14,824 research outputs found

    On Solving Solved Problems

    Get PDF
    Some problems are considered solved by the research community. But are they really and does that mean we should stop investigating them? In this essay, I argue that "solved" problems often only appear solved on the surface, while fundamental open research problems lurk below the surface. It requires dedicated researchers to discover those open problems by applying the existing solutions and putting them to the test

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Featured Anomaly Detection Methods and Applications

    Get PDF
    Anomaly detection is a fundamental research topic that has been widely investigated. From critical industrial systems, e.g., network intrusion detection systems, to people’s daily activities, e.g., mobile fraud detection, anomaly detection has become the very first vital resort to protect and secure public and personal properties. Although anomaly detection methods have been under consistent development over the years, the explosive growth of data volume and the continued dramatic variation of data patterns pose great challenges on the anomaly detection systems and are fuelling the great demand of introducing more intelligent anomaly detection methods with distinct characteristics to cope with various needs. To this end, this thesis starts with presenting a thorough review of existing anomaly detection strategies and methods. The advantageous and disadvantageous of the strategies and methods are elaborated. Afterward, four distinctive anomaly detection methods, especially for time series, are proposed in this work aiming at resolving specific needs of anomaly detection under different scenarios, e.g., enhanced accuracy, interpretable results, and self-evolving models. Experiments are presented and analysed to offer a better understanding of the performance of the methods and their distinct features. To be more specific, the abstracts of the key contents in this thesis are listed as follows: 1) Support Vector Data Description (SVDD) is investigated as a primary method to fulfill accurate anomaly detection. The applicability of SVDD over noisy time series datasets is carefully examined and it is demonstrated that relaxing the decision boundary of SVDD always results in better accuracy in network time series anomaly detection. Theoretical analysis of the parameter utilised in the model is also presented to ensure the validity of the relaxation of the decision boundary. 2) To support a clear explanation of the detected time series anomalies, i.e., anomaly interpretation, the periodic pattern of time series data is considered as the contextual information to be integrated into SVDD for anomaly detection. The formulation of SVDD with contextual information maintains multiple discriminants which help in distinguishing the root causes of the anomalies. 3) In an attempt to further analyse a dataset for anomaly detection and interpretation, Convex Hull Data Description (CHDD) is developed for realising one-class classification together with data clustering. CHDD approximates the convex hull of a given dataset with the extreme points which constitute a dictionary of data representatives. According to the dictionary, CHDD is capable of representing and clustering all the normal data instances so that anomaly detection is realised with certain interpretation. 4) Besides better anomaly detection accuracy and interpretability, better solutions for anomaly detection over streaming data with evolving patterns are also researched. Under the framework of Reinforcement Learning (RL), a time series anomaly detector that is consistently trained to cope with the evolving patterns is designed. Due to the fact that the anomaly detector is trained with labeled time series, it avoids the cumbersome work of threshold setting and the uncertain definitions of anomalies in time series anomaly detection tasks

    Distilling Privacy Requirements for Mobile Applications

    Get PDF
    As mobile computing applications have become commonplace, it is increasingly important for them to address end-users’ privacy requirements. Privacy requirements depend on a number of contextual socio-cultural factors to which mobility adds another level of contextual variation. However, traditional requirements elicitation methods do not sufficiently account for contextual factors and therefore cannot be used effectively to represent and analyse the privacy requirements of mobile end users. On the other hand, methods that do investigate contextual factors tend to produce data that does not lend itself to the process of requirements extraction. To address this problem we have developed a Privacy Requirements Distillation approach that employs a problem analysis framework to extract and refine privacy requirements for mobile applications from raw data gathered through empirical studies involving end users. Our approach introduces privacy facets that capture patterns of privacy concerns which are matched against the raw data. We demonstrate and evaluate our approach using qualitative data from an empirical study of a mobile social networking application

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Special Delivery: Programming with Mailbox Types (Extended Version)

    Full text link
    The asynchronous and unidirectional communication model supported by mailboxes is a key reason for the success of actor languages like Erlang and Elixir for implementing reliable and scalable distributed systems. While many actors may send messages to some actor, only the actor may (selectively) receive from its mailbox. Although actors eliminate many of the issues stemming from shared memory concurrency, they remain vulnerable to communication errors such as protocol violations and deadlocks. Mailbox types are a novel behavioural type system for mailboxes first introduced for a process calculus by de'Liguoro and Padovani in 2018, which capture the contents of a mailbox as a commutative regular expression. Due to aliasing and nested evaluation contexts, moving from a process calculus to a programming language is challenging. This paper presents Pat, the first programming language design incorporating mailbox types, and describes an algorithmic type system. We make essential use of quasi-linear typing to tame some of the complexity introduced by aliasing. Our algorithmic type system is necessarily co-contextual, achieved through a novel use of backwards bidirectional typing, and we prove it sound and complete with respect to our declarative type system. We implement a prototype type checker, and use it to demonstrate the expressiveness of Pat on a factory automation case study and a series of examples from the Savina actor benchmark suite.Comment: Extended version of paper accepted to ICFP'2

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip
    • …
    corecore