instantiated on a system-by-system basis, and we apply it to a Defibrillator device to demonstrate the process involved for medical device risk management during production and post-production. The example is validated against real-world data

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore