548,217 research outputs found

    The integration of grid and peer-to-peer to support scientific collaboration

    Get PDF
    There have been a number of e-Science projects which address the issues of collaboration within and between scientific communities. Most effort to date focussed on the building of the Grid infrastructure to enable the sharing of huge volume of computational and data resources. The ‘portal’ approach has been used by some to bring the power of grid computing to the desk top of individual researchers. However, collaborative activities within a scientific community are not only confined to the sharing of data or computational intensive resources. There are other forms of sharing which can be better supported by other forms of architecture. In order to provide a more holistic support to a scientific community, this paper proposes a hybrid architecture, which integrates Grid and peer-to-peer technologies using Service Oriented Architecture. This platform will then be used for a semantic architecture which captures characteristics of the data, functional and process requirements for a range of collaborative activities. A combustion chemistry research community is being used as a case study

    Supporting the development of mobile adaptive learning environments: A case study

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. E. Martín and R. M. Carro, "Supporting the development of mobile adaptive learning environments: A case study" IEEE Transactions on learning technologies, vol. 2, no. 1, pp. 23-36, january-march 2009In this paper, we describe a system to support the generation of adaptive mobile learning environments. In these environments, students and teachers can accomplish different types of individual and collaborative activities in different contexts. Activities are dynamically recommended to users depending on different criteria (user features, context, etc.), and workspaces to support the corresponding activity accomplishment are dynamically generated. In this paper, we present the main characteristics of the mechanism that suggests the most suitable activities at each situation, the system in which this mechanism has been implemented, the authoring tool to facilitate the specification of context-based adaptive m-learning environments, and two environments generated following this approach will be presented. The outcomes of two case studies carried out with students of the first and second courses of “Computer Engineering” at the “Universidad Auto´noma de Madrid” are also presented.This work has been supported by the Spanish Ministry of Science and Education, project number TIN2007-64718

    Characterization and Classification of Collaborative Tools

    Get PDF
    Traditionally, collaboration has been a means for organizations to do their work. However, the context in which they do this work is changing, especially in regards to where the work is done, how the work is organized, who does the work, and with this the characteristics of collaboration. Software development is no exception; it is itself a collaborative effort that is likewise affected by these changes. In the context of both open source software development projects and communities and organizations that develop corporate products, more and more developers need to communicate and liaise with colleagues in geographically distant places about the software product they are conceiving, designing, building, testing, debugging, deploying and maintaining. Thus, work teams face sizeable collaborative challenges, for which they have need of tools that they can use to communicate and coordinate their Work efficiently

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    Improving the effectiveness of collaborative group work in primary schools: effect on Science attainment

    Get PDF
    This longitudinal research tests the effectiveness of the SPRinG programme which was developed through a collaboration between researchers and teachers and designed to provide teachers with strategies for enhancing pupil group work in ‘authentic’ classroom settings. An evaluation study involved comparing pupils in SPRinG classrooms and trained in group work skills with those who were not in terms of science attainment. There were 560 and 1027 pupils (8-10 years) in the experimental and control groups respectively. ‘Macro’ attainment data were collected at the start of the year. ‘Micro’ attainment data were collected in the spring and summer before and after science lessons involving either group work (intervention) or the control teachers’ usual approach. SPRinG pupils made greater academic progress than control pupils. Findings are discussed relative to enhancing the quantity and quality of group work in schools and a social pedagogic approach to classroom learning

    Collaboration scripts - a conceptual analysis

    Get PDF
    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learners’ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts

    S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts

    Get PDF
    Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning
    corecore