707 research outputs found

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Correlation Decay in Random Decision Networks

    Full text link
    We consider a decision network on an undirected graph in which each node corresponds to a decision variable, and each node and edge of the graph is associated with a reward function whose value depends only on the variables of the corresponding nodes. The goal is to construct a decision vector which maximizes the total reward. This decision problem encompasses a variety of models, including maximum-likelihood inference in graphical models (Markov Random Fields), combinatorial optimization on graphs, economic team theory and statistical physics. The network is endowed with a probabilistic structure in which costs are sampled from a distribution. Our aim is to identify sufficient conditions to guarantee average-case polynomiality of the underlying optimization problem. We construct a new decentralized algorithm called Cavity Expansion and establish its theoretical performance for a variety of models. Specifically, for certain classes of models we prove that our algorithm is able to find near optimal solutions with high probability in a decentralized way. The success of the algorithm is based on the network exhibiting a correlation decay (long-range independence) property. Our results have the following surprising implications in the area of average case complexity of algorithms. Finding the largest independent (stable) set of a graph is a well known NP-hard optimization problem for which no polynomial time approximation scheme is possible even for graphs with largest connectivity equal to three, unless P=NP. We show that the closely related maximum weighted independent set problem for the same class of graphs admits a PTAS when the weights are i.i.d. with the exponential distribution. Namely, randomization of the reward function turns an NP-hard problem into a tractable one

    Structural sparsity of complex networks: bounded expansion in random models and real-world graphs

    Get PDF
    This research establishes that many real-world networks exhibit bounded expansion, a strong notion of structural sparsity, and demonstrates that it can be leveraged to design efficient algorithms for network analysis. Specifically, we give a new linear-time fpt algorithm for motif counting and linear time algorithms to compute localized variants of several centrality measures. To establish structural sparsity in real-world networks, we analyze several common network models regarding their structural sparsity. We show that, with high probability, (1) graphs sampled with a prescribed sparse degree sequence; (2) perturbed bounded-degree graphs; (3) stochastic block models with small probabilities; result in graphs of bounded expansion. In contrast, we show that the Kleinberg and the Barabási–Albert model have unbounded expansion. We support our findings with empirical measurements on a corpus of real-world networks

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes
    corecore