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Abstract

Anomaly detection is a fundamental research topic that has been widely investigated. From
critical industrial systems, e.g., network intrusion detection systems, to people’s daily activi-
ties, e.g., mobile fraud detection, anomaly detection has become the very first vital resort
to protect and secure public and personal properties. Although anomaly detection methods
have been under consistent development over the years, the explosive growth of data volume
and the continued dramatic variation of data patterns pose great challenges on the anomaly
detection systems and are fuelling the great demand of introducing more intelligent anomaly
detection methods with distinct characteristics to cope with various needs. To this end,
this thesis starts with presenting a thorough review of existing anomaly detection strategies
and methods. The advantageous and disadvantageous of the strategies and methods are
elaborated. Afterward, four distinctive anomaly detection methods, especially for time series,
are proposed in this work aiming at resolving specific needs of anomaly detection under
different scenarios, e.g., enhanced accuracy, interpretable results and self-evolving models.
Experiments are presented and analysed to offer a better understanding of the performance of
the methods and their distinct features. To be more specific, the abstracts of the key contents
in this thesis are listed as follows:

• Support Vector Data Description (SVDD) is investigated as a primary method to fulfill
accurate anomaly detection. The applicability of SVDD over noisy time series datasets
is carefully examined and it is demonstrated that relaxing the decision boundary of
SVDD always results in better accuracy in network time series anomaly detection.
Theoretical analysis of the parameter utilised in the model is also presented to ensure
the validity of the relaxation of the decision boundary.

• To support a clear explanation of the detected time series anomalies, i.e., anomaly
interpretation, the periodic pattern of time series data is considered as the contextual
information to be integrated into SVDD for anomaly detection. The formulation of
SVDD with contextual information maintains multiple discriminants which help in
distinguishing the root causes of the anomalies.



x

• In an attempt to further analyse a dataset for anomaly detection and interpretation,
Convex Hull Data Description (CHDD) is developed for realising one-class classifi-
cation together with data clustering. CHDD approximates the convex hull of a given
dataset with the extreme points which constitute a dictionary of data representatives.
According to the dictionary, CHDD is capable of representing and clustering all the
normal data instances so that anomaly detection is realised with certain interpretation.

• Besides better anomaly detection accuracy and interpretability, better solutions for
anomaly detection over streaming data with evolving patterns are also researched.
Under the framework of Reinforcement Learning (RL), a time series anomaly detector
that is consistently trained to cope with the evolving patterns is designed. Due to
the fact that the anomaly detector is trained with labeled time series, it avoids the
cumbersome work of threshold setting and the uncertain definitions of anomalies in
time series anomaly detection tasks.
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Chapter 1

Introduction

Anomaly detection is a fundamental research topic that has gained much research attention
in various application domains. From critical industrial systems, e.g., network intrusion
detection systems, to people’s daily activities, e.g., mobile fraud detection, anomaly detec-
tion has become the most critical and very first resort to protect and secure the public and
personal properties. With the consistent development over the years, the gradual perfection
of data collecting, cleaning and integrating have backed anomaly detection in diverse areas.
Nevertheless, the explosive growth of data volume and the continued dramatic variation in
data patterns pose great challenges on the anomaly detection systems and are fuelling the
great demand of introducing more intelligent anomaly detection methods with distinct charac-
teristics to cope with various needs of anomaly detection. Therefore, this thesis is dedicated
to offering innovative anomaly detection methods with distinct features so as to suffice the
specific requirements under varying anomaly detection scenarios. Before introducing the
methods, this chapter firstly clarifies the related concepts of anomaly detection, e.g., outlier
detection and novelty detection. Then, diverse aspects of anomaly detection, for example,
the types of anomalies and the general taxonomy of methods, are further discussed. With the
related concepts and taxonomy being addressed, the research problems, challenges and aims
of this thesis are delivered. Finally, the outline of this thesis is presented.

1.1 What is an Anomaly? Outlier or Novelty?

Anomaly detection is a concept encompassing a broad spectrum of techniques concerning the
detection of abnormality. In related literature, anomaly detection has different names, such
as outlier detection, novelty detection, noise detection and deviation detection. These names
are often used interchangeably. In this thesis, “anomaly detection” is utilised as a general
term for all related names, while “outlier detection” and “novelty detection” are emphasised
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as two primary distinct concepts in anomaly detection. To put it formally, assume a general
dataset X = {x1,x2, · · · ,xn} with xi ∈ Rd , i ∈ {1,2, · · · ,n}, where the notations n and d are
the number and dimension of the data instances in the dataset, respectively. The following
definitions are summarised to differentiate outlier detection from novelty detection.

Outlier Detection is the process of the identification of an observation x ∈ X (or
a subset of the observations Xsub ⊂ X) which appears to be inconsistent with the
remainder of the given observations X .

Novelty Detection is the process of the determination of the novelty of a new
observation y (or observations) according to the known observations X , where
y ∈ Rd and y /∈ X .

It is now clear that the concept of anomaly detection involves 1) the identification of
the abnormal data, e.g., noise or outlier, from the original dataset and 2) the discovery of
novel data instances based on the knowledge learned according to the original dataset. From
the perspective of machine learning, in outlier detection, the training dataset contains the
anomalies that should be pinpointed, while, in novelty detection, the training dataset has no
anomaly. In the latter scenario, it is the testing dataset that should be examined for anomalies.
Therefore, outlier detection and novelty detection share prominent distinction. Nevertheless,
due to the reasons that the term “anomaly detection” is generally used synonymously with
“outlier detection” and “novelty detection”, and the solutions for anomaly detection, novelty
detection and outlier detection often share similar principles, the related work of this thesis
aims to consider all such detection schemes and variants.

1.1.1 Types of Anomalies

To the end of better understanding anomaly detection, the taxonomy of the types of anomalies
is of fundamental importance. In [29] and [101], anomalies have been categorised into
point anomaly, collective anomaly and contextual anomaly. A detailed analysis of this
taxonomy reveals intense overlapping between the contextual anomaly and the collective
anomaly, while point anomaly may also stem from its anomalous context. Hence, this thesis
categorises anomalies into four detailed classes: 1) point anomaly, i.e., a data instance that
is much different from others; and 2) group anomaly, i.e., a group of data whose patterns
or properties deviate significantly from similar groups of other data. When the contextual
information is considered as the source data for anomaly detection, a detected point anomaly
is called a 3) contextual point anomaly and a group anomaly is a 4) contextual group
anomaly. A more formal explanation of the concepts are given as follows:
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Fig. 1.1 The taxonomy of anomalies

• Point anomaly is an observation x or y that deviates remarkably from X according
to some predefined criteria, where x ∈ X and y /∈ X . For instance, the absence of a
student in the Math lesson on Monday morning during the term time is a point anomaly,
because, different from other students, the student is absent.

• Group anomaly is a set of observations Xo or Yn, which is grouped based on a prede-
fined criterion, that does not follow the regular patterns of other sets of observations
according to certain definitions of the regular patterns, where Xo ⊂ X and Yn ⊈ X . For
example, the absences of the students who sat in the first row of the classroom in the
Math lesson on Monday morning during the term time is a group anomaly. This is due
to the reason that other groups, e.g., the students sat in the second row, are present.

• Contextual point anomaly is an observation x or y that deviates remarkably from X
according to some predefined criteria under certain context, where x ∈ X and y /∈ X .
An example of this is the presence of a student in the classroom during the summer
vacation. This is because although the presence of the student is usual, the time
(context) when the student appears is unexpected.

• Contextual group anomaly is a set of observations Xo or Yn, which is grouped based
on a predefined criterion, that does not follow the regular patterns of other sets of
observations according to certain definitions of the regular patterns under certain
context, where Xo⊂X and Yn ⊈X . Similarly, the presence of a student in the classroom
during a period of the summer vacation (a group of contexts) is unanticipated and
regarded as a contextual group anomaly.

Note that the utilisations of x, Xo and y, Yn in the explanations are to differentiate the
outlier detection and novelty detection. In reality, the types of anomalies, as well as other
factors discussed later, are shared between outlier detection and novelty detection. Therefore,
the uses of y and Yn are omitted later for brevity.
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As shown in Fig.1.1, this categorisation emphasises the way in which anomalies are
detected, i.e., from individual observations or groups of observations, and particularly stresses
contextual information as a critical factor for the classification. It maintains point anomaly,
collective anomaly (as a type of group anomaly) and contextual anomaly, but details the
contextual anomaly according to data grouping. As a result, specific contexts can be examined
for contextual anomaly detection upon diverse types of datasets, e.g., time series, graphs,
videos and profiles. In the next part, the properties of various datasets are elaborated with the
focus on the different contexts in anomaly detection.

1.1.2 Types of Datasets and Contexts

A key and fundamental aspect of any anomaly detection technique is the nature of the target
dataset. Essentially, a dataset is a collection of data instances or observations. According to
specific application scenarios, a data instance can be a number, record, video, song, graph,
image, event, profile, etc. All these disparate forms of data should be transformed into general
data types for the purpose of anomaly detection. Temporally, general data types comprise
1) scalar, 2) vector, 3) matrix as well as 4) tensor, and their elements are known as data
attributes, features, or fields, which can be 1) numerical or 2) categorical. In literature, the
scalar is called univariate, while the vector, matrix and tensor are all multivariate data types.
To sum up, the taxonomy of datasets from the two perspectives is shown in Fig.1.2.

Besides the original dataset, the contexts under which the data instances are observed are
another crucial source of information that is helpful in detecting abnormal events/behaviors/etc.
of a target system/object/etc. Usually, the contextual information is distinctive and not
measured or recorded explicitly in different applications. The context that is helpful for
anomaly detection is always obscure. Therefore, in this section, only ubiquitous contexts
are considered, i.e., 1) spatial context; 2) temporal context; 3) spatial-temporal context.
Specifically, spatial context concentrates on the location where a data instance is observed,
while temporal context reveals the sequential information among observations. The integra-
tion of the two contexts motivates the spatial-temporal context which has attracted much
attention in recent years. To analyse contextual information in anomaly detection, two basic
strategies exist. On one hand, feature engineering is adopted to consolidate the contextual
information and the original information. A well-developed example is the time embedding
technique for time series analysis in which temporal information is critical. On the other
hand, contexts are analysed separately for contextual anomalies. For instance, the year-on-
year growth of the financial income in a company instantiates the contextual information of
previous incomes and can be investigated for contextual anomalies.
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Fig. 1.2 The taxonomy of datasets

1.1.3 Types of Solutions

To provide a valid solution for anomaly detection, the concept of normality is strictly required.
Only with a clear concept or definition of normality, the quantified measurement is achievable.
In general, depending on the availability of manual definition of normality, i.e., data labels,
the solutions for anomaly detection cover three fundamental categories: supervised, semi-
supervised and unsupervised methods:

• Supervised anomaly detection models both normality and abnormality. It requires
the availability of labels for the definitions of normality and abnormality. Consequently,
supervised anomaly detection is essentially a classification problem that differentiates
normal data from the abnormal ones. Theoretically, supervised anomaly detection
is superior in its overall accuracy due to the clear understanding of normality and
abnormality. Nevertheless, some practical problems immensely hinder its utilisation.
Firstly, the data labels are usually not available or extremely costly to obtain under
many scenarios, e.g., the label of a configuration of a network is not entirely clear
unless the network is practically run and examined. Secondly, the data labels may
not be balanced. Typically, in practical anomaly detection problems, the normal
samples greatly outnumber the abnormal ones, which results in a prominent bias in the
classification model that may degrade the performance of anomaly detection. Lastly,
the involvement of both normal and abnormal data may introduce more noise into the
model, hence the disgraced performance.
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Fig. 1.3 The taxonomy of solutions

• Semi-supervised anomaly detection has only normal data samples or only abnormal
ones as the inputs. It endeavors to model a single concept and achieves anomaly
detection according to the fitness of the data in the concept. Therefore, semi-supervised
anomaly detection constitutes a one-class classification problem. In comparison to
the classification problem, one-class classification requires only normal or abnormal
samples, which is more feasible in reality. In addition, due to the sole type of samples,
one-class classification negates the problem of imbalance dataset. The very problem
concerning the dataset is the inaccurate or noisy data instances that ask for high
robustness of the one-class classification methods.

• Unsupervised anomaly detection is typically employed in the situation where no
prior knowledge of the dataset is known. In other words, no label information is
presented. An anomaly detection method has to analyse the dataset to infer the real
concept of abnormality or make an assumption of the concept. A concrete example
of this type is the set of clustering-based anomaly detection methods which presume
the data that rest inside small clusters are prone to be anomalous. Unsupervised
anomaly detection enjoys similar merits of semi-supervised anomaly detection, while
it is always criticised because of the validity of the assumptions made in related tasks.

Distinct scenarios have shown different preferences of the solutions. The three general
types of anomaly detection solutions are offered according to the viability of the data labels,
i.e., the input of an anomaly detection method. From another perspective, i.e., the output,
current anomaly detection supports two typical types of solutions: methods that output
1) continuous scores and 2) discrete labels. The continuous score would be preferred by
systems that demand detailed analysis of the data instances or favor the adaptive concept of
abnormality, while the discrete label is more convenient for users and it greatly simplifies the
anomaly detection system design in term of threshold setting for anomalies.
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Here, categorisations of the anomaly detection solutions according to their input and
output characteristics are presented (Fig.1.3). In chapter 2, a more detailed taxonomy of
anomaly detection methods will be given according to the underlying techniques.

1.1.4 Types of Applications

Anomaly detection is a pivotal data analysis tool that finds extensive use in a wide variety
of applications. From people’s daily life, e.g., health monitoring, to the normal operations
of the government, i.e., intrusion detection, anomaly detection plays critical roles. A rough
categorisation of the applications is presented in the following list which sorts the applications
according to the number of required data sources and detection targets:

• Single data source, single detection target: Applications with a single data source
for anomaly detection is comparatively easy to deal with. Such applications demand
the preprocessing of a sole data type and have a clear idea of the target anomalies.
Fraud detection, image novelty detection, meter monitoring and etc. are all instances of
this type. Supplied with useful information, such as transaction records, normal images,
meter readings and etc., an anomaly detection method should pinpoint anomalous
transactions, novel images, erroneous meter readings and etc.

• Multiple data sources, single detection target: Anomaly detection applications with
multiple data sources, e.g., health monitoring, behavior detection and city traffic
monitoring, are relatively hard to analyse. They accept information from a number of
data sources. For example, to support health monitoring, the electrocardiogram (ECG),
electroencephalograms (EEG), blood pressure and etc. are acquired. The anomaly
detection over all the information is to conclude with a single result of whether the
monitored patient is healthy. Therefore, while the data sources are somewhat redundant,
the detection target is clear.

• Multiple data sources, multiple detection targets: Applications, such as network
intrusion detection or network fault diagnosis, require anomaly detection as the very
fundamental tool to process data from diverse sources. The detections of anomalies
in distinct data sources typically reflect different intrusions or faults within the target
system. As a result, in systems where detailed analysis of anomalies are mandatory, the
task of general anomaly detection covers multiple facets and is much more complex.
An anomaly detection system or an anomaly diagnosis engine is demanded for higher
level analysis, e.g., anomaly correlation analysis, in order to generate valuable guidance
in network intrusion prevention or fault prevention.
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Generally, the taxonomy above reflects the complexity of different applications. For
simpler applications, the difficulties lie in the data preprocessing process and the anomaly
detection process. While in more complex applications, the anomaly detection provides the
basic information for further analysis. In both cases, the anomaly detection method plays
the core role in the applications. This thesis will, therefore, investigate the most up-to-date
anomaly detection methods/systems and existing research problems. Endeavors will be made
to achieve practical anomaly detection in some applications.

1.2 Research Problems, Challenges and Objectives

1.2.1 Problems and Challenges

While many anomaly detection methods/systems are attractive and solid theoretically, a
host of technological problems need to be overcome before they are practically adopted
in various areas. These problems generally concern the accuracy, efficiency, and other
capabilities, e.g., interpretability, scalability, etc. Despite the fact that many research efforts
have been conducted in dealing with miscellaneous cases, this thesis particularly targets at
three critical problems witnessed in time series anomaly detection applications and addressing
corresponding difficulties:

• The high false alarm rate: In systems where time series analysis is required, the
false alarm rate of an anomaly detection method is a vital criterion for deciding its
applicability. In critical systems, such as the automatic driving system in an airplane,
false alarms are strictly unacceptable. However, many existing anomaly detection
methods have high false alarm rates especially when the target environment is noisy.
Therefore, better methods are urgently demanded. To achieve better accuracy in
anomaly detection, supervised learning is always preferred. However, the availability
of labeled data is usually a major issue that hinders the utilisation of supervised
learning methods. In addition, training datasets always contain noise that introduces
degraded accuracy in sensitive anomaly detection methods. Last but not least, the
normal or abnormal patterns are often inexhaustive. The differentiation of normality
from abnormality is a challenging problem in the presence of limited patterns. All these
difficulties contribute to the doubtful guarantee of the accuracy in anomaly detection.

• The simplified analysis of contextual information: The contextual information, e.g.,
periodicity and trending, in time series analysis is essential for the determination of
time series anomalies. Traditional methods typically consider specific contexts and do
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not generalise in dealing with novel contexts. For instance, time series differencing
is a specific technique for trending analysis in applications such as sales prediction,
but it does not consider the periodicity within the time series. Therefore, investigating
a general method that is capable of adaptively analysing different contexts is another
attractive research problem. For distinct application domains, the exact notions of
the contexts are always different. Applying a contextual anomaly detection technique
developed in one domain to another is generally not straightforward. Moreover, in a
specific domain, various contexts exist such that pinpointing the most useful context for
anomaly detection is not an easy task. Furthermore, the criteria for detecting different
contextual anomalies usually vary significantly. As a result, although attractive the
in-depth analysis of contextual information is very challenging.

• The incapability of handling dynamic data patterns: In online time series analysis,
the pattern of the time series always evolves along with the change of the underlying
system. For example, the pattern of the metric which measures the speed of the
engine in a car changes according to the behavior of the car. However, few existing
methods are capable of handling dynamically changing data patterns of a sequential
dataset, especially when the new patterns are unknown. This has raised a hot research
problem in applications such as intrusion detection systems where intruders exhibit
diverse/changing patterns of intrusion behaviors. General speaking, the dynamicity
is a dominant issue concerning the analysis of sequential data. In many domains,
normal behavior keeps evolving and the concept of normality is temporary. Therefore,
it requires the incremental updating of the anomaly detection model to keep the pace
with the evolvement of the notion of normality. Nonetheless, not all the anomaly
detection methods support incremental data analysis. And the design of an incremental
anomaly detection method is not a painless task.

1.2.2 Objectives

This thesis aims at proposing practical methods for anomaly detection and particularly targets
at easing the aforementioned challenges in time series anomaly detection scenarios. More
specifically, methods will be introduced to 1) enhance the accuracy of time series anomaly
detection in network systems, 2) analyse contextual information and anomalies for better
anomaly interpretation and 3) cope with the challenge of dynamicity in sequential anomaly
detection. Further details will be outlined in Section 1.3.
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Fig. 1.4 Key contents of the thesis

1.3 Thesis Outline and Contributions

In this chapter, the introduction of the related contents of general anomaly detection has been
elaborated. From the next chapter (Chapter 2), detailed related works and state-of-the-art
anomaly detection methods will be thoroughly surveyed. The contributions to the family of
anomaly detection methods follow from Chapter 3 to Chapter 6 (see Fig.1.4).

• Chapter 2 presents a thorough review of anomaly detection strategies and techniques.
For general anomaly detection, four major strategies are identified and five categories
of specific techniques are summarised. On the other hand, two basic strategies and
four types of techniques are elaborated for time series anomaly detection. This review
builds a solid background for the methods proposed in this thesis.

• Chapter 3 proposes an anomaly detection method that relaxes Support Vector Data
Description (SVDD) with additional information for better anomaly detection perfor-
mance. More specifically, the method adopts linear programming method to implement
SVDD and relaxes its anomaly detection boundary for network time series anomaly
detection. The experiment results demonstrate that the method greatly enhances the
overall accuracy of time series anomaly detection.

• Besides the desire for better accuracy, practical applications introduce additional
requirements in the actual network anomaly detection process, e.g., the needs for
analysing contextual information and classifying the anomalies for different responses.
Consequently, Chapter 4 considers specific contextual information in network time
series and suggests contextual SVDD in order to integrate the information in anomaly
detection for time series anomaly classification.
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• In Chapter 3 and Chapter 4, SVDD is the leading method to be utilised in time series
anomaly detection with distinct improvements. However, considering the situation
where the anomaly detection method is expected to not only identify the anomalies
but also cluster or classify the anomalies into different categories such that differ-
ent responses could be initiated accordingly, SVDD is not the best choice. Hence,
Chapter 5 develops Convex Hull Data Description (CHDD) that succeeds in one-class
classification and clustering at the same time.

• In both SVDD, CHDD and many other methods, there is a significant limitation that
these methods require an inconvenient process of parameter tuning. As a result, in
complex problems, a large amount of human labor is required for tuning the parameters,
which is undesirable and has made many methods impractical. Moreover, in situations
where the data patterns are dynamically evolving, the manual tuning of the parameters
is impossible. To ease the problem, Chapter 6 recommends a framework for parameter-
free sequential data anomaly detection based on Reinforcement Learning (RL). The
framework not only supports parameter-free anomaly detection but also dynamically
evolves the anomaly detection method to learn novel data patterns.

To summarise with the key contents, this thesis researches the problem of anomaly
detection, especially time series anomaly detection, and advises a number of novel methods
to promote anomaly detection from diverse facets. The proposed methods are expected
to contribute positively to the family of anomaly detection and prompt more valuable im-
provements for practical anomaly detection. In the next chapter, a comprehensive review of
existing solutions for anomaly detection is provided. In addition to this, each primary chapter
also makes some extra efforts to explain its contributions and most related works to make
clear the contents in the chapter.





Chapter 2

Related Work

In Chapter 1, an overview of the anomaly detection related concepts, e.g., outlier detection
and novelty detection, is presented coupled with the research problems, challenges and
aims of this thesis. In this chapter, a comprehensive review of existing anomaly detection
strategies and methods is provided. Anomaly detection strategies are high-level and abstract
methodologies that guide the process of anomaly detection, while anomaly detection methods
concern the detailed techniques and tools that are employed for data analysis. This chapter
starts with the introduction of anomaly detection strategies (Section 2.1) and elaborate various
types of anomaly detection methods afterward (Section 2.2). Because time series anomaly
detection is a key topic in this thesis, related methods for time series anomaly detection are
surveyed separately in Section 2.3. Section 2.4 briefly discusses the outline of the remaining
contents in this thesis.

2.1 Strategies for Anomaly Detection

According to different scenarios, distinct anomaly detection strategies exist. Generally, there
are four types of anomaly detection strategies: 1) rule-based anomaly detection; 2) case-
based anomaly detection; 3) expectation-based anomaly detection; and 4) property-based
anomaly detection. These four strategies correspond to distinct sets of anomaly detection
methods and are applied under different scenarios. The rule-based strategy concentrates on
identifying explicit/implicit rules to distinguish anomalies from normal data instances. The
case-based strategy, on the other hand, tries to pinpoint a relevant case of the target case
in order to analyse its abnormality. The expectation-based strategy generates an expected
concept of the normality/abnormality which is utilised for anomaly detection, while the
property-based anomaly detection investigates the latent properties among all the data and
determines the abnormality based on the properties.
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2.1.1 Rule-based Strategy

The rule-based strategy is generally applicable in a wide variety of domains. A typical instan-
tiation of the rule-based strategy is a rule-based anomaly detection system that encompasses
a set of rules, a bunch of facts and an interpreter for applying the rules and facts. In a specific
application, the corresponding facts are always determined. It is the rules that are to be
learned in order to support accurate anomaly detection. On one hand, the rules are usually
designed by human experts who possess strong knowledge of how to determine anomalies in
the specific application. On the other hand, rules can be learned according to labeled datasets
through classification methods, e.g., Decision Tree (DT) [220] and Support Vector Machine
(SVM) [38]. The choices of how to design the rules vary in different application domains.
However, the essential idea of the rule-based anomaly detection, i.e. applying discovered
rules to identifying anomalies, is identical.

The rule-based strategy is the basic standpoint of many methods discussed in later sections.
The generalised concept of “a rule” includes the underlying models in various classifiers,
one-class classifiers and many other anomaly detectors. From a high standpoint of view, the
rule-based strategy has two potential concerns that may hinder its practical applications:

• Complicated or novel data instances may escape the rule-based anomaly detection
system due to the inaccuracy or absence of the corresponding rules;

• Static rules in the rule-bases anomaly detection system may not adapt well to the
evolving data patterns.

As one shall see shortly, these concerns are not severe in other strategies and different
methods do not share common solutions to the above problems. Therefore, methods that
root on the rule-based strategy have to consider the potential problems independently. The
robustness and the capability of incremental learning in different methods are two critical
research topics that are attracting more and more attention.

An Example - Rule-based Reasoning System

In network systems, conventional rule-based reasoning systems [87] are pervasive in traffic
control systems and intrusion detection systems. Consider a simple paradigm as in Fig.2.1,
the rule-based reasoning system contains a set of rules and a set of facts that are both
determined by expert experience. Also, an additional inference engine is responsible for
anomaly detection based on the reasoning according to the rules and facts. Such rule-based
reasoning systems are always efficient in detecting simple network problems and easily
acceptable by most engineers.
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Fig. 2.1 The rules and facts in a rule-based reasoning system

However, in traditional rule-based reasoning systems, rules are often built relying on
expert knowledge. It is apparent that 1) the rules are impossible to exhaust such that new
problems can circumvent the system easily; 2) with the growth of the number of rules, they
are becoming increasingly hard to maintain; 3) the rules added by different experts may
conflict with each other [232], which undermines the consistency of the entire system. These
problems have promoted the innovations of the form of rules and the systems. Methods,
such as DT, are designed to learn rules based on different models which refrain from certain
aforementioned drawbacks.

2.1.2 Case-based Strategy

Distinct from the rule-based strategy which summarises a relatively concise knowledge for
anomaly detection, the case-based strategy seeks relative cases of a target case to help with
anomaly identification. At a first glance, the concept of the case-based strategy is highly
related to nearest neighbor based methods which determine the abnormality of a data instance
based on the analysis of its nearest neighbors. However, the case-based strategy is more
powerful in the applications where the target object is complicated and concluding the rules
for anomaly detection is cumbersome. For instance, a user profile dataset is rather complex
in the sense that it contains multiple types of data, e.g., image information, categorical
information, numerical information and etc. As a result, summarising rules for anomaly
detection becomes troublesome and ineffective. The case-based strategy is, therefore, more
suitable that it focuses on the identification of similar cases of the target case and largely
reduces the size of the relevant data for analysis. In many complex applications, e.g., network
anomaly detection [213][214], identifying the close related cases is the very first step that
greatly boosts the process of anomaly detection.

The case-based strategy has driven some practical methods that are widely in use. A
detailed method that implements case-based strategy is the K-Nearest Neighbor (KNN)
method [2] which has numerous applications. Another high-level instance is the signature-
based anomaly/object detection methods that have been adopted in many real-life scenarios
[137][169]. The details of the related methods will be elaborated in Section 2.2.
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Although regarded as a promising resort in complicated applications, the case-based
strategy is not without its drawbacks. There always exist two primary concerns that should
be taken into consideration while utilising the case-based strategy:

• The case-based strategy involves computing the similarities between the target case and
all the other cases, which incurs significant computational complexity, especially
when the number of cases is huge and the similarity measurement is relatively complex.

• The case-based anomaly detection strategy greatly relies on the similarity measurement
between two cases. A good similarity measurement helps with the effective differentia-
tion between normal and abnormal cases, while a bad similarity measurement largely
degrades the performance. In many applications with complex data, such as graphs
and sequences, defining an effective measurement could be really challenging.

Despite the concerns, the case-based strategy does maintain nice properties that, as the
number of cases keep increasing, the anomaly detection process gains more and more
confidence in its decisions. It naturally supports streaming data and enhances its capability
with the increment of the dataset.

An Example - Case-based Reasoning System

A case-based reasoning system [124] vividly implements the case-based anomaly detection
strategy and largely avoids the limitations in the rule-based reasoning systems. The essential
idea of a case-based reasoning system is to represent former problem-solving experience as
cases which are stored in a centralised library. Confronted with a new problem, the system
retrieves similar cases and summarises valuable information to solve the current problem.
The novel experience with the proposed solution is to be confirmed and added to the library
for future reference. 1) With the accumulation of informative cases, the system adaptively
evolves according to the experience; 2) the solutions of the previous cases can be generalised
to offer solutions to unseen problems; and 3) the whole system does not require extensive
maintenance experience. To be more concrete, Fig.2.2 depicts the workflow of a typical
case-based reasoning system. Four major steps are involved:

• Retrieval: This step retrieves relevant cases from the case library in order to solve a
target problem. A comprehensive case could contain the description of a problem, its
solutions and other related information, while a simple case could be a single data
instance along with its label;



2.1 Strategies for Anomaly Detection 17

Fig. 2.2 The workflow of a case-based reasoning system

• Reuse: The reuse of the relevant cases is to summarise valuable information from
previous solutions of relevant problems and determine the solution for the current
problem;

• Revision: The solution is revised in this step according to the specifications of the
current problem. It outputs a revised solution for testing;

• Retention: If the revised solution successfully solves the current problem, the case, i.e.,
the problem and its solution, is retained in the case library.

Within the four steps, the retrieval of the relevant cases is of high significance. It is also
the step which consumes most computation resources and demands effective similarity
measurements. The complexities of the steps of reuse and revision, however, vary under
diverse scenarios. Overall the process of anomaly detection using the case-based reasoning
system is greatly simplified due to the detached steps, which is suitable for different groups
of experts to work on in an attempt to solve complex anomaly detection problems, e.g.,
network anomaly detection in which a case contains complex network information and
network anomaly descriptions.

2.1.3 Expectation-based Strategy

The expectation-based strategy features in the utilisation of the expected concept of normality
to determine anomalies. In other words, whenever a data instance is beyond expectation, it is
regarded as anomalous. Generally speaking, the expected concept of normality comes in two
distinct forms:

• Data probability, which connects intensely to information theoretic methods that
analyse the probability of the occurrence of a specific data instance;

• Data estimation, which has been widely implemented by regression and reconstruction
methods to measure the error between the actual data and the estimated data.
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In data probability analysis, distributions of normal data are analysed and formulated to
assign the probability of a data instance being anomalous. However, in data estimation, the
expected data values are calculated directly from normal data regardless of their probabilities.
These two forms can also be unified to supply probabilistic estimation of the concept of
normality. The choice of these forms depends heavily on the applications. As a concrete
example, in time series prediction for anomaly detection, a probabilistic estimation of a
future value presents not only the expected value but also the variance so that providing the
confidence for the prediction. On the other hand, in multimodal data anomaly detection,
estimating the mean of the dataset is not profitable but measuring the mixed probabilistic
distribution can be much more helpful.

Although different in form, data probability analysis and data estimation share the same
principle that they extract knowledge from the given dataset and obtain the distances between
expectations and realities. The distances are further analysed through a thresholding process
to determine the eventual anomalies. This expectation-based strategy is straightforward
to understand and extensively applied in applications where the data show stable patterns.
For instance, in problems such as online time series anomaly detection, expectation-based
anomaly detection is always the very first strategy to be considered, especially when the
time series demonstrates strong patterns, e.g., periodic patterns, that are beneficial for
prediction. However, the expectation-based strategy is not without its drawbacks. The two
most prominent problems concerning the employment of the strategy are:

• The performance of the methods in data probability analysis and data estimation always
rely on the model used for fitting the training dataset. An unbefitting model will
consume extra computational power and result in poor performance.

• Expectation-based anomaly detection typically asks for a thresholding process to
determine the eventual anomalies. Nevertheless, the selection of the threshold is
nontrivial and application-specific, which causes potential troubles for accurate
anomaly detection.

An Example - Expectation-based Anomaly Detection System

Generally, an expectation-based anomaly detection system consists of four components as
shown in Fig.2.3. 1) The training dataset contains only the original data instances with no
label. It is responsible for training the selected model which is expected to generalise and
fit the testing dataset. 2) The testing dataset has the identical format of the training dataset
and is exploited to examine the validity of the learned model. 3) The data estimation or
probability analysis model is the core component of the system. During the training phase,
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Fig. 2.3 The components of an expectation-based anomaly detection system

the model takes the training dataset as input and tunes the model parameters to fit the dataset
as closely as possible, e.g., likelihood maximisation and error minimisation, while in the
testing phase the model takes the testing dataset as input and outputs anomaly scores of the
data instances, e.g., reconstruction errors/residuals and data probabilities. 4) The anomaly
scores are examined by a thresholding component for the ultimate decisions of anomaly
detection. Usually, the threshold is assigned as a byproduct of the trained model. Nonetheless,
in many applications where no label is provided for the determination of anomalous data,
obtaining a practical threshold can be troublesome and always desires online adjustment.

To illustrate the concrete examples of data estimation and probability analysis, consider
firstly the Replicator Neural Network (RNN) [94], i.e., a fully connected neural network
whose inputs and outputs are the same and the size of the hidden layer is smaller than that
of the input and output layers. The neural network is trained such that its outputs mimic
the inputs as closely as possible, i.e., reconstructing the inputs. During the testing phase,
the reconstruction errors/residuals between the inputs and outputs are calculated with a
chosen measurement to reflect the distances between the tested data and their corresponding
expectations. On the other hand, consider the Gaussian Mixture Model (GMM) [14] which
exploits multiple Gaussian distributions to fit a given dataset during the training phase and
outputs the probability of a data instance belonging to the mixed distribution during the
testing phase. GMM essentially interprets the expectation of data using the data probabilities
derived from the learned distribution. The probabilities, therefore, constitute anomaly scores
for ultimate anomaly detection.

2.1.4 Property-based Strategy

Besides the aforementioned strategies, a relatively novel anomaly detection strategy which is
based on the latent properties in data instances attracts increasing attention in recent years.
This property-based strategy assumes that there always exist static or stable properties in
the system that generates the target dataset. With the identification of the properties, they
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Fig. 2.4 The basic idea of a feature correlation anomaly detection method

can be employed as the criterion to differentiate normal data instances and abnormal ones,
i.e., abnormal data instances will not exhibit certain properties indicating that they are not
generated by the underlying system. Armed with the assumption, a number of methods have
been proposed to mine the latent properties. Two representative examples are 1) feature
correlation, which explicitly finds the stable internal relationship among data features; and 2)
data compression, which implicitly measures the normal amount of information hidden in
the data. Therefore, as long as a data instance violates the stable internal relationship or the
normal amount of information, it is pinpointed as anomalous.

Feature correlation and data compression are only two inchoate methods that await
further investigation. There are many other techniques that have been well developed, such as
Principal Component Analysis (PCA) [102], Kernel Principal Component Analysis (KPCA)
[202] and etc. All these methods recognise certain properties of the dataset and leverage these
properties for the purpose of anomaly detection. If the properties are accurately identified,
the methods always exhibit extraordinary performance. Unfortunately, two practical issues
have made the applications of the methods difficult:

• Given a random dataset, pinpointing the best property to extract is a troublesome
task. Typically, no preference of methods can be made without examining their actual
performances.

• Determining the violation of a certain property can be tricky. For instance, in
feature correlation, the change of the relations among the features can be hard to
measure due to the varied intensity and existence of the relations.

An Example - Feature Correlation Analysis

Consider the example in Fig.2.4 where feature correlation is employed as the key property to
identify anomalies [81][211][103]. The circles are features and the link between two circles
represents the intense correlation between the features. The triangle and connected links
indicate the relation among several features.
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On the left part of Fig.2.4, a stable set of feature correlations is recognised from the
training dataset as a benchmark graph to define normality. Whenever the normal set of
feature correlations is largely violated in a data instance, e.g., the right part of Fig.2.4 where
the correlations among features A, B and C are corrupted, it is highly suspicious that the
data instance is anomalous. This workflow is intuitionistic and features in the way that 1) it
achieves feature selection through the process because the features which have no relation to
others are not helpful for anomaly detection and can be ignored; 2) the analysis of the feature
correlations reveals the internal relationship among the features, which supports the better
understanding of the data and benefits the application. For instance, with the solid feature
correlations found, missing feature values can be estimated through a predictive model using
their related features. Therefore, feature correlation analysis is attractive in applications that
require anomaly detection with numerous irrelevant features and missing feature values.

2.1.5 Summary

In this section, four diverse strategies, i.e., rule-based, case-based, expectation-based and
property-based strategies, are presented for the purpose of anomaly detection. All these
strategies have their individual policies for anomaly detection and possess disparate advan-
tages and disadvantages. In distinct applications, the most suitable strategy varies. For
general datasets with no evident feature, the rule-based strategy is generally applicable and
currently implemented in many industrial systems. The case-based strategy, however, works
more efficiently in complex systems where the target datasets of anomaly detection carry
various types of features each of which is complicated to analyse. On the other hand, the
expectation-based strategy is made straightforward when dealing with sequential datasets
and datasets with stable patterns. When it comes to systems that generate data with certain
properties, e.g., high-dimensional data with internal feature correlation, the property-based
strategy is more advisable. Besides all these strategies, it is believed that more strategies
are possible in the area of anomaly detection that further exploration should be consistently
made in order to discover strategies with beneficial attributes.

In Section 2.2, the representative techniques for anomaly detection are classified into
several categories according to the detailed technical features. It is worth noting that a
specific technique could implement various strategies. In other words, strategies are relatively
high-level tactics that may overlap with each other in achieving anomaly detection.



22 Related Work

2.2 Techniques for Anomaly Detection

Under the umbrella of anomaly detection, the solutions [90] are typically categorised into
three aspects according to the type of the input (Section 1.1.3): 1) supervised anomaly
detection, 2) unsupervised anomaly detection and 3) semi-supervised anomaly detection.
As mentioned earlier, supervised anomaly detection has access to both normal and abnormal
data. Therefore, the essence of a supervised anomaly detection problem is a classification
problem that endeavors in distinguishing abnormality from normality. On the other hand,
unsupervised anomaly detection gains no access to the exact labels of the given dataset. It
achieves anomaly detection through identifying the shared patterns among the data instances
and observing the outliers. Hence, the task of unsupervised anomaly detection is intensely
related to outlier detection. In addition, Semi-supervised anomaly detection accepts normal
or abnormal dataset and determines the concept of normality or abnormality for anomaly
detection. Consequently, semi-supervised anomaly detection is more prone to solving the
task of novelty detection.

With a detailed examination, it is obvious that the methods for unsupervised/semi-
supervised anomaly detection are universally applicable in anomaly detection problems
because 1) supervised anomaly detection can be easily divided into two semi-supervised
anomaly detection problems, which model the concept of normality and abnormality, respec-
tively; 2) by assuming that a sampled portion of the given dataset is normal or abnormal
then examining the remaining data, unsupervised anomaly detection is converted to semi-
supervised anomaly detection with some computational expenses. Inversely, semi-supervised
anomaly detection is solvable through unsupervised anomaly detection with the aggrega-
tion of labeled and unlabeled data. As a result, this section focuses mainly on the review
of unsupervised/semi-supervised anomaly detection methods, e.g., one-class classification
methods, and does not make a clear distinction between the methods for outlier detection and
novelty detection. The specific methods for supervised anomaly detection, i.e., classification-
based anomaly detection, can be found in other related surveys [101][3][29]. Moreover, due
to the fact that multi-dimensional datasets are more pervasive in applications, this section
targets methods with the capability to cope with the high-dimensional datasets and omits the
conventional statistical data analysis methods, e.g., 3-sigma [168], boxplot rule [96] and etc.

For the rest of this section, five categories of anomaly detection methods are detailed.
Firstly, the underlying assumptions of these methods are described. Detailed methods are
then elaborated with their corresponding advantages and disadvantages, which lead to the
improvements upon various facets of the methods, such as robustness, effectiveness and etc.
Possible research topics and directions are briefly discussed.
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2.2.1 Distance-based Methods

Investigating the distances among data instances has been one of the primary approaches to
reveal outliers or novelties in anomaly detection. Although the broad spectrum of distance-
based anomaly detection methods always vary in the ways they measure the distance and
how they calculate the anomaly score, they all share the same following assumption:

Assumption: Normal data instances are close to their neighbors, while anoma-
lies are far away from their neighbors.

Within the assumption, 1) the definition of the distance between two data instances and 2)
the determination of the term “close”, i.e., the ways to assign anomaly score, according to
the measurement are essential to anomaly detection.

The Definition of the Distance

Over the years, researchers have proposed numerous methods of distance measurement [49].
Typical measurements include Euclidean distance, i.e.,

DEuclidean =

√√√√ d

∑
i=1
∥xi− yi∥2,

and Mahalanobis distance [148], i.e.,

DMahalanobis =
√
(x− y)T Σ−1(x− y),

where x and y are two d-dimensional column vector data instances; xi and yi are the i-th
elements of x and y, respectively. T denotes the transpose of the column vector. Σ is a matrix
that governs the distance measurement.

Although Euclidean distance and Mahalanobis distance are widely applicable in most
cases, there are situations where data features are not numerical, which requires novel
distance measurement methods. For instance, categorical data ask for different distance
measurement methods, such as simple matching, that are more suitable. Interested users are
recommended to refer to [19] or [231] for a detailed list of the measurements for numerical,
categorical and mixed data. Besides numerical data, categorical data and the mixture of these
two, other data types, e.g., image, graph, sequence and etc., may demand more complex
distance measurements. Investigations have been conducted individually in corresponding
domains [42][114][173].
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The Determination of the Anomaly Score

With an appropriate definition of the distance, the distance-based anomaly detection methods
leverage the distance information to assign anomaly score for each data instance under
examination. A key distinction of these methods is their determination of the anomaly
score. One may use the longest distance to the K nearest neighbors of a data instance as
the anomaly score, utilise the mean or median of the distances to all the other data as the
anomaly score, turn the numerical scores into probabilistic scores, or analyse and summarise
all the distances and simply output binary anomaly score for each data instance. Methods,
such as [2], directly employ the information of distances to assign anomaly scores, while
[98] and many other distance-based clustering methods apply the information to firstly form
clusters and indirectly point out anomalies afterward. An informative survey about the direct
and indirect usage of the distance information for anomaly detection is presented in [29].

The direct and indirect utilisations of the information of data distances help categorise
distance-based anomaly detection methods into two classes. However, a more helpful
taxonomy would be dividing the methods according to the general computational expense
used in calculating the distances:

1. Measure the distance from a data instance to all the other data instances. Due
to the vast number of distance calculations, this always consumes considerable com-
putational resources. Typical examples of this kind involve nearest neighbor-based
methods, such as [2][145];

2. Measure the distance from a data instance to a concise set of targets or data
instances. The size of the concise set is normally several orders of magnitude smaller
than that of the original dataset, which enormously reduces the computational expense.
A very intuitive example is the K-means clustering method [98].

Example - k-th Nearest Neighbor Anomaly Detection

A traditional distance-based anomaly detection method is to use the distance from a point to
its k-th nearest neighbor. For instance, in [188], the definition of an outlier is given based on
the distance to the k-th nearest neighbor:

Dk
n Outlier: “Given an input data set with N points, parameters n and k, a

point p is a Dk
n outlier if there are no more than n−1 other points p′ such that

Dk(p′)> Dk(p).”1

1Quoted from [188].
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Note that Dk(p) denotes the distance from point p to its k-th nearest neighbor. In other words,
the definition picks the top n−1 points which have the largest distances to their k-th nearest
neighbors. These n− 1 points are called Dk

n outliers parametrised by n and k. It is worth
stressing that, to pinpoint the outliers, calculating the distance from a data instance to all the
other data instances are required. This inevitably incurs high computational complexity for
the anomaly detection process.

Example - K-means Clustering Anomaly Detection

Due to the high computational complexity of calculating all the distances between pairs of
any two data instances, it would be advisable to compute the distances from the data instances
to a small set of targets. This strategy is implemented in distance-based clustering methods,
such as K-means clustering [98]. In K-means, the targets are the prototypes associated
with different clusters. Formally, consider the dataset X = x1,x2, · · · ,xN , where xi ∈ Rd ,
i ∈ {1,2, · · · ,N}, d and N are the numbers of data dimension and instances respectively. The
prototypes µk is for the k-th cluster, where k ∈ {1,2, · · · ,K} and K is the number of clusters.
The intuition behind K-means clustering is to form K clusters which minimise the sum of all
the distances from any data instance to the prototype of its assigned cluster:

J =
N

∑
i=1

(
min

k
||xi−µk||2

)
.

The prototype of a cluster is typically calculated as the mean vector of all the data instances
in the cluster, which can be formally represented as:

µk =
1
N ∑

i∈Ck

xi,

where Ck is the set of the indexes of data instances that are assigned to cluster k. To find
the prototypes that minimise J, data instances are firstly clustered into k sets based on their
nearest prototypes and the prototypes are updated accordingly. This process is repeated until
convergence. As a result, data instances that are 1) far away from its cluster prototype or 2)
in a cluster with very few data instances are considered as anomalous [29].

Distinct from k-th nearest neighbor anomaly detection, K-means clustering demands only
the calculations of the distances from a data instance to K cluster prototypes, where K≪ N,
which largely reduces the computational expense in each iteration of the clustering process.
Besides K-means, many other distance-based clustering methods [13][24][219] also enjoy
the same merit and further improve K-means from different aspects.
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Improvements and Recent Work

The k-th nearest neighbor method, K-means anomaly detection and other related methods,
e.g., hierarchical clustering [46], are distance-based anomaly detection methods that have
been developed for a long time. Over the years, distance-based anomaly detection methods
have been researched from three primary aspects: 1) the developments of new definitions of
distance-based anomaly score for anomaly detection; 2) the enhancements of diverse distance
measurements for various data types; 3) the improvements of the efficiency of distance-based
anomaly detection methods.

In 1996, Bradley et. al. [23] had revised K-means and proposed K-medians to support
a more robust data clustering and thus more accurate anomaly detection results. Instead of
using medians, Zhang and Wang [261] in 2006 employed the sum of the distances from a
data instance to all its K nearest neighbors as the anomaly score. More recently, authors of
[170] proposed Local Distance-based Outlier Factor (LDOF) to integrate the information of
the so-called outer distance and inner distance of a particular data for the definition of the
anomaly score. These methods change slightly the original way of using the distances and
aim at the enhancements of the robustness and effectiveness of the distance-based anomaly
detection methods. While, some other approaches, such as the methods using reverse nearest
neighbor [187], provide a brand new perspective of using the distances.

As a critical research topic, distance measurement consistently attracts much attention. In
2002, Xing et. al. [246] proposed distance metric learning to identify a distance measurement
that respects the known relationship within a given dataset, i.e., assign small distances
between similar data pairs. In the domain of anomaly detection, anomaly metric learning
[60] introduced a similar approach to learn a robust Mahalanobis-like distance measurement
for anomaly metric. From a different perspective, a metric that measures data dissimilarity
was also developed in [217], which demonstrates better results in three existing algorithms
of clustering, anomaly detection and multi-label classification. Besides the advancements
of the distance measurements for standard data types, similarity measurements concerning
complex data types, such as time series [63][114], images [42], graphs [173] and etc., are
also under intense developments.

In order to promote the efficiency of distance-based anomaly detection methods, methods
such as sampling have been under intense study. In 2006, Wu and Jermaine [233] proposed a
sampling algorithm to detect outliers in domains where the distance computation is expensive.
[192] also adopted sampling method and theoretically analysed the reason that brings the
benefit. Other than sampling, studies concerning the utilisation of distributed computing [22],
the detection efficiency of data stream [41] and the combination of optimisation strategies
[166] are also hot research directions.
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Advantages and Disadvantages of Distance-based Methods

The primary advantages of distance-based anomaly detection methods cover:

• Distance-based anomaly detection methods are purely data driven that they make no
assumption about the data distribution or generating mechanism and, therefore, are
widely applicable.

• Due to the easy-to-understand concept of distance, distance-based anomaly detec-
tion methods are always more accessible to engineers compared to other complex
methods.

• The adaptation of distance-based anomaly detection methods in diverse applica-
tion domains is straightforward because the essence of the methods can stay un-
changed and only appropriate distance measures are required for new data types.

Distance-based anomaly detection methods have their disadvantages:

• Distance-based anomaly detection methods only concern the processing of the dis-
tance information. In datasets, where the anomalies cannot be directly reflected by
the distance information, the performances of these methods may be degraded.

• As a practical implementation of the case-based strategy for anomaly detection,
distance-based anomaly detection methods typically incur high computational com-
plexity, especially for nearest neighbor-based methods.

• In cases where the data are complex, e.g., graphs or a minibatch dataset, defining a
good distance measurement between two instances can be really challenging, not
to mention the measurement should effectively reflect the distinction between normal
and abnormal instances.

2.2.2 Density-based Methods

In distance-based anomaly detection, anomalies are determined solely according to the
distance information extracted from the target dataset. Although helpful in many applications,
using distance information has some potential problems, a primary one of which is that it does
not take into consideration the relative position or the distribution of the neighbors of a data
instance. In many cases, simply adopting the distance information for anomaly detection is
not enough. To promote the methods, the density information is always employed to integrate
more information. The density information implicitly contains the distance information and
is expected to support better anomaly detection results.
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Density-based anomaly detection methods make a slightly different assumption compared
to distance-based anomaly detection methods:

Assumption: Normal data instances form dense areas, while anomalies always
appear in sparse areas.

Intuitively, whether an area is dense or sparse is determined by both the size of the area,
which is highly related to the distance information, and the number of the data instances
within the area. This is a straightforward way of modeling the density information. Another
set of methods for extracting density information is distribution-based methods which fit
a distribution to the dataset to implicitly model the density information. Both of these
types of methods are under the broad umbrella of statistical analysis. More formally, from
the standpoint of statistics, these methods are classified into two categories: 1) parametric
techniques; and 2) non-parametric techniques.

Parametric Techniques

To extract the density information, a traditional statistical analysis method is to fit an assumed
parametric distribution D to the dataset. After training, the probability density function
f (x,θ) of the distribution, where x is an observation and θ is the trained parameters, is
expected to reflect the density information of the target dataset for anomaly detection. As
can be noticed, the key components of the parametric techniques include: 1) the assumed
distribution, 2) the training of the probability density function and 3) the assignment of the
anomaly scores and threshold for anomaly detection.

For many existing research and applications, Gaussian distribution is always the first
candidate for the distribution assumption. Although there emerge many other diverse distri-
butions, e.g., Student’s t-distribution [133], Gaussian distribution is still the most popular
one under research and utilisation. Considering the usage of a single Gaussian distribution
for data analysis, the training of the distribution typically relies on the Maximum Likelihood
Estimation (MLE) method [1] which identify the best parameters to maximise the overall
probability of generating the entire target dataset. The anomaly scores of the data instances
can be assigned as their corresponding data probabilities under the trained distribution. The
threshold, however, is determined according to different application scenarios. In many
cases, a single distribution cannot properly model the dataset which is generated by a mixture
of models. As a result, the mixture of parametric distributions becomes a natural coun-
termeasure [14][183]. A concrete example based on GMM is presented in next section to
demonstrate the essentials of the parametric techniques.
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Example - Gaussian Mixture Model

The GMM, i.e., Gaussian Mixture Model, is essentially a linear superposition of Gaussians
[14]. Its probability density function can be formally represented as:

p(x) =
K

∑
k=1

πkN (x|µk,Σk),

where k ∈ {1,2, · · · ,K}; K is the number of Gaussian distribution N ; πk specifies the
probabilities that the data x belongs to the k-th Gaussian distribution and has ∑

K
k=1 πk = 1; µk

and Σk are the mean and covariance matrix of the k-th Gaussian distribution, respectively. To
fit the model to the training dataset, the idea of MLE is also adopted, which maximises the
following target function:

ln p(X |π,µ,Σ) =
N

∑
n=1

ln

{
K

∑
k=1

πkN (xn|µk,Σk)

}
,

in which X is the set of N data instances, π the set of πk, µ the set of µk, and Σ represents
the set of Σk. This model, parameterised by π,µ,Σ, is trained with the help of Expectation-
Maximisation algorithm (EM algorithm) [55]. After training, the model is employed as a
scoring function for anomalies. Data instances with low probability are therefore considered
as anomalous.

Non-Parametric Techniques

Rather than modeling the density information with certain distributions, non-parametric
density-based anomaly detection methods directly measure the data density. As a concrete
example, the Histogram method [14] segments the data space and counts the number of
data instances located inside specific segments for density estimation. As a result, similar
techniques are also referred to as frequent-based or counting-based methods. The histogram
is a statistical method that dates back to very early years. Recent methods that are appli-
cable in density estimation largely focus on Kernel Density Estimation (KDE) methods
[167][132][204]. Both of these types of methods are designed to achieve density estimation.
Therefore, their applications in anomaly detection demand another further step which is to
leverage the density information to assign anomaly scores for data instances. Besides these,
other related methods also cover Local Outlier Factor (LOF) [21], Connectivity-based Outlier
Factor (COF) [206] and clustering methods, e.g., DBSCAN [65]. All these methods exploit
the density information and are further formulated to achieve anomaly detection.
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Example - Parzen Density Estimation

A classic method for density estimation of multivariate datasets is the Parzen Density Estima-
tion (PDE) [167] which does not make any assumption concerning the distribution or shape
of the target dataset. In PDE, the density information is directly estimated according to the
number of data instances situated in a specific region of a predefined volume. For each space
point or data instance x, the formulation of its density information is given as:

p(x) =
1
N

N

∑
i=1

1
V

φ(
x− xi

h
),

where N is the size of the target/training dataset, V = hd is the volume of the d-dimensional
hypercube whose edge is of length h. Most importantly, φ is a kernel function that satisfies
φ(v)> 0 and

∫
φ(v)dv = 1. In PDE, the kernel function is defined as:

φ(v) =

{
1, if ∀ j = 1,2, · · · ,d, |v j|< 1/2,

0, otherwise,

which decides whether the data instance xi is located within the hypercube centred in x.
Therefore, PDE finds the average percentage of the number of data instances in a hypercube
for the density estimation. The density information can thus be employed as the anomaly
score for anomaly detection.

Improvements and Recent Work

Over the years, density-based anomaly detection methods have been under intense inves-
tigation and experienced fast development. Both parametric and non-parametric methods
are practically utilised in many different application domains to solve real problems. For
parametric methods, the representative, i.e., GMM, has been employed in diverse areas such
as flight operation monitoring [129], crowd behavior anomaly detection [153] and anomaly
detection of hyperspectral images [64]. For nonparametric methods, e.g., LOF, i.e., Local
Outlier Factor, KDE, i.e., Kernel Density Estimation, and DBSCAN, numerous applications
and developments have been made.

Concerning LOF, it has been utilised in various areas along with other techniques for
better effectiveness. Areas, such as process control [160][200], network intrusion detection
[225] and traffic data outlier detection [155], all witnessed the positive effects of using LOF.
Other revisions of LOF exist and always rely on the underlying applications.
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To promote the accuracy of KDE, Lichman and Smyth [139] introduced the mixture of
kernel densities to integrate information from a different perspective, which results in the
enhanced accuracy of pattern recognition. In 2017, Zhang et. al. [257] proposed adaptive
kernel density-based anomaly detection which assigns adaptive width for the kernel so as to
improve the overall accuracy of the method in nonlinear systems. Moreover, the robustness
of KDE is investigated in [226] and the applicability and flexibility of KDE are also explored
and extended through a general framework for outlier detection in [204].

Similarly, for DBSCAN, a number of researchers have analysed the method [85][199]
especially from the perspective of its efficiency. Other research concerning boosting the
process of DBSCAN also include distributed computing, which utilises MapReduce [97]
to promote the speed of DBSCAN, and fast neighbor searching, which accelerates the
neighbor searching process for better efficiency [118]. Aside from the improvements of the
efficiency, many other works also aim at revising DBSCAN to handle datasets with irregular
characteristics [212] and inventing robust methods for the process of parameter selection in
DBSCAN [112].

To summarise, the density-based anomaly detection methods are under fast development.
Revisions to existing methods and developing novel density-based methods both attract a
large amount of attention [241][218]. The emergence of more advanced methods is highly
possible in this domain.

Advantages and Disadvantages of Density-based Methods

Due to the fact that the density information implicitly utilises the distance information, the
density-based anomaly detection methods share many similar advantages and disadvantages
with the distance-based anomaly detection methods. The primary advantages of density-based
anomaly detection methods cover:

• Non-parametric density-based anomaly detection methods are purely data driven
that they make no assumption about the data distribution or generating mechanism and
therefore are widely applicable. And parametric methods are typically more efficient
and provide statistically justifiable solutions for anomaly detection.

• Due to the easy-to-understand concept of density, density-based anomaly detection
methods are always more accessible to engineers compared to other complex methods.

• The utilisation of density information or relative density information supports the
anomaly detection of more complex datasets in which only the distance information
is not sufficient to reflect the anomalies.



32 Related Work

Density-based anomaly detection methods are not without their disadvantages:

• Non-parametric density-based anomaly detection methods somehow leverage the
distance information and therefore have the similar problem of high computational
complexity with distance-based anomaly detection methods.

• Parametric density-based anomaly detection methods rely heavily on their assump-
tions of the underlying data distributions. If the assumptions do not hold, which is
often the case, the methods are likely to provide results that are not satisfactory.

2.2.3 Boundary-based Methods

In distance-based and density-based anomaly detection, they exploit the distance and density
information to build anomaly detectors that recognise data instances far away from other
instances or located in sparse areas respectively. Differently, boundary-based anomaly
detection seeks a boundary that surrounds normal data instances with the expectation that
the surrounded area contains only normal data. To put it more formally, boundary-based
anomaly detection methods make the following assumption:

Assumption: Normal data instances are located in the normal region/regions
which is/are defined by a boundary/boundaries, while anomalies are located
outside the region/regions.

Consequently, the key problem in boundary-based anomaly detection methods is how to
discover the best way to define the boundary. In the situations where no label is provided for
the training process of anomaly detection, i.e., unsupervised and semi-supervised scenarios,
it is advisable to assume that most of the data instances in the training dataset are normal.
Therefore, the training process of boundary-based anomaly detection is to utilise the training
dataset to find the boundary, while the testing phase further exploits the boundary for anomaly
detection. Diverse ways of determining the boundary promote different methods that have
distinct features.

The most related methods cover 1) K-Centres [186], which finds K hyperspheres with
minimum volumes to embrace all the data instances, 2) Elliptic Data Description [185],
which utilises hyperellipsoid to encompass the dataset, 3) One-class Support Vector Machine
[201], which identifies the hyperplane that has the largest distance to the origin and at the
same time isolates the dataset from the origin, 4) Support Vector Data Description [208],
which tightly surrounds the dataset with a hypersphere, and 5) Level Set Method [59], which
directly constructs the so-called level set as the boundary function.



2.2 Techniques for Anomaly Detection 33

Example - Support Vector Data Description

In [208], Tax and Duin developed Support Vector Data Description (SVDD) as a method to
achieve one-class classification. The basic idea behind the method is to seek a hypersphere
with minimum volume that can encompass all the training data instances which are considered
as normal data. This initial idea (with no slack variables) is formally presented as an
optimisation problem:

min
a,R

R2

s.t. ∥φ(xi)−a∥2 ≤ R2, ∀i ∈ {1,2, · · · ,N},

where a,R,φ and N represents the centre, radius of the hypersphere, the mapping function
for kernel and the number of training data instances respectively. To solve the optimisation
problem, the original formulation is converted to its dual formulation which can be success-
fully solved by traditional Quadratic Programming (QP) solutions. The boundary function in
SVDD is defined as:

F(z) = ∥φ(z)−a∥2−R2,

which is made concrete with the results obtained through solving the QP problem as:

F(z) =

(
Φ(z,z)−2∑

i
αiΦ(z,xi)+∑

i, j
αiα jΦ(xi,x j)

)
−R2.

Note that z is a new data vector, αi is the Lagrangian multiplier corresponding to xi, Φ(·, ·)
is the kernel function related to the mapping function and R2 is obtained through setting
F(z) = 0 with z replaced with a data instance whose Lagrangian multiplier is positive. Any
new data instance z that satisfies the equation F(z) = 0 is on the boundary. Data instance z
which have F(z)< 0 is inside the boundary. On the other hand, if F(z)> 0, z is identified as
an anomaly.

Improvements and Recent Work

Besides the aforementioned methods, boundary-based anomaly detection methods also
include ISODEPTH [189], Convex Peeling and etc. However, many of these methods have
their own defects and have been outdated since the thriving advancement of machine learning
methods. The boundary-based methods that still attract much attention are one-class SVM
[201] and SVDD [209][208][20], which are considered two critical branches for anomaly
detection derived from the prestigious classification method SVM [17].
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One-class SVM and SVDD have been proved identical under the utilisation of specific
kernels, e.g., Gaussian kernel. Both of them are sparse kernel models which have sparse
solutions so that maintaining a subset of the dataset, i.e., Support Vectors, for model training
is sufficient for model testing. They both maintain high effectiveness and high accuracy. Due
to its easy-to-understand geometrical interpretation, SVDD is heavily investigated over the
last decade. SVDD has fruitful research outcomes that spread through four main research
directions: 1) theoretical improvement and discovery; improving the 2) accuracy, 3) efficiency
of SVDD; and exploring its 4) applications in different problems and areas.

Originally, SVDD leads to an underlying QP problem. Over the last decade, numerous
research has helped better understand the problem. In [35], Chang et al. provided a thorough
analysis of the QP problem and discussed the feasibility of the solution under different
settings. In [31], Campbell and Bennett devised a Linear Programming (LP) SVDD instead
of QP. A unified model of SVM and SVDD was proposed in [143]. Besides the developments
of SVDD in terms of the basic theory, many of the previous research works focus on the
developing of data description under the presence of noise or imbalance data [45][78][239].
Developing SVDD under probabilistic input is another important research direction, some
works of which include Fuzzy SVDD [142] or the like [71]. In addition, Elliptical SVDD
[215][238] and Multi-sphere SVDD [248][142] are investigated to enhance the accuracy in
describing a dataset with a specific shape. In [128][161][210], the ideas for incremental
SVDD had been fulfilled to meet the requirements of the constant processing time for each
incoming data and the constant/low memory utilisation with preserved accuracy. From the
perspective of applications, SVDD has been extended for clustering [20] and binary/multi-
class classification problems [154]. The applications of SVDD in novelty detection and outlier
detection have also led to research efforts in different domains, such as image processing
[18], process control [159], machinery fault diagnosis [58], wireless sensor networks [196]
and many others [198][237]. A more detailed review of SVDD related methods could be
found in [99].

Advantages and Disadvantages of Boundary-based Methods

The primary advantages of boundary-based anomaly detection methods include:

• The concept of the boundary has a clear geometric interpretation which helps with
the understanding of related methods.

• A boundary-based anomaly detection method typically maintains a clear and concise
decision function for the determination of anomalies that the decision-making/testing
process could be relatively faster compared to distance-based or density-based methods.
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Boundary-based anomaly detection methods are not without their disadvantages:

• Boundary-based anomaly detection does not take into consideration the informa-
tion of data distance, density and etc. Therefore, additional mechanisms are de-
manded to integrate extra information for advanced anomaly detection.

• Boundary-based anomaly detection methods are sensitive to the parameters whose
adjustments may cause a dramatic change in the performance of anomaly detection.

2.2.4 Partition-based Methods

Distinct from boundary-based methods, which expect to find a specialised space for normal
data, partition-based methods slice the data space for anomaly detection. It could be sum-
marised that partition-based anomaly detection methods possess the following assumption:

Assumption: Normal data occur in specific areas of the data space, while
anomalies are not within these areas.

Consequently, the approaches to slice the space and determine the normal areas become the
prominent sub-tasks of anomaly detection and have led to distinct partition-based methods.
Generally, there are three ways to slice the space: 1) slicing the space into hypercubes accord-
ing to the original coordinate; 2) partitioning the space with respect to certain dimensions;
3) using certain hyperplanes to isolate the space into subspaces. Corresponding to the three
ways of slicing the space, Binary Decision Diagram (BDD) [108], Isolation Forest (iForest)
[144] and Randomised Hashing [191] are three partition-based methods that were developed
recently and have attracted much attention due to their superior effectiveness and efficiency in
solving anomaly detection problems. In what follows, iForest is presented as an exceptional
candidate to demonstrate the idea of partition-based anomaly detection.

Example - Isolation Forest

The idea of iForest, i.e., Isolation Forest, for anomaly detection arises from the observation
that anomalies in a given dataset can always be easily isolated from other normal data
instances. Therefore, to identify an anomaly, iteratively random divisions of the input space
can be performed to construct division trees, i.e., binary trees, to isolate all the data instances.
In a division tree, it is expected that a normal data instance will be located on the bottom of
the tree, which shows it takes many divisions to isolate the data instance from others, i.e.,
normal. On the other hand, an anomaly would typically appear close to the root of the tree,
which means that it is isolated with few divisions and, thus, is very different from other data
instances, i.e., anomalous.



36 Related Work

To be more specific, iForest starts with sampling sub-datasets from the original dataset.
For each sample, it randomly selects a feature of the sub-dataset and randomly selects a value
for the feature to form a node of a binary tree called iTree. The left child and the right child
of the node are determined afterward. Thus, the whole tree is constructed iteratively till all
the leaf nodes, i.e., nodes that have no children, represent a space containing only one data
instance in the sub-dataset. The anomaly score for a data instance is measured according to
the average length of the traversing paths in all iTrees when searching for the data.

As the process of iForest indicates, the anomaly detection in iForest doesn’t require
any explicit similarity measurements, e.g., distance measurement and density measurement,
among data instances. This property significantly simplifies the process of anomaly detection
and contributes greatly to its high efficiency. The distributed nature of iTrees helps with
enabling distributed anomaly detection, which further lowers the time consumption of the
method. It is also reported in [144] that iForest outperforms many other methods in terms of
accuracy and robustness. However, a potential issue of iForest may arise from the size of the
iTrees when the size of the given dataset is immense, and keeping updating the iTrees with
incoming new data instances is another important research direction that hasn’t been largely
explored.

Improvements and Recent Work

Partition-based anomaly detection methods have become hot research topics in the past few
years. The methods that attract much attention are iForest [144] and its related methods, BDD
[108] and Hashing-based methods [191], especially methods using Local Sensitive Hashing
(LSH) [234]. Among these methods, iForest has aroused the most research efforts. From the
perspective of its applications, it has been utilised or modified to solve practical problems
in areas such as the anomaly detection of traffic trajectories [44], time series in cloud data
centers [40], building energy-consumption [116] and data retrieved from wireless sensor
networks [50]. It is also witnessed that ideas similar to iForest can not only solve anomaly
detection problems of general datasets but also be applicable to that of data streams. [83]
proposed to use random cut forests to achieve anomaly detection on data streams, and Half-
Space-Trees [216] employed tree-based space partition to cope with the problem of efficient
anomaly detection in streaming data. Besides anomaly detection related problems, the idea
of tree-based space partition is also extended to solve complex classification problems with
advantageous properties, e.g., classifying emerging new classes [162]. In [241], the idea is
exploited to construct a density estimator that succeeds in anomaly detection in data streams,
which broaden the capability of the idea from a distinct angle. Additionally, in 2017, [254]
introduces a generic framework to integrate iForest with LSH.
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Similar to iForest, the idea of hashing, especially LSH [234], also incites lots of research
interests. LSH is a type of hashing that maintains the similarity among data instances with
the capability of dimension reduction [194]. Consequently, LSH is preferred by applications
in which similarities among data instances of high dimensionality need to be measured.
LSH related methods have also been developed to solve anomaly detection problems under
distributed settings [178] to further boost the efficiency. In order to improve the accuracy,
additional research has utilised the information from the training dataset for guiding the
selection of the hash functions [95]. In 2016, Zhang et. al. [260] successfully applied LSH
in video anomaly detection, which demonstrates its applicability in more complex datasets.
Compared to iForest and LSH, BDD experienced slightly slow development. Since the
publication of the method in 2010 [108], two primary works have been done to improve the
applicability of BDD. Firstly, BDD is employed as a critical tool to support a parameter-free
one-class classifier [109] which is both efficient and accurate. Secondly, BDD is utilised to
evaluate the so-called leave-one-out density [110][111] of a datum for anomaly detection.
The time complexity of the method is linear with respect to the size of the dataset.

Advantages and Disadvantages of Partition-based Methods

The primary advantages of partition-based anomaly detection methods include:

• Compare to other methods of anomaly detection, partition-based methods are known
to be very efficient due to the fact that they do not explicitly rely on the data distance
for anomaly detection.

• Partition-based methods typically partition the data space into diverse parts or divide the
dataset into several portions, which promotes the distributed processing of anomaly
detection.

• Partition-based methods, e.g., LSH, which are capable of dimensionality reduction,
are potent in processing high dimensional datasets.

Partition-based anomaly detection methods are not without their disadvantages:

• For some of the partition-based methods, anomaly detection over high-dimensional
data can be troublesome due to the fact that a large number of dimensions will con-
tribute significantly to the variance of partitioning the data space, hence undermining
the accuracy of anomaly detection.

• Partition-based anomaly detection normally slices the data space with hyperplanes,
which always generates unsmooth decision boundaries. This immensely influences
the anomaly detection results especially when the number of hyperplanes is limited.
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2.2.5 Property-based Methods

In distance-based, density-based, boundary-based and partition-based methods, the basic
strategy is to model the apparent characteristics of the target dataset in order to identify the
data instances that disobey the characteristics. However, in property-based methods, it is
presumed that the target dataset is generated by an underlying system with certain stable
properties. Therefore, property-based methods are modeling the intrinsic mechanism, e.g.,
principal components, data dictionary, data components, data correlations, latent function
or latent information, that is essential to generating the target datasets. Consequently, the
assumption made by property-based methods are as follows:

Assumption: The set of normal data instances is generated according to a
certain mechanism, while the anomalies are not.

Depending on the type of property/mechanism monitored, anomaly detection methods vary a
lot. In this section, six different types of methods are presented:

1) Component Analysis: with the assumption that the target dataset is generated by
combining normal data, data noise and data error, component analysis wishes to
decompose the given dataset for anomaly detection.

2) Subspace Analysis: subspace analysis holds the view that the target dataset is produced
according to some predefined subspaces so that the data that do not align well with
others in the subspaces are anomalous.

3) Representation Analysis: in the systems where normal data instances are generated
based on a dictionary or representatives, representation analysis strives to find these
key data instances and at the same time identify anomalies.

4) Latent Information Analysis: latent information analysis holds the assumption that
the system generates data instances with similar latent information. Therefore, the
data with different latent information are marked as anomalies.

5) Latent Function Analysis: latent function analysis assumes that the normal dataset is
generated according to a set of underlying functions. Data that are not generated by
the functions are anomalies.

6) Correlation Analysis: when a system generates a data instance with stable feature
correlations, this property can be revealed by correlation analysis. Anomalies are
pinpointed if the data instances do not maintain the feature correlation.
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In the following subsections, these types of methods will be discussed in details concerning
their technical methodologies and existing works. Each of these types has actually become a
research direction for anomaly detection and some of them, e.g., correlation analysis, have
been implemented in anomaly detection systems that aim at resolving high-level anomaly
detection problems, such as network device fault detection [81][152].

Component Analysis

Reported as a sub-domain of spectral anomaly detection in [29], the component analysis is a
critical research direction in which matrix decomposition or factorisation plays a significant
role. Methods aiming at matrix component analysis, e.g., Robust Principal Component
Analysis (RPCA) [36][258][245] and other matrix decomposition methods [37][151][113],
have witnessed increasing number of applications for anomaly detection in recent years.

The key idea in matrix decomposition for anomaly detection is to filter the outliers in the
data matrix so that the revised matrix satisfies certain criteria, e.g., low-rank. The criteria is
always assumed according to the actual application. As a quick example, the introduction
of the Direct Robust Matrix Factorisation (DRMF) [244] in anomaly detection is presented
here. The central idea of DRMF is to find a low-rank approximation matrix L of the given
matrix X with the possible outliers S excluded:

min
L,S

∥X−L−S∥F

s.t. rank(L)≤ K

∥S∥0 ≤ e.

Here, ∥X∥F =
√

∑i j X2
i j is the Frobenius norm, while ∥X∥0 = ∑i j I(Xi j ̸= 0) is the L0-norm;

rank(L) represents the matrix rank of L; K and e are the upper bounds for matrix rank and the
number of outliers, respectively. With the solution of the formulation, the original matrix X is
decomposed into two components, i.e., the low-rank approximation matrix L and the outlier
matrix S. This outlier matrix S is the primary result of anomaly detection using DRMF.

Typically, other matrix decomposition methods [255][256] use methodologies similar
to DRMF. Differences are witnessed in how they formulate and solve the core optimisation
problem of matrix decomposition. In general, matrix decomposition is efficient due to the
availability of theoretical methods and practical hardware, e.g., Graphics Processing Units
(GPU), for boosting the process of matrix calculations. It is particularly suitable for offline
processing of a large number of data instances.
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Nevertheless, a major drawback of matrix decomposition is that the assumptions made
by the methods largely influence their performances. The performances of the methods
are very sensitive to the changes of the criterion, e.g., the parameters K and e in DRMF.
Furthermore, it is more an offline technique that works with static matrices. To achieve
online anomaly detection, more challenging tasks, e.g., incremental matrix factorisation,
await further exploration.

Subspace Analysis

Besides component analysis, another critical sub-domain of spectral anomaly detection is
subspace analysis. Subspace analysis emphasises the significance of embedding the data
into a lower dimensional subspace in order to identify anomalies that are not apparent in the
original space. Consequently, determining such subspaces is the key in subspace analysis. A
major method to determine the subspace that captures the bulk of variability in the data is
the Principal Component Analysis (PCA) method [102]. The method targets at pinpointing
the principal components, which capture most of the data information, of a given dataset
and measures the abnormality of a data instance according to its reconstruction error using
only the principal components [207]. Although the method is relatively old, it is capable
of dimensionality reduction and is fast to compute. Therefore, there still are many works
focusing on its development and deployment. Kernel PCA [202] is a critical improvement
over the original design. The method introduces a non-linear mapping function to transfer
the data from the original space to the kernel space in which the original PCA is performed
to find the principal components. The dot product of two mapping functions gives rise
to the utilisation of the so-called kernel function and makes the implicit utilisation of the
mapping function possible. The result of Kernel PCA is the identification of the curved
principal components which are much more accurate compared to original PCA. Thus, Kernel
PCA empowers related anomaly detection methods, e.g., [89], with improved accuracy and
succeeds in better dimensionality reduction results. Besides Kernel PCA, other research
covers further theoretical analysis of PCA, e.g., applicability analysis [57], extending PCA
for different anomaly detection scenarios, e.g., change detection in data streams [180][53],
applying PCA in diverse application domains, e.g., social network [222], and etc.

Generally speaking, subspace analysis methods for anomaly detection are skilled in pro-
cessing high-dimensional datasets due to their intrinsic capability of dimensionality reduction.
They are beneficial to understanding the structure of the target dataset so that making data
analysis tasks easier. However, as pointed out by [57], using subspace analysis methods, e.g.,
PCA, for anomaly detection has to be careful due to the conditions of detectability of the
anomalies, which means the methods have certain limitations.
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Representation Analysis

In boundary-based anomaly detection, a superior property is witnessed in methods, e.g.,
SVDD, that the original dataset can be abstracted using a set of representatives, e.g., Support
Vectors, whose number is typically several magnitudes smaller than the size of the dataset.
To emphasise the significance of the property in processing datasets with large volume,
representation analysis methods for anomaly detection are proposed. These methods typically
assume that normal data instances can be easily represented by a set of data representatives,
while anomalies are hard to be expressed. Hence, there are two primary tasks/techniques
in a representation analysis method: 1) the identification of the representatives and 2) the
expression/representation of data instances by the representatives. Generally, these two tasks
are tightly bound and have similar procedures. In this section, related methods are categorised
according to how they achieve data expression into two classes: sparse coding methods and
sparse representative methods.

Sparse Coding: The first type of representation analysis is to identify the representatives
under the definition of a coding mechanism. For instance, a linearly independent set of data
can be the representatives of all the data which can be presented by a linear combination of
the representatives. Here in the example, the coding mechanism is the linear combination
of representatives. Related methods of this type have been largely explored in recent years.
Standout coding methods include dictionary learning [48], Nonnegative Matrix Factorisation
(NMF) [140][140][240], subspace segmentation [135], sparse modeling [66][68] and etc.
Some of them have been thoroughly investigated for the purpose of anomaly detection, such
as [48][7][86].

As one may notice, one possible benefit brought by sparse coding is dimensionality
reduction. When the number of representatives is smaller than the dimension of the data,
the codes to represent data are of lower dimensions. Therefore, sparse coding is particularly
interesting for high-dimensional data process problems. Nonetheless, in the cases where the
number of representatives is larger than the dimension, sparse coding may not be the best
choice for anomaly detection.

Sparse Representative: The second type of representative analysis is more direct. It
achieves the recognition of representatives through clustering or even sampling. For example,
a rough estimation of the representatives is a uniformly sampling of the original dataset.
More advanced methods for representative identification are clustering-based methods, such
as Self-organising Map (SOM) [107]. In SOM, the neural network succeeds in capturing the
overall structure of the dataset after training while the neurons are distributed according to
the density distribution. As a result, the neural network works like a skeleton of the dataset
and the neurons act as the representatives.
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SOM has been utilised in many applications related to anomaly detection [52][51]. Its
most attractive merits are in two folds: on one hand, SOM is an unsupervised method that
requires no label for anomaly detection; on the other hand, it achieves data reduction that
boosts the efficiency of anomaly detection. The set of neurons in SOM works as a superb set
of samples for representing the original dataset, which benefits a large number of applications.
Nevertheless, most of the sparse representative methods, such as SOM, is not originally
designed for anomaly detection. Therefore, they need to be further optimised for the purpose.

Latent Information Analysis

In the above-mentioned three analysis approaches, the anomaly detection methods tend to
identify explicit information, e.g., data compositions, principal components and representa-
tives, for pinpointing anomalies. In some other methods, implicit information is exploited. A
classical example of methods using implicit information is the RNN, i.e., Replicator Neural
Network [94]. In the initial design of RNN, a fully connected neural network with only one
hidden layer is utilised to fulfill the replication of the input dataset, i.e., the input and output
are the same during the training process. It is worth stressing that the size of the hidden layer
is smaller than that of the input layer in RNN. Therefore, RNN is essentially a combination of
a compressor/encoder and a decompressor/decoder. The compressor encodes the input data
using only the key information, while the decompressor strives in recovering the input data
using only the key information. It is expected that RNN learns the common way to extract
the valuable information of the training data, and any datum whose information cannot be
extracted through the same procedure is considered as anomalies.

Besides RNN, similar approaches cover compression-based methods [114], Adaptive
Resonance Theory (ART) [34] and etc. Compression-based methods leverage latent infor-
mation to compress similar data, while ART stores latent information in the neural network
for further utilisation. Originally, these methods are applied in the fields other than anomaly
detection, such as time series similarity measurement and general clustering problems. As
similarity measurement and clustering are both key problems in specific anomaly detection
methods, e.g., distance-based anomaly detection, compression-based methods and ART are
candidates to fulfill novel anomaly detection methods with desirable features, e.g. efficiency
and self-learning. For example, in 1996, Arning and Agrawal [5] proposed a technique called
sequential exception based on the dissimilarity within the dataset for anomaly detection. The
algorithm requires a function to measure the so-called implicit redundancy, i.e., which ele-
ments in a data set cause the dissimilarity of the data set to increase. The implicit redundancy
techniques could implement the compression-based methods to assess the homogeneousness
of the dataset after the removal of an object or a set of objects.
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Ideas concerning the utilisation of latent information are currently under intense inves-
tigation. Angle-based anomaly detection methods, such as [120][177], compression-based
methods and neural network-based methods are all possible directions to further extend the
methodologies of anomaly detection. From the perspective of efficiency, methods utilising
latent information are always superior especially during the testing phase. And methods,
such as compression-based anomaly detection, are directly applicable to all kinds of datasets
regardless of their size, format and context. Nonetheless, due to the implicit content of
information, one is hard to mathematically explain the essential theories behind the methods,
such as neural network-based methods, for anomaly detection.

Latent Function Analysis

Latent function analysis models anomaly detection as a one-class classification problem and
assumes that there exists a one-class classification function that is capable of identifying
anomalies, i.e., f (x) = y, where x is a data instance and y ∈ {0,1} is the label. Therefore, the
keys in the latent function analysis are the formulation of the function and the way to train
the function under the one-class setting. GP for one-class classification [119] and the least
squares approach [182] are two excellent examples of latent function analysis.

GP has long been famous as an approach for regression and classification [236]. Never-
theless, rare work has been reported concerning the utilisation of GP in anomaly detection.
In 2013, Kemmler et. al. [119] investigated the task of using GP to achieve one-class classi-
fication and discussed theoretical connections between GP and other methods. Essentially,
GP relaxes the assumption that a given dataset is generated by a certain parametric family of
functions and proposes that a specific probability distribution of functions gives rise to the
generation of the given dataset, where the function values are assumed to follow a Gaussian
process. With a further assumption of Gaussian white noise between a real value and its
corresponding function value, the predictive value for a new data instances can be estimated
using another Gaussian distribution denoted here by p(y∗|X ,Y,x∗) = N (y∗|µ∗,σ2

∗ ), where
X and Y are the feature values and labels of the training dataset respectively. x∗ and y∗ are
the feature value and label of the target dataset respectively. µ∗ and σ2

∗ are the mean and
variance of y∗ respectively corresponding to the feature value x∗. For one-class classification,
a zero mean of Gaussian process prior is used, while labels of all training data are set to 1.
Consequently, the values of the latent function are close to 1 in areas near to training data
and 0 otherwise. Four criterion are suggested as scores for anomaly detection: 1) the mean of
the predicted value µ∗, 2) the negative variance value −σ2

∗ , 3) the probability N (y∗|µ∗,σ2
∗ )

and 4) a heuristic score µ∗
σ∗

.
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In GP, p(y∗|X ,Y,x∗) = N (y∗|µ∗,σ2
∗ ) is the latent function, while a simpler function is

adopted in the least-squares approach for anomaly detection [182]:

f (x) = p(y|x,θ) = 1−θ
T

φ(x),

where φ(·) is a mapping funtion and θ is the parameter. To achieve one-class classification,
the latent function is trained to be close to 1 in areas where the training data are populated
and 0 otherwise. The process for training the one-class classifier is designed as the following
minimisation procedure:

min
θ

J(θ) =
1
2

∫ (
1−θ

T
φ(x)

)2 p(x)dx+
ρ

2
∥θ∥2.

Here, p(x) is the probability distribution of data x and ρ is a parameter for balancing the
regularisation term ρ

2∥θ∥
2. Through empirical approximating of p(x), the minimisation

problem gives the optimal parameter θ∗ which is further utilised by the latent function for
one-class classification.

Although elegant, a critical potential problem that may hinder the utilisation of latent
function analysis in practical applications is the assumed functions in related methods,
e.g., GP presumes that the function values follow the Gaussian process. Despite this, latent
function analysis methods have their own merits that are useful in practical anomaly detection
problems. For instance, GP is skilled in incremental data analysis and the least-squares
approach is efficient in both training and testing phase of anomaly detection. Latent function
analysis also poses potential research direction that classification and regression methods are
all possible to be modified and applied to support one-class classification.

Correlation Analysis

Correlation analysis is mostly mentioned and utilised in statistical analysis problems. The
relations among diverse variables support the solution of various problems, such as anomaly
detection. From the perspective of general datasets, the idea of correlation analysis is pro-
moted for outlier detection problems in [175]. Unsupervised anomaly detection is generally
harder than supervised anomaly detection due to the lack of label information in the train-
ing dataset. Through feature correlation analysis, Paulheim and Meusel reformulated the
unsupervised anomaly detection problem as a set of supervised regression problems. To be
more specific, the set of regression problems for a d-dimensional numerical data x ∈ Rd is
designed as:
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regress1(x2,x3, · · · ,xd) ∼ x1

regress2(x1,x3, · · · ,xd) ∼ x2

· · ·
regressd(x1,x2, · · · ,xd−1) ∼ xd

where xi, i ∈ {1,2, · · · ,d} is the i-th feature in the data. With the further assignment of the
weights to the regression problems, the overall accuracy of anomaly detection is enhanced.
Also, as a side product, the learned weights pinpoint the irrelevant features of the data, which
succeeds in feature selection.

Apart from general datasets, the idea of correlation analysis has also been adopted in
large-scale systems for system anomaly detection [103][8]. In recent years, the notion of
invariant network has attracted large number of research interests and resulted in fruitful
research outcomes [152][181][211][81][43]. Essentially, the idea of the invariant network is
to identify the invariant connections/relations among the variables found in the system. A
variable could be the metric of the CPU utilisation in a device or the measurement of the
temperature in an area of the system. A stable correlation between two variables along the
time indicates the good health of the components related to the variables. Related information
about the dynamics of the correlations also provides indications for the fault localisation of
the system, which has tremendous potential benefits for the management of the target system.

The idea and related techniques have been investigated in practical systems, such as
wireless sensor networks [152], and it is expected that the correlation analysis methodology
will contribute even more to the domain of anomaly detection and further system-level fault
detection/localisation. Nonetheless, the method is not without its drawbacks. The large
computational complexity, e.g., the augmented number of regression problems, is the very
first issue to be addressed to promote the applicability of the method in broader application
domains. The calculation of the correlations in special types of datasets, e.g., time-series
dataset and textual datasets, is another practical problem to be tackled. Most importantly, the
incremental measurement of the correlations should be well examined to make the methods
practical in coping with problems posed by evolving datasets and systems.

2.2.6 Discussion and Other Methods

In the previous subsection, five major types of anomaly detection methods are elaborated.
All of these methods have their individual properties. To determine which method to take
under a specific scenario typically requires detailed examination of the critical demands in a
application. Currently, there is no a well-rounded method that is suitable for all applications.
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Hybrid Methods

Due to the fact that there is no best method in all applications, numerous works have been
investigating the possibility of combining different methods for anomaly detection. The
resulting method, always called a hybrid method, is expected to possess better accuracy and
beneficial features. Early investigations of the idea of hybrid methods have spread through
various domains, such as time-series prediction [174], classification [122][121] and etc. The
research of hybrid methods in anomaly detection domain is also under fast development and
has produced many successful applications and research outcomes [164][253][190][259].
For example, [190] presents a system with two stages in which a clustering algorithm, e.g.,
K-means, and an anomaly detection algorithm, e.g., iForest, are employed to provide detailed
analysis of known anomalies and unlabeled data instances respectively. After the inchoate
process of the complex input, another method, e.g., weighted support vector machine, is
adopted to finalise the anomalies. On the other hand, in [164], a number of independent
models for data prediction are used to investigate the relationship among data features.
Models are evaluated according to their performance in fitting the training dataset and
further combined and leveraged to implement the eventual anomaly detector. Therefore,
it is witnessed that developing a hybrid method is of great benefit under the presence of a
complex anomaly detection scenario and more efforts could be made to further advance this
field. Nevertheless, in this thesis, due to the reason that extending specific features of an
anomaly detection method is the primary target, hybrid methods are not largely explored.
For more details concerning hybrid methods for anomaly detection, interested readers are
recommended to refer to [3][19][90][115][176] for more details.

Automated Learning

Another major research direction for the purpose of designing a well-rounded anomaly
detection method/system is the automated learning. In 2015, Yahoo proposed a generic and
scalable system for automated time-series anomaly detection [125]. The system maintains
a library of time-series anomaly detection methods which are examined individually to
identify the best method for a specific time series. It is claimed that the system is currently
utilised by many teams in Yahoo for daily monitoring of critical time series data. In machine
learning, another related work that integrates algorithm selection with hyperparameter tuning
is undertaken in [70] which also exploits multiple techniques, e.g., Bayesian optimisation
and ensemble learning. It is expected that similar approaches can be useful in designing a
generic system for automated anomaly detection. This is still a brand new research direction
that few researchers have set foot on.
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Other Methods

Hybrid methods and automated learning are two research directions that worth exploring.
In recent years, there is another hot notion called Big Data which incites intense research
efforts in the domain of tensor analysis [150]. A tensor is a general term for describing arrays.
A 1-dimensional array is called vector and 1st-order tensor, while a 2-dimensional array is
called matrix and 2nd-order tensor. To process a high-dimensional tensor, novel methods
are required. From the perspective of anomaly detection, more novel techniques need to
be investigated to achieve accurate and efficient tensor-based anomaly detection. A survey
of tensor-based anomaly detection is presented in [69]. Due to the fact that many existing
tensor-based techniques are not designed for anomaly detection, it becomes a novel research
direction.

Comparison to Other Surveys

The related work in this section covers a broad view of general anomaly detection methods.
It is also compared with many existing surveys of anomaly detection, the result of which is
shown in Table 2.1. Note that the review proposes a new taxonomy of the existing anomaly
detection methods and it investigates more categories of related methods compared to all the
other related surveys.

2.2.7 Summary

This section illustrates diverse categories of techniques for general anomaly detection. Specif-
ically, five categories of methods are discussed according to the information they utilised
in determining the concept of abnormality, i.e., distance information, density information,
boundary information, partition and other properties. All these classes of methods have their
own pros and cons. Generally, it is the property of the target dataset that should be fully
examined before picking the most appropriate method for anomaly detection. Luckily, it is
witnessed that hybrid methods are becoming increasingly skilled in integrating the benefits
from diverse methods under certain anomaly detection scenarios so that generating better
anomaly detection performances is made possible. Overall speaking, there have been fruitful
research outcomes in general anomaly detection methods and it is shown that more powerful
and rounded systems with distinctive features are promising and await further exploration.
In this thesis, efforts are made to support specific methods with additional features. It is ex-
pected that the additional features will greatly contribute to more powerful anomaly detection
methods so as to ease the problems and challenges mentioned in the previous chapter.
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2.3 Time Series Anomaly Detection

In the previous two sections, related works concerning general anomaly detection methods
are categorised and detailed. From this section, the focus is placed on the anomaly detection
of a specific data type, i.e., time series. This is due to the reason that time series anomaly
detection is the primary application investigated in this thesis. It is beneficial to have
a clear understanding of what the actual problem formulation we are dealing with and
pinpoint the related works targeting at solving the problem. A thorough discussion of all
the related problem formulations and related works of time series data mining can be found
in [80][30][63]. As pointed out by [80], the problem of time series anomaly detection has
two main tasks. The first task deals with the detection of anomalous time series over a
given time series database, whereas the second task concerns detecting anomalies within a
single time series. In this thesis, identifying anomalies within a single time series is the
primary focus and it is worth noting that the time series concerned is considered to be
a continuous sequence of numerical data rather than a discrete sequence of symbolic data
which requires a different set of methods [30]. In the next subsection, basic strategies for
analysing time series anomalies are discussed. A broad taxonomy of time series anomaly
detection methods is presented afterward. For additional information concerning time series
anomaly detection methods, interested readers are recommended to refer to [47][4].

2.3.1 Strategies for Time Series Anomaly Detection

Before moving forward to introducing time series anomaly detection strategies, let us firstly
clarify the problem formulation of the concerned time series anomaly detection. Imagine
a time series starting from time 0 to time T , i.e., X =< x0,x1, · · · ,xT >. The time series
anomaly detection is to identify the set of anomalous points within the time series or label
all the points within the time series with Y =< y0,y1, · · · ,yT > indicating whether their
corresponding points are anomalous or not. More formally, the problem is:

Given: a time series X ,
Find: anomalous points in X .

Reduction to General Anomaly Detection

Although the above problem formulation concerns the anomaly detection in a time series
which possesses sequential information among the data points, general anomaly detection
methods are still applicable. This is achieved through the reduction of the time series anomaly
detection problem. A typical method for the problem reduction is time-delay embedding



50 Related Work

[172] which adopts a sliding window to construct multivariate data instances from the original
time series. For example, supposing that the size of the sliding window is set to E, the method
of time-delay embedding would construct a new dataset from the time series X as:

X ′ = {xE(t)|t = 1,2, · · · ,T −E +1},

where it has:
xE(t) = [xt ,xt+1, · · · ,xt+E−1].

Consequently, a time series is converted to a set of multivariate data instances that enables
general anomaly detection methods. Note that the sequential information within the original
time series is encoded within the multivariate data. Therefore, the general anomaly detection
methods also take into consideration the sequential information. It is also worth noting that,
the utilisation of the sliding window has multiple tricks that support the advancement of
anomaly detection performance. For example, if the periodicity of the time series is known,
non-overlapping sliding windows could be used instead of traditional time-delay embedding,
which is supposed to generate fewer data but better performance.

Time Series Specific Analysis Methods

Besides the methodology of reducing time series anomaly detection to general anomaly
detection, there is also a broad range of time series analysis methods that are applicable in
anomaly detection. Time series analysis methods model or analyse the sequential information
directly to seek stable models or patterns that are essential in the original time series. With
the assumption that the time series consistently obeys these models or patterns, they are
utilised to check the consistency of the time series for anomalies. A very straightforward
example would be the utilisation of Linear Regression (LR) [117] to model the evolving
trend of the time series. Data values that are far from the expected values given by the model
are likely to be anomalies. In the following subsection, the time series specific analysis
methods are reviewed and categorised.

2.3.2 Techniques for Time Series Anomaly Detection

Time series anomaly detection has been an important research topic for many years. Typical
approaches for solving the problem cover 1) the methods that target at analysing univariate
time series and 2) the methods that model multivariate time series for anomaly detection.
In this section, four categories of the time series specific anomaly detection methods are
detailed and their advantages and disadvantages are also discussed.
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Statistical Prediction Methods

Statistical prediction methods for anomaly detection mainly concerns the predictive models
of univariate time series. These models aim at extracting the patterns in a given time series
so as to accurately predict subsequent values. Traditional methods, such as Auto-regressive
model (AR) [15] and Moving Average model (MA) [61], are all statistical analysis methods
that are potent in modeling univariate time series for prediction. More advanced methods are
developing rapidly in recent years. ARIMA [25], Seasonal ARIMA [93] and the whole class
of Exponential Smoothing (ES) methods [72][73] all find numerous applications in various
domains.

For univariate time series, statistical prediction models are relatively simple models that
are easy to train and utilise. As a result, the prediction of the future time series is fast and
suitable for working online. For stable time series that possess steady time series patterns,
these models always demonstrate very good performance in practice. Nevertheless, due to
the fact that they are originally designed for univariate time series, most of these methods are
not applicable in multivariate time series prediction, which limits their applications. Besides,
in situations where the target time series is noisy and unstable, these predictive models are
too simple to capture the complex patterns and dynamics of the time series. Therefore, they
always do not adapt well in sophisticated scenarios.

Time Series Decomposition Methods

Rather than dedicated methods for time series anomaly detection, time series decomposition
methods are originally designed to decompose a time series into several critical components,
e.g., the growing trend and the seasonal pattern. The accurate separation of these components
contributes to the analysis of time series. It helps with the understanding of a time series and
makes the prediction easier and more accurate. Typical time series decomposition methods
include additive decomposition, multiplicative decomposition, X-12-ARIMA decomposition
and STL [91][33]. The positive effect of time series decomposition has been validated
in many works, e.g., STL is employed in [224] as a primary technique to achieve the
decomposition of the seasonal information, which successfully supports effective long-term
time series anomaly detection. Generally speaking, time series decomposition is an excellent
tool for preprocessing time series for further applications. It is widely adopted especially
when analysing time series with growing trend or strong periodicity. Nonetheless, for time
series with no explicit periodicity, time series decomposition may incur additional work and
may not have positive effects on time series anomaly detection.
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State Transition Models

State transition models are methods that examine the dynamic state transitions within a
system or a time series. In state transition models, a time series is assumed to maintain a
steady state transition pattern that can be modeled as a stable property. This stable model
is normally realised as a Markov model [250], a Hidden Markov Model (HMM) [138] or a
Finite State Machine (FSM) [130]. Over the years, numerous research has been undertaken
to exploit the state transition models for sequential data anomaly detection. In 2015, [77]
proposed a Hidden Markov anomaly detector that is shown to outperform the one-class
SVM in situations where data have latent dependency structures. Additionally, in [134],
a timed automata is employed to profile the normal sequential behavior of a digital video
broadcasting system for the purpose of anomaly detection. These works all demonstrate the
effectiveness of state transition models in analysing sequential data.

Compared to statistical prediction methods and time series decomposition methods, state
transition models are superior in processing multivariate time series. Furthermore, the models
grasp the intrinsic state transitions among sequential data, which promotes the understanding
of the underlying system and provides a better explanation for potential anomalies. On the
other hand, these models are not without their drawbacks. An essential problem of these
models is the utilisation of the states which are either not known in advance, i.e., hidden state,
or discrete symbols that ignore certain information, e.g., discretising values in time series
to definite states [130]. Both of the situations limit the performance of time series anomaly
detection. Moreover, the trained model is always not flexible enough when the target time
series or system is dynamically changing.

Regression Methods

Regression methods are critical tools for time series prediction and anomaly detection.
And different from statistical prediction methods, regression methods naturally support
multivariate data processing. As a result, they are widely applicable. Typical examples of
regression methods, e.g., LR [117], Generalised Regression Neural Network (GRNN) [100],
Support Vector Regression (SVR) [161] and GP [236], have been implemented in various
fields for the purpose of time series prediction and anomaly detection. In [156], Ma and
Perkins formulated the problem of time serise anomaly detection under the framework of
SVR, and in [184] GP is suggested for anomaly detection and removal. LR is utilised in [11]
for time series anomaly detection. Generally speaking, most of the regression methods for
time series forecasting are widely applicable in time series anomaly detection problems with
some minor adjustments.
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As has been mentioned, regression methods are multivariate data processing methods
that are naturally suitable for time series prediction. According to distinct scenarios, different
regression methods could be used. Regression methods support the recognition of complex
time series patterns which statistical prediction methods are always not able to capture.
Another advantage that supports the utilisation of regression methods is that most of the
regression methods are adaptive to model changes and therefore potent in dealing with
streaming time series datasets. On the other hand, the drawbacks of using regression methods
are that they are relatively complex models and normally require more data and resources for
training. In environments where resources are limited, the utilisation of regression methods
should be carefully examined.

2.3.3 Summary

In this section, the strategies and techniques for time series anomaly detection are examined.
Compared with general anomaly detection, time series anomaly detection has to extract and
analyse the sequential information within the time series in order to make anomaly detection
decisions. Based on how to extract the sequential information, two strategies are identified,
i.e., reducing time series anomaly detection to general anomaly detection and implementing
time series specific analysis methods. On the other hand, four types of time series specific
analysis methods are elaborated according to their capability of handling multivariate time
series. Overall, this section presents a brief taxonomy of time series anomaly detection
methods and gives a solid overview of the background in time series anomaly detection.

2.4 Conclusion

In this chapter, an organised overview of the techniques for both general and time series
anomaly detection is present. Generally speaking, analysing time series is a more challenging
task because of the dynamically evolving patterns and complex contextual information in
time series. Although general anomaly detection techniques are applicable in time series
anomaly detection problems, additional efforts are required to meet the specific challenges
in processing time series. From the next chapter, four key research topics will be detailed
concerning general and time series anomaly detection: 1) better accuracy, 2) integration of
contextual information, 3) anomaly analysis and 4) parameter-free and dynamic anomaly
detection model. Each of these topics is critical and should be carefully examined for
practical anomaly detection.





Chapter 3

Support Vector Data Description with
Relaxed Boundary

3.1 Introduction

Anomaly detection is widely applied in diverse fields, such as the cloud computing systems.
As one of the fastest-developing technologies, cloud computing is becoming increasingly
ubiquitous. Cloud services, e.g., Dropbox, Google App Engine and Windows Azure, have
infiltrated into diverse aspects of the society and the performance of such services enormously
affects our daily lives. Therefore, many efforts have been made by cloud service providers
and researchers on anomaly detection over the cloud services [56][104][165][224]. However,
with the ever-growing complexity, cloud computing systems also facilitate the emergence
of Big Data [105][252], which raises huge concern in accurate anomaly detection due to
the greater difficulties in accurate data collection, preprocessing, etc. More specifically, the
time-series data collected from cloud services are always noisy and trigger high volume of
false alarms in cloud monitoring systems. As a result, excellent time series anomaly detection
methods are urgently required to reduce the false alarms in the systems.

In reality, time series anomaly detection has been a critical research topic in the do-
main of data analysis for decades. It has been widely applied to various areas related to
the processing of sequential datasets. Over the years, diverse researches have been under-
taken to detect time series anomalies aiming for low false positive rate and high efficiency
[92][125][127][126][224]. This chapter, however, is particularly devoted to investigating the
method of Support Vector Data Description (SVDD) [208] for time series anomaly detection
with the targets of reducing false alarms while maintaining efficiency.
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Fig. 3.1 Anomaly detection over time series “real47” using SVDD

Generally speaking, SVDD is a promising and popular method for achieving efficient,
accurate, and interpretable anomaly detection. Its popularity is mainly owing to the fact
that it is a non-parametric sparse model, which naturally supports multivariate one-class
classification with a concise and easy-to-understand geometric interpretation of the results.
Previously, a similar method of SVDD, i.e., One-class Support Vector Machine (OCSVM)
[201], was invented for the purpose of one-class classification. The authors in [157] pioneered
the employment of OCSVM for general time series anomaly detection with a sliding window.
However, in applications such as cloud computing systems, the noisy nature and high velocity
of the time series, i.e., service performance metrics, contribute to the great challenges in
anomaly detection. As a result, when SVDD is used in time series anomaly detection, its
drawbacks, i.e., high false alarm/positive rate and huge computational complexity, become
prominent, which hinder its practical applications.

In order to illustrate the high false positive rate of SVDD in time series anomaly detection,
a real-world time series “real47” selected from Yahoo benchmark datasets [249] is depicted
in Fig. 3.1 with its manually labelled anomalies and the anomalies reported by conventional
SVDD. It is worth stressing that SVDD identifies all the labeled anomalies, which are not
easily spotted by traditional statistical methods, e.g., box-plot rule [96], because the anoma-
lous points have normal values (between 0.2 and 0.8). It is the unusual shapes and patterns
of the values that contribute to the anomalies. Nevertheless, in this example, false alarms
dramatically outnumbers the correctly identified anomalies, which renders conventional
SVDD impractical. Furthermore, from the perspective of computational complexity, over
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a thousand of Quadratic Programming (QP) problems, i.e., the underlying mathematical
problem of SVDD, need to be solved during the process (with sliding window [157]), which
leads to the drain of significant computational resources. Both of the abovementioned issues
are severe and can influence the performance of SVDD in time series anomaly detection
significantly.

Consequently, to ensure the applicability of SVDD, this chapter introduces a more
practical tool for time series anomaly detection by utilising linear programming SVDD
(LPSVDD) with relaxed data description boundary to achieve better accuracy and efficiency.
It is found that relaxing LPSVDD (RLPSVDD) results in a Linear Programming (LP)
problem which is much easier to tackle than a nonlinear programming problem. Along with
jumping window, RLPSVDD manages to boost the process of time series anomaly detection,
and, at the same time, achieve high accuracy. The sufficient condition for selecting valid
parameters to ensure the practicality of RLPSVDD is also provided. To conclude with, the
main contributions of this chapter are:

• A novel linear programming SVDD (LPSVDD) is formulated and relaxed for detecting
anomalies in time series;

• To ensure that the relaxed LPSVDD (RLPSVDD) is practical for anomaly detection,
important insights of how to select its parameters have been presented. The sufficient
condition of a practical RLPSVDD is given.

• Extensive experiments are conducted on Yahoo benchmark datasets which contain
different metrics of various Yahoo services. The results demonstrate that RLPSVDD
can achieve higher capability and accuracy in identifying various time series anomalies.

As will be shown by the experiment results, RLPSVDD performs averagely the best among
all the compared methods, which firmly supports the utilisation of RLPSVDD in time series
anomaly detection. Note that many other methods do not maintain a consistent performance
due to their incapability of handling the diverse patterns of the time series. Consequently,
RLPSVDD is able to provide more accurate results so that the reliability and trustworthiness
of the applications, e.g., cloud computing systems, are more effectively preserved.

The rest of this chapter is organised as follows. Related work and background information
are presented in the next section. In Section 3.3, the formulation of LPSVDD as well as
the ways to relax it and ensure valid anomaly detection are elaborated. The details of the
experiments and results analysis are provided in Section 3.4. Finally, conclusions are drawn
in Section 3.5.
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3.2 Related Work

3.2.1 Time Series Anomaly Detection

Many time series anomaly detection methods have been practically implemented and utilised.
For instance, in 2013, Etsy open-sourced Skyline [62] for the passive monitoring of time-
series metrics. The basic algorithms of the system cover Grubb’s test [75], moving average
[25] and other statistical methods. In 2014, Twitter published a method based on time series
decomposition and generalised Extreme Studentised Deviate test (ESD) [224]. It is a practical
approach built upon robust statistical methods and has been released under an open source
license in [205]. Moreover, in 2015, Yahoo announced their framework for automatic time
series anomaly detection, which is named Extensible Generic Anomaly Detection System
(EGADS) [125]. Rather than merely trying a single method, EGADS includes a set of
methods for time series anomaly detection, such as ARIMA [25], exponential smoothing
[73], etc. Different from these methods and systems, which typically utilise statistical
information, the method suggested in this chapter (RLPSVDD) can capture additional
structural information of the dataset. While detecting time series anomalies, RLPSVDD
takes not only the values but also the patterns of the time series into consideration, which
reflects its superior capability to detect diverse types of anomalies.

Besides the well-developed statistical methods, other methods under the broad umbrella
of machine learning have gained increasing popularity in recent years. For example, Principal
Component Analysis (PCA) has been examined specifically for time series anomaly detection.
In [127], PCA was utilised to find the normal and anomalous components of network link
traffic measurements. A new link traffic measurement is then projected onto the anomalous
components for the investigation of anomalies. Although elegant, PCA and many other
spectral analysis methods always require a time series to be folded into a matrix according to
its intrinsic period before anomaly detection. As a result, these methods are more suitable for
time series with stable periodicity. In RLPSVDD, however, the unstable patterns of a time
series do not interfere with the effectiveness and changing patterns can be detected online.

In [29], many other types of machine learning methods for anomaly detection in general
datasets are summarised. A very powerful type of the methods is based on neural networks.
As a concrete example, in 2015, Numenta implemented and open-sourced a special type
of neural network for time series anomaly detection called Hierarchical Temporal Memory
(HTM). The method was compared with other related methods in [126], where the results
demonstrate the excellence of Numenta HTM in time series anomaly detection. In contrast
to HTM, RLPSVDD shows its conciseness in implementation, as it can be implemented in
several lines of code, and its competitive effectiveness, which will be shown in Section 3.4.
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3.2.2 Support Vector Data Description (SVDD)

In comparison with other related work, SVDD [208] shows its uniqueness in time series
anomaly detection. SVDD is essentially a one-class classification or data description method
that features a nonparametric model without requiring the knowledge of explicit data distribu-
tion. The existence of the sparse support vectors in SVDD enables a computationally efficient
decision function for online anomaly detection. Although it is theoretically proved to be equiv-
alent to One-class SVM [201] with the utilisation of Gaussian kernel, its easy-to-understand
geometric interpretation contributes to its popularity. More specifically, the mathematical
formulation of SVDD indicates a process of searching for the minimum enclosing ball,
determined by the center a and radius R, of a set of data instances x = {x1,x2, · · · ,xN}, which
are projected by a projection function φ(·) into a high-dimensional space [208]. Note that, N
is the number of the data instanes. In addition, with the introduction of the nonnegative slack
variable ξi weighted by a constant C for each data instance xi ∈ RD, where i ∈ {1,2, ...,N}
and D is the dimension, the radius of the ball is shrunk to exclude possible outliers. The final
formulation of SVDD follows:

mina,R2,ξ R2 +C∑
i

ξi

s.t. ∀i, ∥φ(xi)−a∥2 ≤ R2, ξi ≥ 0.
(3.1)

There have been a number of studies on improving the accuracy and efficiency of SVDD.
Many of these studies focus on enhancing the accuracy of data description under the presence
of a noisy dataset. A natural way to customise the way SVDD handles noisy data is to fine
tune the weights of the slack variables of all the data instances. Liu et al. [146] and Chen et
al. [45] both adopted this idea and designed distinct weights for the slack variables. As the
original slack variables only have the effect of shrinking the data description boundary, Chen
et al. also showed in [45] that SVDD could introduce an additional constant slack variable to
improve the generalisation performance through expanding the boundary. This technique has
also been introduced by Wu et al. [239] and Mu et al. [154] with distinct formulations that
are superior in the automatic decision of the constant slack variable. Nonetheless, both of
these works considered the presence of a labeled dataset, which is not always the case in time
series anomaly detection. Another popular method of handling a noisy unlabeled dataset was
introduced by Lee et al. [131] where weights are assigned to the distance between a data
instance and the center of the enclosing ball. They designed the weights based on the density
information of the data instances, encoding the capability of capturing the dense area of the
dataset into SVDD. The resulting data description boundary is expanded and shifted towards
the dense area of the dataset.
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The work in this chapter, i.e., RLPSVDD, also expands the description boundary in
order to obtain better results in time series anomaly detection. Nevertheless, it adopts linear
programming SVDD for boundary expansion, which leads to the relatively easy-to-solve LP
problem rather than the nonlinear programming problem that is witnessed in [131].

Besides accuracy, research has also been intensely undertaken concerning the efficiency
of SVDD. In 2000, Campbell and Bennett introduced linear programming One-class SVM
[32][31] that replaces the original QP problem with the LP problem. Later, in 2004, Chu et
al. [39] proposed to utilise core-sets to scale up SVDD training and reduce the training time
complexity from O(N3) to O(N), where N is the size of the dataset. From the perspective
of SVDD testing, Liu et al. [136] seeked a way to find the preimage of the center of the
enclosing ball in the feature space and reduce the time complexity of SVDD testing to
constant time. Another important work aiming at boosting the efficiency of SVDD was
introduced by Tax and Laskov [128] where incremental SVDD is proposed to achieve online
learning of SVDD. The method solves the underlying QP at the very beginning and only
updates the Lagrangian multipliers [208] when new data instances are available. It avoids
the retraining of the model and maintains the validity of the solution for data description.
The incremental SVDD is elegant and practical, but it works only for conventional SVDD.
Whether the same technique works for the density-induced SVDD [131], the underlying
problem of which is a nonlinear programming problem, remains a nontrivial problem.

The work in this chapter is inspired by linear programming One-class SVM [31] and
incorporates additional information for time series anomaly detection in a way that is similar
to [131]. Different from [31], the proposed method achieves a flexible boundary that helps
with better data description. It essentially contains the LP problem that is much easier to
solve than that in [131]. From the perspective of time series anomaly detection, it achieves
higher accuracy and performs more efficiently than the conventional SVDD.

3.3 Relaxing Linear Programming Support Vector Data
Description

3.3.1 Linear Programming SVDD (LPSVDD)

The essentials of LPSVDD lie firstly in the problem formulation. Intuitively, to describe a
dataset, LPSVDD considers that the data instances in an enclosing ball aim to move away
from the center as far as possible. As a result, LPSVDD targets at minimising the sum of the
distances between data instances and the data description boundary:
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mina,R2 ∑
i

(
−∥φ(xi)−a∥2 +R2)

s.t. ∀i, ∥φ(xi)−a∥2 ≤ R2.

(3.2)

The D-dimensional data instances are denoted by xi ∈ RD with index i ∈ {1,2, ...,N}, where
N is the number of data instances. a and R are the center and radius of the enclosing ball,
respectively. The mapping function φ(·) projects a data instance into a high-dimensional
feature space and enables the utilisation of the Gaussian kernel. By expanding the squared
distance and employing some underlying properties and constraints, the formulation is
reformulated as:

minα,R2 ∑
i

(
∑

j
2α jK(xi,x j)−2+2R2

)
s.t. ∀i, 1−∑

j
α jK(xi,x j)≤ R2,

∑
j

α j = 1, α j ≥ 0,

(3.3)

where j ∈ 1,2, ...,N is also the index of data instances and α j is the Lagrangian multiplier
for data x j. The properties and constraints leveraged in Eq. (3.3) contain:

φ(xi) ·φ(x j) =K(xi,x j) = e
−∥xi−x j∥2

σ2 ,

φ(xi) ·φ(xi) =K(xi,xi) = e
−∥xi−xi∥2

σ2 = 1,

(3.4)

a = ∑
j

α jφ(x j), (3.5)

a2 = 1−R2. (3.6)

Eq. (3.4) is the formulation of the Gaussian kernel with the parameter σ . Eqs. (3.5) and (3.6)
display the implicit constraints that appear as a result of solving the conventional SVDD
problem [208]. With all these conditions, the above two formulations are equivalent. In
Fig.3.2, where the formulations are interpreted geometrically, the feature space onto which
all the data instances are mapped is depicted as the surface of the bigger circle denoted by its
center O, and the smaller circle denoted by its center a is the minimum enclosing ball that
surrounds all the data instances. Due to the utilisation of the Gaussian kernel, O is a unit
circle, i.e., the radius of O is 1. This geometric interpretation is the same as that in SVDD.
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Fig. 3.2 LPSVDD in feature space with constraint a2 +R2 = 1

However, the new formulation still contains the QP problem due to the constraint in Eq.
(3.6). Therefore, the constraint is relaxed to reduce the QP problem (Eqs. (3.3)-(3.6)) to the
LP problem (Eqs. (3.3)-(3.5)) that can be solved directly by the existing LP solvers. After
solving the problem, the data instances x j with non-zero Lagrangian multipliers α j, known
as support vectors (SV), and the radius of the enclosing ball

R2 = max
i∈SV

1− ∑
j∈SV

α jK(xi,x j), (3.7)

are facilitated to test whether a new data instance xnew is inside the minimum enclosing ball
by checking:

1− ∑
j∈SV

α jK(xnew,x j)≤ R2. (3.8)

If Eq. (3.8) holds, the new data instance is considered to be normal. Otherwise, an anomaly
is detected.

3.3.2 Relaxing LPSVDD (RLPSVDD)

In many applications, the available data instances come only from a restricted portion of
the entire dataset. Therefore, from the perspective of anomaly detection, the available data
instances are so limited that a detailed description would cause too many false alarms, which
would notably undermine the practice of anomaly detection. It has already been shown
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that, with an extension of the data description boundary, SVDD achieves higher accuracy in
one-class [45] and binary class classification [154][239]. In this work, LPSVDD is relaxed
for one-class classification and a better boundary extension than that reported in [45] is
accomplished. By incorporating additional information, the relaxed LPSVDD (RLPSVDD)
is capable of expanding the boundary towards the preferred directions. The method used is
analogous to that in [131]. However, RLPSVDD maintains its quality as the LP problem.

Concretely, to provide a flexible description of a given dataset, the formulation of
RLPSVDD follows:

minα,R2 ∑
i

(
∑

j
α jK(xi,x j)−1+R2

)

s.t. ∀i, ρi ·

(
1−∑

j
α jK(xi,x j)

)
≤ R2,

∑
j

α j = 1, α j ≥ 0,

(3.9)

where the parameter ρi is determined by the additional information of data instance xi and is
always nonnegative. In contrast to other formulations of related purpose, such as the density-
induced SVDD [131] in which ρi ≥ 1, the range of ρi here is [0,+∞), which means that
RLPSVDD cannot only expand the boundary for relaxed anomaly detection, but also shrink
and move the boundary of the data description. As a result, it is unnecessary to introduce
slack variables in this formulation. Note that, the additional information can be fundamentally
different from that given by the original dataset, e.g., a textual description of the symptoms
of a patient can be the additional information w.r.t. the detected quantitated measurements of
the symptoms, e.g., the blood pressure. In one-class classification for anomaly detection, a
natural piece of additional information is the holistic or detailed description of the original
dataset [228]. The details of the additional information used in this chapter follow that in
[131] and will be explained in Section 3.4.

In fact, there are also other distinct formulations that are capable of shrinking and expand-
ing the data description boundary in LPSVDD. But focus has been placed on Eq. (3.9) for two
reasons. (1) It intuitively relaxes LPSVDD while maintaining the LP problem. Consider that
ρi = ρ for all i, the formulation scales the radius R, i.e., R2 = ρ ·maxi

(
1−∑ j α jK(xi,x j)

)
,

to directly control the boundary. (2) It leads to an easy-to-understand criterion that rules the
proper selection of the parameter ρi.
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Fig. 3.3 The restriction of parameter selection in DSVDD and RLPSVDD

3.3.3 The Restriction of the Parameter ρi

As mentioned in Section 3.3.2, the parameter ρi is flexible in the range [0,+∞). Although
certain flexibility has been provided in assigning the parameter, it should be careful that
even a normal selection of the parameter may lead to an impractical one-class classifier
for a specific dataset. Fig. 3.3, where the first 100 data instances (first 2 dimensions) of
Iris dataset [123] are depicted, constitutes a good example of this. The red dashed curves
are the data description boundaries given by the density-induced SVDD (DSVDD) with
different parameter settings, i.e., different omega (ω in Section 3.4.1). Similarly, the green
solid curves are the boundaries given by RLPSVDD with data density as the additional
information weighted by the different parameter settings, i.e., different omega. Note that ρi

is positively proportional to omega (see Section 3.4.1). Therefore, with an increasing omega,
the boundary inflates gradually. Nevertheless, when omega is chosen as 0.5 in DSVDD and
0.3 in RLPSVDD, no visible boundary exists for data description, which is counterintuitive.
The information about the formulation of density information and parameter ρi will be
presented in Section 3.4 along with the detailed experiments explaining why the boundary
vanishes. In this section, a formal definition of practical RLPSVDD is firstly given and the
theoretical analysis on how to ensure the practicality of RLPSVDD is then presented.

Definition 1 (One-class Classifier): A one-class classifier f is a function or
model that is trained by a set of one-class training data, denoted as X , takes input
x ∈ RN , where N is the dimension of the input data, and outputs y = fX(x) ∈
{0,1} to indicate whether the input data x belongs to the same class as X .



3.3 Relaxing Linear Programming Support Vector Data Description 65

Definition 2 (Practical/Impractical One-class Classifier): A one-class classi-
fier f is impractical if ∀x ∈ RN , f (x) = 1 or ∀x ∈ RN , f (x) = 0. In other words,
an impractical one-class classifier does not provide valuable information for data
classification. A one-class classifier that is not impractical is called practical.

Based on the definitions, RLPSVDD is a one-class classifier with

f (x) = sgn

(
R2−

(
1−∑

j
α jK(x,x j)

))

derived from Eq. (3.8). Moreover, sgn(z) is a signal function that outputs 1 if z≥ 0, and 0
otherwise. To ensure a RLPSVDD is a practical one-class classifier, it must suffice that:

1−max
x

a ·φ(x)< R2 < 1−min
x

a ·φ(x). (3.10)

Upper Bound

Theoretically, a=∑ j α jφ(x j) and φ(x) are two vectors in the feature space. The minimisation
of their multiplication equals 0, if φ(x) is orthogonal to a. This happens when x is sufficiently
far away from all the training data x j. Therefore:

1−min
x

a ·φ(x) = 1. (3.11)

Lower Bound

For maxx a ·φ(x), it is obtained when vector φ(x) is paralell to a, i.e., their included angle
θ = 0:

1−max
x

a ·φ(x) = 1−∥a∥∥φ(x)∥cosθ = 1−∥a∥. (3.12)

Note that, ∥φ(x)∥= 1, because Eq. (3.4) induces that φ(x) ·φ(x) = ∥φ(x)∥2 = 1. This lower
bound for R2 is not always tight because it is not always possible to find such an x in the
input space that φ(x) is parallel to a in the feature space. To seek for a tight lower bound, the
following problem is solved instead [136]:

min
x
∥φ(x)−a∥2, (3.13)
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which is equivalent to solving maxx a ·φ(x), because ∥φ(x)∥2 and ∥a∥2 are constants. Setting
the derivative of the target function to 0 yields:

x̂ =
∑ j α jK(x̂,x j)x j

∑ j α jK(x̂,x j)
, (3.14)

which could help update x̂ iteratively. Nonetheless, the initial assignment of x̂ is very
important that bad initial values will make x̂ fall into local minima. To solve this problem,
Liu et al. [136] suggested to find x̂ directly through assuming φ(x̂) = Ψa = γa, where Ψa is
called the agent of a, and γ = 1

∥a∥ . The formulation for calculating x̂ is obtained:

x̂ =
∑i ∑ j αiα jK(xi,x j)xi

∑i ∑ j αiα jK(xi,x j)
. (3.15)

Although this formulation of x̂ does not always lead to the correct results in RLPSVDD due to
the vague validity of the assumption, it provides a good initial value for updating x̂ iteratively
according to Eq. (3.14). This is expected to provide a good x̂ such that a tight lower bound of
R2 is obtained. It should be noted that, in the cases where x̂ is a local minimum, the lower
bound still works although it is not tight. This is because 1−maxx a ·φ(x)< 1−a ·φ(x̂).

Results and Remarks

For the above reasons, a practical RLPSVDD has a sufficient condition:

1−a ·φ(x̂)< R2 < 1. (3.16)

In other words, the selection of the parameter ρi in RLPSVDD should maintain the resulting
radius within the adequate range to ensure a practical solution. In practice, let us firstly
consider the situation when all the parameters are the same, i.e., ∀ j,ρ j = ρ . In RLPSVDD,
R2 = ρ ·maxxsv(1− a · φ(xsv)), where xsv denotes a support vector. As a result, when the
following condition is met, the solution of RLPSVDD is always valid:

1−a ·φ(x̂)
maxxsv 1−a ·φ(xsv)

< ρ <
1

maxxsv 1−a ·φ(xsv)
. (3.17)

For the situations where distinct ρ js are presented, a similar result is obtained:

1−a ·φ(x̂)
1−a ·φ(xsv)

< ρsv <
1

1−a ·φ(xsv)
. (3.18)
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Here, ρsv and xsv are the solutions of argmaxρsv,xsv
ρsv · (1−a ·φ(xsv)). Although checking

these two results is equivalent to checking 1−a ·φ(x̂) < R2 < 1, they do provide indirect
information about how to select an appropriate ρ j so as to make RLPSVDD a practical
one-class classifier. After solving the LP problem in RLPSVDD, a, xsv, and x̂ are known.

3.3.4 Time Series Anomaly Detection

Time-delay Embedding for Data Construction

Essentially, RLPSVDD is an anomaly detection method for multivariate data. In time series
anomaly detection, a single time series is univariate. Therefore, it should be converted to a
multivariate dataset to enable RLPSVDD. A typical way to achieve this is using a time-delay
embedding process [157] or a sliding window. Specifically, a time-delay embedding process
turns a time series x(t), t = 1, · · · ,N, into a multivariate time series dataset:

X(t) = {xE(t)|t = 1, · · · ,N−E +1}, (3.19)

where E is the size of the time-delay embedding and N is the length of the time series. Also,

xE(t) = [x(t) x(t +1) · · · x(t +E−1)]. (3.20)

As a result, X(t) is the dataset from which RLPSVDD will detect anomalies. It is noted
that although there are some other ways of constructing the multivariate time series, such as
replacing xE(t) with a set of its samples, the basic time-delay embedding process works very
well for the experiments presented in this chapter and setting E = 2 or 3 can always yield
good results for anomaly detection.

Initial Window for Model Training

To achieve time series anomaly detection, RLPSVDD starts with an initial window Winit of
data instances for model training. The size of the initial window is denoted as winit. Typically,
in SVDD, all the data instances in the initial window are required to be normal, which means
that no anomalies are allowed in the initial window. On the contrary, in RLPSVDD, the
initial window could contain anomalies, whose effect is reduced by the relaxation of the
boundary.
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Fig. 3.4 RLPSVDD-based time series anomaly detection workflow

Jumping Window for Model Updating

In time series anomaly detection, model-based methods, for example SVDD and SVR [156],
will always encounter the problem of model updating. Especially, the identification of the
perfect timing for model updating is not trivial. There are typically two strategies for model
updating: (1) constantly and (2) periodically. When SVDD is updated constantly, a new
incoming data instance will initiate model updating for retraining SVDD and that, as a result,
consumes a significant amount of time. Although solving an LP problem (RLPSVDD) is
much more efficient than solving a QP problem (SVDD), constantly updating RLPSVDD
is also time intensive. Therefore, in this chapter, RLPSVDD is updated periodically when
a fixed quantity of continuous anomalies are detected. In other words, when all the data
instances in a window are all detected as anomalies, RLPSVDD is retrained. The window is
called jumping window Wjump, because it corresponds to a jumping model. Its size is denoted
as wjump.

The Workflow

To conclude with the process of employing RLPSVDD for time series anomaly detection, a
conceptual workflow is given in Fig. 3.4. For a time series, the process starts with setting a
temporal window Wtemp as the initial window, i.e., Wtemp =Winit. The size of Wtemp is wtemp.
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Therefore, the very initial RLPSVDD model is trained using all x in Winit. After model
checking as presented in Section 3.3.3, model testing takes place to determine whether a new
data instance xnew is anomalous according to the trained model. This is followed by checking
whether there is any new data available. If there is any remaining data instance, the process
of model updating will be initiated once a jumping window full of anomalies is witnessed or
the temporal window has the size different from the initial window. When a jumping window
appears, the temporal window is set as the jumping window, i.e., Wtemp =Wjump. With model
updating, RLPSVDD finds the pattern of the time-series data in the temporal window and
new data instances are added to the temporal window until the size of the window matches
that of the initial window. Hence, a stable model is obtained when wtemp = winit. As the
model is stable, the identification of the jumping window will be initiated again. The whole
process ends whenever there is no new data instance available.

3.4 Experiment Results

In this section, the experiments conducted to verify the correctness of the main results in this
chapter are presented. More specifically, the main results are:

• In RLPSVDD, the parameters should be carefully chosen and Eqs. (3.17) and (3.18)
are the sufficient conditions to ensure the practicality of the model;

• RLPSVDD can achieve high capability and improved accuracy in identifying various
types of time series anomalies in cloud service performance metrics.

3.4.1 RLPSVDD with Constrained Parameter

As mentioned in Section 3.3.3, theoretical bounds for the parameter ρ j exist. To prove
the validity of the theoretical bounds, an exemplary dataset is picked here to showcase the
practicality of RLPSVDD under different parameter settings. The final results are shown in
Table 3.1.

Dataset

The well-known Iris dataset from the UCI machine learning repository [123] is selected as
the exemplary dataset. To facilitate data visualisation and manually label the practicality of
RLPSVDD, the first 2 dimensions of the first 100 data instances, i.e., the first 2 classes of the
flowers, are chosen as the targets for data description. The visualisation of the data instances
is shown in Fig. 3.3.
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Table 3.1 Practicality checking for different models Learned from Iris dataset

Method Lower Bound R2 / ρ / ρsv / ρ ′sv Upper Bound Prac.
SVDD 0.6909 < R2 = 0.7562 < 1 1

RLPSVDD
with
Constant
Parameter
ρ

0.5357 > ρ = 0.1 < 1.0584 0
0.5389 > ρ = 0.2 < 1.0935 0
0.5271 > ρ = 0.3 < 1.1464 0
0.6002 > ρ = 0.4 < 1.2127 0
0.6989 > ρ = 0.5 < 1.2383 0
0.7486 > ρ = 0.6 < 1.2512 0
0.9523 > ρ = 0.7 < 1.3195 0
0.9576 > ρ = 0.8 < 1.3224 0
0.9574 > ρ = 0.9 < 1.3229 0
0.9574 < ρ = 1.0 < 1.3231 1
0.9572 < ρ = 1.1 < 1.3238 1
0.9572 < ρ = 1.2 < 1.3238 1
0.9565 < ρ = 1.3 < 1.3242 1
0.9558 < ρ = 1.4 > 1.3258 0
0.9544 < ρ = 1.5 > 1.3286 0
0.9542 < ρ = 1.6 > 1.3290 0
0.9515 < ρ = 1.7 > 1.3319 0
0.9515 < ρ = 1.8 > 1.3319 0
0.9514 < ρ = 1.9 > 1.3324 0
0.9524 < ρ = 2.0 > 1.3338 0

RLPSVDD
with
Distinct
Parameter
ρ j

0.9032 < ρsv = 1.0166 (ω = 0.05) < 1.3082 1
0.8279 < ρsv = 1.0335 (ω = 0.10) < 1.2683 1
0.9443 < ρsv = 1.3337 (ω = 0.15) < 1.5305 1
0.9229 < ρsv = 1.4680 (ω = 0.20) < 1.5666 1
0.9067 < ρsv = 1.6159 (ω = 0.25) > 1.6049 0
0.8453 < ρsv = 1.7787 (ω = 0.30) > 1.6531 0
0.8420 < ρsv = 1.9579 (ω = 0.35) > 1.6667 0
0.8378 < ρsv = 2.1551 (ω = 0.40) > 1.7836 0
0.8610 < ρsv = 2.3722 (ω = 0.45) > 2.0439 0
0.8610 < ρsv = 2.6111 (ω = 0.50) > 2.0439 0

RLPSVDD
with
Distinct
Parameter
ρ ′j = ρ j−1

0.4767 > ρ ′sv = 0.0166 (ω = 0.05) < 1.0154 0
0.9973 > ρ ′sv = 0.0626 (ω = 0.10) < 1.8269 0
0.8336 > ρ ′sv = 0.0953 (ω = 0.15) < 1.3188 0
0.7030 > ρ ′sv = 0.1291 (ω = 0.20) < 1.1446 0
0.7324 > ρ ′sv = 0.2394 (ω = 0.25) < 1.2593 0
0.9505 > ρ ′sv = 0.7787 (ω = 0.30) < 1.3686 0

0.9692 (0.9370) > ρ ′sv = 0.9579 (ω = 0.35) < 1.5496 0 (1)
0.9170 < ρ ′sv = 1.1551 (ω = 0.40) < 1.5710 1
0.9168 < ρ ′sv = 1.3722 (ω = 0.45) < 1.5712 1
0.9067 < ρ ′sv = 1.6111 (ω = 0.50) > 1.6049 0
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RLPSVDD with a Constant Parameter

RLPSVDD is firstly tested using constant parameters, i.e., ∀ j, ρ j = ρ . From ρ = 0.1 to
ρ = 2.0, 20 instances are tested. Only 4 out of 20 experiment instances (ρ = 1.0,1.1,1.2,1.3)
yield practical RLPSVDD, which confirms the significance of parameter selection. A
random selection of parameter would easily lead to an impractical RLPSVDD. Among the
impractical RLPSVDD, a small ρ ≤ 0.9 causes 1−a·φ(x̂)

maxxsv 1−a·φ(xsv)
> ρ and ρ ≥ 1.4 results in

ρ > 1
maxxsv 1−a·φ(xsv)

, both of which violate the criterion in Eq. (3.17). On the other hand,
for practical RLPSVDD the criteria are all met. As one may argue, the practicality can be
checked directly according to Eq. (3.16). It is not necessary to compute the upper bound and
the lower bound for ρ . However, clear bounds of ρ help with achieving a better parameter
selection. It is noticed that for practical RLPSVDD, the upper bounds are roughly around
1.32, while the lower bounds are approximately around 0.95. These results provide very good
indications for parameter selection, i.e., for ρ ∈ [0.96,1.32] it is optimistic that a practical
RLPSVDD can be obtained.

RLPSVDD with Distinct Parameters

To assign distinct weights/parameters ρ j for data instances of the exemplary dataset, the
density information of the dataset is extracted according to [131]:

ρ j =exp{ω× ℑk

d(x j,xk
j)
},

ℑ
k =

1
n

n

∑
j=1

d(x j,xk
j),

(3.21)

where x j is a data instance, xk
j represents the kth neareat neighbour of x j, d(·, ·) stands for a

function measuring the distance between two data instances, and ω is a weighting parameter.
Originally, ω is limited to the range of [0,1] [131], which means that ∀ j 1≤ ρ j, and this only
expands the boundary of RLPSVDD. For the completeness of the experiment, another set of
experiments with ρ ′j = ρ j−1 is conducted to investigate the behavior of RLPSVDD with
shrunk boundary. Note that k = 3 and σ = 1 (see Section 3.3.1) are assigned to all related
experiments in Table 3.1 and Fig. 3.3.

According to the experiment results, only when the condition in Eq. (3.18) is satisfied
a practical RLPSVDD exists. It also confirms that the selection of the parameter is critical
especially when RLPSVDD is used to shrink the boundary of data description. In one
of the experiments with ρ ′j = ρ j− 1 and ω = 0.35, the method for identifying the lower
bound of ρ ′j fails to find bounds tight enough for accurately determining the practicality of
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the corresponding model. This is due to the selection of an inappropriate initial value for
calculating the lower bound. After the manual tuning of the initial value, the corrections are
given in the brackets. Although this is unsatisfactory, it still maintains the validity of the
results in Section 3.3.3 because the criteria in Eqs. (3.17) and (3.18) are actually conservative
ones.

Besides the given results, the experiments also reveal that with the increment of ρ or ω

from a low value to a high one the practicality of RLPSVDD changes from impractical (vio-
lation of 1−a·φ(x̂)

maxxsv 1−a·φ(xsv)
< ρ,ρsv,ρ

′
sv) to practical and then back to impractical (violation of

ρ,ρsv,ρ
′
sv <

1
maxxsv 1−a·φ(xsv)

). This indicates that the parameters for the practical RLPSVDD
are within a concentrated range and, according to the position of ρ or ρsv, the parameters can
be tuned in order to find an appropriate setting.

Remark: Other than the density information, RLPSVDD can also incorporate various
kinds of information. Generally speaking, the additional information is responsible for
weighting the original data instances so as to get a better data description for anomaly
detection. Therefore, the methods that provide a probabilistic or continuous score for
measuring the abnormality of each data instance, e.g., Gaussian Mixture Model (GMM)
[14] and Principal Component Analysis (PCA) [102], and the methods that extract the
holistic information of the given dataset [228] are all feasible approaches to supply additional
information. Nonetheless, the resulting effect of RLPSVDD largely depends on whether the
selected method correctly models or measures the abnormality of the given dataset. Hence,
selecting the optimal information, which reflects key features of the dataset, is critical and it
always requires expert knowledge.

3.4.2 Time Series Anomaly Detection

To demonstrate the effectiveness of RLPSVDD in time series anomaly detection, the real
world datasets in Yahoo benchmark [249] are used to compare the anomaly detection accuracy
of RLPSVDD to some other anomaly detection methods used by Etsy [62], Twitter [224],
Numenta [126], and Yahoo [125]. All these methods being compared are well-known and
utilised practically in industry. It has been publicly accepted that there is not a single time
series anomaly detection method that outperforms all the others in all time-series [125].
Therefore, the experiments aim at testing the general capability of RLPSVDD in time series
anomaly detection and emphasising that RLPSVDD is a promising method that performs
generally better than compared methods. The content and process of the experiments are
detailed below.
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Dataset

More specifically, the A1Benchmark of Yahoo benchmark datasets [249] is selected as the
group of target datasets for time series anomaly detection. The A1Benchmark is reported to be
based on the real metrics concerning various Yahoo cloud services, e.g., Yahoo Membership
Login (YML) [125]. It covers 67 time-series with various seasonality, distinct changing
patterns, and diverse type of anomalies. Compared to other benchmark datasets in [249]
and [126], A1Benchmark shows better diversity and is much more realistic and harder to
analyse. The datasets are labeled by humans and, therefore, the marked anomalies reflect
how service/network administrators would like the anomalies to be reported. Despite the
uncertain consistency of the labeled anomalies, A1Benchmark is undoubtedly a good time-
series dataset for testing the general effectiveness (precision and recall) of an anomaly
detection method.

Models for Comparison

The methods and systems to be compared with RLPSVDD are Twitter AnomalyDetection
[224], Etsy Skyline [62], Numenta Hierarchical Temporal Memory (HTM) [126] and EGADS
[125] from Yahoo. It is worth stressing that Skyline, AnomalyDetection and EGADS heavily
depend on statistical anomaly detection methods. Skyline and EGADS are integrated systems
rather than a single method. While Skyline implements the majority vote strategy for anomaly
detection, EGADS uses an individual method with the best performance for analysing a
specific time series. Therefore, for EGADS, the Olympic model (Seasonal Naive model) is
employed to model the time series and two anomaly detection methods, namely the Extreme
Low Density model and the Simple Threshold model, are compared with other methods.
These models are selected according to the reported information in EGADS [125]. It was
reported that the Olympic model performs the best on average among the time series models
and the Extreme Low Density model and the Simple Threshold model are two standard
anomaly detection methods in EGADS. Besides these, Numenta HTM, a machine learning
technique, is also compared. It is based on a special form of neural network that arranges
neurons in a hierarchical way. The neural network is trained by the time series and their
patterns are recognised for anomaly detection. All the methods compared are also presented
in Table 3.2. The method “BEST” is not a new method but a notation of the best method
among the above methods in terms of the accuracy of anomaly detection over a specific time
series.
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Table 3.2 Methods to be compared with RLPSVDD

Method Description

Twitter,
AnomalyDetection
(AD) [224]

Twitter’s method for anomaly detection, which
uses STL, i.e., a seasonal-trend decomposition
procedure, piecewise median, and Extreme
Student Deviate test.

Numenta, Hierarchy
Temporal Memory
(HTM) [126]

Numenta’s machine intelligence technique for
analysing spatial and temporal patterns of a
dataset. A special form of neural network lies in
the heart of the technique.

Etsy, Skyline [62]

Skyline is an anomaly detection system built by
Etsy. It relies on an ensemble of algorithms that
vote for anomalies, i.e., majority vote. The
default algorithms cover Grubb’s test, etc.

Yahoo, EGADS,
SN/SO [125]

Yahoo’s anomaly detection system with SN/SO
method. SN/SO stands for Simple Threshold
anomaly detection model with Null/Olympic
model for time series fitting.

Yahoo, EGADS,
EN/EO [125]

Yahoo’s anomaly detection system with EN/EO
method. EN/EO stands for Extreme Low
Density anomaly detection model with
Null/Olympic model for time series fitting.

BEST The best anomaly detection method (among the
above) for a specific time series.
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Metric for Comparison

For comparing the methods, the stardard F1-score is calculated:

F1 = 2× precision× recall
precision+ recall

, (3.22)

where precision = T P
T P+FP and recall = T P

T P+FN . T P,FP,FN are standard notations for true
positive, false positive, and false negative respectively. Hence, 0≤ F1 ≤ 1. To refrain from
the situation where the denominator equals 0, F1 is set to 0 whenever T P = 0, T P+FP = 0,
or T P+FN = 0. This indicates that if an anomaly detector fails to detect any anomaly the
performance of the anomaly detector is considered to be unsatisfactory. Also, if the time
series does not contain any anomaly, all the anomaly detectors would be treated equally and
marked as useless.

Parameter Tuning

Parameter tuning is a significant step that would tremendously influence the results of
anomaly detection. In this section, the way of parameter tuning for all these methods is
elaborated. (1) To use RLPSVDD, one would need to tune three kinds of parameters: k
and ω to extract density information (Section 3.4.1); σ to control the width of the Gaussian
kernel (Section 3.3.1); and the size of the windows E, winit and w jump (Section 3.3.4). It
seems troublesome to tune these parameters simultaneously for the best result, yet it turns
out that in general only ω is critical and setting k = 10, σ = 0.5, E = 2, winit = 200, and
w jump = 25 can always result in satisfactory outcomes. Therefore, in the experiments, the
above parameters are firstly fixed and ω is manually tuned, which is relatively easy. After that,
the simulated annealing algorithm (100 iterations maximum) is utilised to identify the best
set of parameters to minimise FP+FN for each time series in A1Benchmark. (2) Similarly,
for Twitter AnomalyDetection, a set of proper parameters is manually identify and then the
simulated annealing is employed to find the best parameters to achieve the minimisation
of FP+FN. Because Twitter AnomalyDetection is more of a statistical method and faster
than RLPSVDD, its maximum iteration number of simulated annealing is set to 1000. (3)
As discussed in [126], Numenta HTM is robust to parameter settings and there is no need
and interface for parameter tuning. (4) Skyline shares the same advantage with Numenta
and achieves anomaly detection without model/threshold configuration [62]. (5) In terms
of the methods in EGADS, the Olympic model requires 4 parameters, the Extreme Low
Density model requires 2 parameters, and the Simple Threshold model asks for 1 parameter.
For Olympic model, setting the parameters to default values always gives better results and
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Table 3.3 RLPSVDD V.S. other methods in terms of F1-Score

Comparison Win Draw Loss
RLPSVDD V.S. Twitter AD 20 39 8
RLPSVDD V.S. Numenta 33 30 4
RLPSVDD V.S. Skyline 37 28 2
RLPSVDD V.S. EGADS, SO 35 28 4
RLPSVDD V.S. EGADS, EO 40 20 7
RLPSVDD V.S. EGADS, SN 35 28 4
RLPSVDD V.S. EGADS, EN 51 15 1
RLPSVDD V.S. BEST 10 41 16

one of its parameters can be dynamically optimised to get the best model. Therefore, the
parameters of the Olympic model are set to default values and its dynamic parameter tuning
is enabled. For Extreme Low Density model and Simple Threshold model, the parameters
are concerned with the percentage of the reported anomalies. Thus, the real percentage of
anomalies in each time series is used to assign the parameters. After the initial setting of the
parameters in EGADS, they are further manually checked and tuned to minimise FP+FN.

Results and Discussion

As the F1-score is calculated using the precision (true alarm rate) and the recall (detection
rate) of a method, it is an integrated metric that represents the general effectiveness of the
method. Accordingly, a method with lower false alarm rate and higher detection capability
typically has higher F1-score. The final anomaly detection results of all the methods are
compared in terms of the F1-score in Fig. 3.5. The Y-axis represents the indexes of the time
series, while the X-axis helps with the comparison of the percentage of the F1-score of all
the compared methods. The figure is essentially a 100% stacked bar chart. The different
colors and styles correspond to the different methods, which are all shown at the bottom of
the figure.

At first glance, it is hard to identify a method that outperforms the others over all the
67 time-series. This result reflects the claim in [125], which underlines that anomalies are
use-case specific and an individual method can hardly cover all the types of anomalies.
In other words, there is no perfect anomaly detection method. Nevertheless, the result
shows the holistic performance of the methods. For instance, it is clear that the overall
performance of EGADS EN is not satisfactory because its performance is always below
average and the performance of EGADS EO indicates high variance. The methods from
Twitter, Numenta and Etsy are moderate methods because they do not achieve excellence
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compared to other methods. RLPSVDD has a relatively stable performance and, for some
time series, it noticeably transcends other methods. All this information is beneficial for
understanding the overall performance of the methods and helps with the selection of the
methods.

A more concise but informative comparison of the results is presented in Table 3.3. It
shows the comparison of the results of RLPSVDD against all the other methods in terms
of F1-score over all the 67 time-series (67 matches, in A1Benchmark). Concerning the
competition between RLPSVDD and any other individual method, RLPSVDD always beats
the other method with more than 20 wins and less than 10 losses. Although a large number
of the matches result in a draw, the overall outcome of the comparison justifies the preference
for RLPSVDD. Twitter AnomalyDetection is a very competitive method that performs nicely
on average. However, the results in Fig. 3.5 reveal that for some specific time series, e.g. no.
7, 20, 38, 40, its capability of detecting the anomalies is less prominent. A similar situation
stands for the methods used by Numenta (time series no. 14, 20, 26, 40, etc.) and Etsy (time
series no. 18, 20, 38, 49, etc.). As the results indicate, the methods from EGADS, namely
SN/SO and EN/EO, do not perform well as expected. This is partially due to the manual
parameter tuning that is not capable of finding the best parameter setting. Moreover, as in the
inchoate version of EGADS, SN/SO and EN/EO are relatively simple methods that do not
perform very well in the presence of special anomalies, for example change points.

A further comparison between RLPSVDD and the BEST model reveals that RLPSVDD
is a very promising method that works well on average in general time series (41 Draws)
and it outperforms all the other methods in some specific time series (10 Wins in Fig. 3.6a
with the index of the time series as the horizontal axis and the F1-score as the vertical axis).
As a result of a detailed investigation, it is known that these specific time series are all with
change points or pattern anomalies, such as time-series “real47” in Fig. 3.1. Therefore, it is
concluded that RPLSVDD possesses stronger capability to detect anomalous patterns [29] in
time series. Regarding the time series over which RPLSVDD does not win the competition
(16 Losses in Fig. 3.6b with the same axises as that in Fig. 3.6a), it is partially due to the
reason that RLPSVDD focuses more on detecting local pattern anomalies and are not skilled
in detecting long-term contextual anomalies. Nonetheless, RLPSVDD averagely gets high
F1-scores and is better than most of the compared methods. To conclude with the results,
RLPSVDD is an excellent method for time series anomaly detection in terms of its strong
capability to detect various types of time series anomalies.
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Fig. 3.5 The comparison of all methods over Yahoo A1Benchmark
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In order to fully unleash the capability of RLPSVDD, parameter tuning is an unavoidable
process that needs to be carefully conducted according to different time series. EGADS has
given a great example of leveraging alarm filtering to fulfill online parameter adjustment.
Simply tuning the weight for the additional information in RLPSVDD fits the spirit of
alarm filtering, while tuning all the related parameters is so much more complex that further
research efforts are required.

3.5 Conclusion

In this chapter, the utilisation of Support Vector Data Description (SVDD) for time series
anomaly detection of service performance metrics in cloud computing systems has been
investigated. Due to the high false alarm rate and low time efficiency of the original method,
a relaxed linear programming SVDD (RLPSVDD) has been proposed to cope with the
problems. RLPSVDD solves a linear programming problem to provide a flexible data
description for time series anomaly detection. With the proper selection of the parameters, a
practical RLPSVDD can be guaranteed and enjoys a generally stronger capability to detect
various types of anomalies compared to other methods of similar purpose. Experiments on
well-known benchmark datasets have confirmed the validity of the analysis and RLPSVDD
has been shown to be a method full of potentials in time series anomaly detection for cloud
service metrics. As a next step, contextual information of time series data, e.g., periodic
patterns, linear trends, etc., will be integrated with RLPSVDD to test its capability of
detecting contextual time series anomalies.



Chapter 4

Support Vector Data Description with
Contextual Information

4.1 Introduction

In the previous chapter, specific methods have been developed to supply accurate and efficient
time series anomaly detection capability that is required in diverse systems. Although a
method may be superior in performance under a specific condition, current anomaly detection
systems usually implement a set of anomaly detection methods to support the best possible
system performance. For instance, the EGADS [125] is an outstanding example in which
many anomaly detection methods serve as candidates for analysing cloud computing services.
These methods monitor the user and system behaviors, model the normal operations and
report anomalies whenever a significant deviation from the expected status of the system or
actions of the user is witnessed. For most anomaly detection methods, e.g., box-plot method
[96], conventional Support Vector Data Description (SVDD) [208] and Replicator Neural
Network (RNN) [94], they solely focus on detecting the anomalies through analysing the pri-
mary information, yet do not explicitly process related contextual information. Consequently,
these methods provide little clue within the method for interpreting the anomalies, such as a
further classification of the detected anomalies or the potential reasons that cause the anoma-
lies. I would like to argue that the explicit processing of contextual information is of great
benefit for better understanding the anomalies. Therefore, in this chapter, I propose a way of
anomaly detection with contextual information that is accurate, capable of distinguishing
contextual anomalies from typical/point anomalies and thus achieves interpretable anomaly
analysis. The practical application of this method will largely benefit the anomaly detection
systems where contextual information plays a vital role.
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Fig. 4.1 An example of different anomalies

A key target in this chapter is to address anomaly interpretation. As a concrete example
of anomaly interpretation, let us consider the situation in Fig. 4.1, where a time series of
Internet traffic is recorded with marked anomalies. In the depicted time series, the metric has
two types of anomalies, which are point anomaly and contextual anomaly. The point anomaly
refers to the rare values that deviate greatly from typical values, while the definition of the
contextual anomaly depends on the context. In Fig. 4.1, the time series has a clear periodic
pattern, i.e., a single period contains 5 high peaks followed by 2 low peaks. Considering the
periodic pattern as the contextual information, the contextual anomalies in the time series
are the data points that are normal in terms of their data values, but abnormal because they
do not follow the periodic pattern. Therefore, the anomaly interpretation in this time series
anomaly detection task is to differentiate the point anomalies from the contextual anomalies.
And it is preferable if the differences of the anomalies are identified within a single anomaly
detection method. To summarise, this chapter makes the following contributions:

• An anomaly detection method with the capability of integrating additional contextual
information is introduced for better understanding the cause of anomalies, e.g., to
determine whether the anomaly is triggered by primary information or contextual
information.

• Experiments are conducted using Yahoo benchmark datasets. It is demonstrated that
the proposed method successfully identifies anomalies and provides useful information
to help explain the cause of the anomalies.

Before heading to the next section, there are two critical points that are to be clarified: 1) why
is it better to treat contextual information individually rather than combining it with primary
information; and 2) what is the granularity of the anomaly interpretation in this chapter?
They are presented in the following two subsections.
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4.1.1 Why is it Better to Treat Contextual Information Separately?

In typical anomaly detection problems, only a single source of information is witnessed
and processed. The contextual information is very often embedded within the primary
source of information. For instance, in a periodic time series, the context of periodicity
is embedded within the time series and it is not explicitly processed by most anomaly
detection methods. Therefore, there exist three basic strategies of handling the contexts: 1)
using primary information but implicitly process contexts within the methods, e.g., exploiting
neural networks for time series anomaly detection without explicit identification of time series
periodicity; 2) explicitly identifying contexts and combining with primary information for
anomaly detection, e.g., constructing a new dataset with primary information and contexts for
anomaly detection; 3) processing contextual information separately from primary information,
e.g., treating primary information and contextual information separately.

In this work, I adopt the third strategy but leverage a single method to integrate the
processing of the two types of information. The reasons why the third strategy is preferred in
this work are that: 1) although in some cases the contextual information is embedded in the
primary information, they are fundamentally different information that aims at explaining
distinct aspects of the target; 2) primary information is always available, however, the
existence of contextual information during training and testing time may vary according to
different applications. As a result, the separated processing of the two types of information is
more practical; 3) considering primary information and contextual information separately
supports the identification of the anomalies from the specific source of information, therefore
enhancing the interpretability of the anomalies.

4.1.2 What is the Granularity of the Anomaly Interpretation?

The interpretability of an anomaly detection method describes the capability of the method
in explaining the decisions it makes in related tasks. A well-known method that is skilled
in interpretability is the Decision Tree (DT) method for classification. The granularity of
the explanation made by DT is feature level. In other words, DT makes a decision because
the values in specific features meet certain criteria. In this work, the targeted granularity
is information level, which means the anomaly detection process targets at identifying the
anomalous source of information rather than the anomalous features. Consequently, the
results of the anomaly detection give clear differentiation of the point/group anomalies and
the contextual anomalies. With this capability, applications are empowered to initiate diverse
operations accordingly.
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4.2 Related Work

As discussed in [29], there exist two basic strategies of handling contextual information
in anomaly detection: 1) reducing the problem of contextual anomaly detection into point
anomaly detection problem; 2) utilising the structure in data for context analysis. Note that
these two strategies aim at analysing the contextual information while do not emphasise
the process of the primary information. As a result, either the primary information and
the contextual information are combined in related tasks, or the utilised anomaly detection
methods solely detect contextual anomalies. For instance, ARIMA [25] identifies the time
series anomalies which deviate from the periodic pattern of the time series, but it has the
difficulty in detecting anomalous patterns of the shape of the time series. In this work, the
focus is to achieve point anomaly detection and contextual anomaly detection at the same
time. Therefore, the strategies for only contextual anomaly detection are not satisfactory.

Another related topic of this work is Learning using Privileged Information (LUPI)
[228]. In LUPI, the objective is to achieve better learning results with the help from task-
specific privileged information. For instance, in the task of image classification [197],
additional textual description of the images in the training set can be exploited as the
privilege information to support the differentiation of the different types of images. To
process the privileged information, certain modifications in related learning methods are
inevitable. A very famous method in the field is SVM+ [179] [227] whose training problem
is formulated as:

minω∈Rd ,b∈R,ω∗∈Rd ,b∗∈R
1
2

(
∥ω∥2 + γ∥ω∗∥2

)
+C

N

∑
i=1

(
ω
∗x∗i +b∗

)
s.t. ∀i ∈ {1,2, · · · ,N}, yi

(
ωxi +b

)
≥ 1−

(
ω
∗x∗i +b∗

)
,

ω
∗x∗i +b∗ ≥ 0,

(4.1)

where ω,b,ω∗,b∗ represent the model parameters; N is the number of the data instances; xi,yi

are the ith data instance and its label respectively; x∗i stands for the privileged information
of the ith data instance; and γ,C are the hyperparameters provided in advance. The method
succeeds better results in classification tasks through integrating the primary information,
i.e., xi and yi, with the privilege information, i.e., x∗i , in the process of classification. In recent
years, advancements have been made to improve the original SVM+ method, e.g., [106],
and the idea has also been adopted in anomaly detection [262]. In this chapter, LUPI is
generalised for the processing of contextual information and the proposed method implements
a Linear Programming (LP) problem under the framework of SVDD, rather than a Quadratic
Programming (QP) problem in SVM+, to fulfill anomaly detection.
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4.3 Anomaly Detection with Interpretation

4.3.1 Linear Programming Support Vector Data Description

In the conventional SVDD method, a QP problem is solved to identify the anomaly detector.
While in LPSVDD, an LP problem is adopted for describing the methods and the resulting
optimisation problem is designed as:

minα,b

N

∑
i=1

( N

∑
j=1

α jK(xi,x j)+b
)

s.t.
N

∑
j=1

α jK(xi,x j)+b≥ 0 ∀i,

N

∑
i=1

αi = 1, αi ≥ 0,

(4.2)

where xi and x j represent data instances; N is the number of the data instances; b is a scalor
and α = [α1α2 · · ·αN ]

T is a column vector with N elements; and K(∗,∗) is a kernel function.
This formulation is essentially an LP problem that is simpler in the form compared to a QP
problem.

4.3.2 Linear Programming Support Vector Data Description Plus

To integrate contextual information with the formulation of SVDD and to provide detailed
information about the detected anomalies, i.e., whether the anomalies relate intensively
to their contexts, Linear Programming Support Vector Data Description Plus (LPSVDD+)
is proposed to process selected contextual information [228], which is expected to supply
anomaly detection systems with more flexibility of reporting anomalies. The formulation
of the anomaly detection method over a set of data instances X = {x1,x2, · · · ,xN} with their
corresponding contextual information X∗ = {x∗1,x∗2, · · · ,x∗N} is as follows:

minα,b,α∗,b∗ ∑
i

((
∑

j
α jK(xi,x j)+b

)
+λ ·

(
∑

j
α
∗
j K(x∗i ,x

∗
j)+b∗

))
, (4.3)

s.t.

((
∑

j
α jK(xi,x j)+b

)
+λ ·

(
∑

j
α
∗
j K(x∗i ,x

∗
j)+b∗

))
≥ 0 ∀i, (4.4)

∑
j

α
∗
j K(x∗i ,x

∗
j)+b∗ ≥ 0 ∀i, (4.5)
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∑
j

α j = 1, ∑
j

α
∗
j = 1,

∀ j, α j ≥ 0, α
∗
j ≥ 0,

(4.6)

where xi,x j ∈ RD are D-dimensional data with index i, j ∈ {1,2, · · · ,N}; x∗i ,x
∗
j ∈ RD∗ are

D∗-dimensional data with the same index; N is the number of data instances; λ is a hyper-
parameter. Function K(∗,∗) denotes the famous kernel function that enables the mapping of
a data instance to a high-dimensional space for better generalisation of the method. In this
chapter, the Gaussian kernel is selected as the kernel function for the experiments, i.e., with

parameter σ , K(xi,x j) = e
−∥xi−x j∥2

σ2 .
Essentially, the formulation tries to integrate two LPSVDDs for training two types of

information concerning a same object. The solution of the formulation leads to a description
of the dataset that is helpful in anomaly detection. However, different from typical SVDD,
this formulation gains two discriminants that are capable of detecting different types of
anomalies. As has been mentioned, X is set as the main data information and X∗ is the
contextual information. Therefore, Eq. (4.5) mainly concerns the identification of the
contextual anomalies, while Eq. (4.4) is applicable in detecting the overall normality of a
data instance. To be more specific, the overall normality of a new data xnew with contextual
information x∗new is determined by:((

∑
j

α jK(xnew,x j)+b
)
+λ ·

(
∑

j
α
∗
j K(x∗new,x

∗
j)+b∗

))
≥ 0. (4.7)

If Eq. (4.7) holds, it is believed that xnew is normal. Otherwise, a general anomaly will be
reported. On the other hand, the discriminant of whether the data has contextual anomaly is:

∑
j

α
∗
j K(x∗new,x

∗
j)+b∗ ≥min

i ∑
j

α
∗
j K(x∗i ,x

∗
j)+b∗. (4.8)

If Eq. (4.8) holds, it means that x∗new is normal. Otherwise, the contextual anomaly is
confirmed. From the above two discriminants, a third one is made possible considering the
enforcements of the constraints in Eqs. (4.4) and (4.5). This third discriminant, i.e.,

∑
j

α jK(xnew,x j)+b≥min
i ∑

j
α jK(xi,x j)+b, (4.9)

demonstrates a practical way of measuring the normality of the primary information X .
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To summarise, the new formulation introduces three different discriminants for identifying
distinct types of anomalies. This novel capability enables contextual anomaly detection
and supplies strong interpretations of the detected anomalies. In other words, the anomaly
detection method can provide more details about the reason why a data instance is detected
as anomalous, e.g., its contextual information deviates from the normal condition. Through
leveraging this anomaly detection method, practical anomaly detection systems, such as
intrusion detection systems, would be able to tell the contextual anomalies from other
anomalies, and response actions could be initiated accordingly. To illustrate a concrete
example, let us consider a set of web servers that will attract billions of requests on a
particular day of the year, e.g., the Double 11 Festival (11.11) in Taobao. The high-rocketing
number of the requests from the very beginning of the day would trigger lots of alarms in a
typical intrusion detection system, indicating that the network performance indicators have
shown abnormal behaviors that could be considered as suffering a large-scale DDoS attack.
With the help of the contextual information, which tells the intrusion detection system that
the abnormal request rate is actually normal on that day, the false alarms of the system will
be significantly reduced according to the interpretations of the witnessed anomalies.

4.4 Experiment Results

4.4.1 Datasets

To demonstrate the effectiveness of the proposed method, two families of datasets, i.e., Yahoo
A2Benchmark and A3Benchmark, are selected from Yahoo time series dataset repository
[249] as the target datasets in the experiments. Yahoo A2Benchmark contains 100 time
series datasets, each of which is a univariate time series that includes roughly 2000 data
points. It is worth stressing that all the 100 time series in A2Benchmark have clear periodic
patterns which are utilised in the experiments for designing contexts. Besides distinct periodic
patterns, the time series also differ from each other in growth trends, data noise as well as
anomalies. A3Benchmark is essentially similar to A2Benchmark. However, the 100 time
series in A3Benchmark preserve much more complex time series periodicity and anomaly
patterns, e.g., point anomaly, contextual anomaly and etc. Essentially, anomalies in time
series of A3Benchmark are much harder to detect. Yet, as one will see later, the proposed
method successfully facilitates the analysis of the detected anomalies in A3Benchmark,
which supports better reaction towards the anomalies.
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4.4.2 General Settings

Before heading to anomaly detection, a time series has to be preprocessed. In the experiments,
four preprocessing operations are performed:

• Detrending: In some of the time series, there exist growing trends of the time series
values. To ensure the accuracy of anomaly detection, the trends of the time series are
removed using standard detrending methods supplied by Matlab [147].

• Period Identification: In order to formulate contextual information, the period of
each time series should be identified. In this work, Fast Fourier Transform (FFT) [229]
is adopted for period identification.

• Normalisation: For normalising the time series, the following equation is utilised:

x̂ =
x−min(x)

max(x)−min(x)
, (4.10)

where x ∈ X represents a value in time series X ; x̂ is the normalised value of x; min(x)
and max(x) are the minimum and maximum values in the time series.

• Vectorisation: To detect complex anomalous time series patterns, the vectorisation of
time series is required. In this work, two consecutive time series points are aggregated
to form a 2-dimensional vector.

After the preprocessing operations, for each time series, the anomaly detection process can
take two modes: 1) use the normal data in the first two periods of the time series to train a
model that test all the other data for anomalies; 2) employ non-overlapping sliding windows
to divide the time series into several testing parts and, for each window, use a part of the
data before the window to train the model. One could consider the first mode as batch
anomaly detection mode because after the first training the model is not updated. However,
the second mode is considered as an online anomaly detection process due to the fact that the
anomaly detection model is updated with the movement of the sliding window. Note that
the data for training include the primary information, i.e., the time series, and the contextual
information which is designed as the difference, i.e., δ , between the time series point at
time t, i.e., xt , and that at time t−T , i.e., xt−T . T is the period of the given time series and
t > T . In the experiments, the online anomaly detection mode is adopted. In addition, due
to the presence of the noise in the time series, the discriminants, i.e., Eqs.(4.7)(4.8)(4.9), are
adjusted with the additions of a negative constant on the right part of the equations.
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Table 4.1 The parameters of using LPSVDD+ over Yahoo benchmarks

Parameters A2Benchmark A3Benchmark
Dimension of Data 2 2
Dimension of Context 2 2
Training Window Size 1.5 periods 4 periods
Testing Window Size 0.5 periods 2 periods
Kernel Gaussian kernel Gaussian kernel
Kernel Parameter 0.075 0.05
Hyperparameter λ 1 1
Relax Eq. (4.7) - 0.3 - 0.27
Relax Eq. (4.8) - 0.15 - 0.20
Relax Eq. (4.9) - 0.25 - 0.19

4.4.3 Results

In this section, the general performance of LPSVDD+ is reported based on its anomaly
detection results over Yahoo A2Benchmark and A3Benchmark datasets. It is emphasised that
LPSVDD+ succeeds in accurately detecting point and contextual anomalies at the same time.
And the detecting results shed light on the detailed reasons why an anomaly is reported. In
general, the anomaly detection results of A2Benchmark demonstrates the overall capability
of LPSVDD+ in anomaly detection, while that of A3Benchmark support the claim that
LPSVDD+ is helpful in anomaly interpretation.

Yahoo A2Benchmark

For the experiments over all the time series in Yahoo A2Benchmark, a fixed set of parameters
is utlised. As shown in Table 4.1, the dimensions of the data and the corresponding contexts
are both fixed to 2, which means the inputs to LPSVDD+ are two series of 2-dimensional
vectors. In the online anomaly detection mode, the non-overlapping testing windows divide
a time series into several parts. To test the data and contexts in a particular testing window,
the data in the training window, which is ahead of the testing window, are used to train
LPSVDD+. The testing window is of the size of half a period of the target time series. While
the training window contains the data of a whole period before the corresponding testing
window. Concerning the kernel used in LPSVDD+, Gaussian kernel is selected with kernel
parameter σ = 0.075. In practical utilisation of LPSVDD+, the hyperparameter λ in Eqs.
(4.3)(4.4)(4.7) is set to 1 and, to negate the influence of noise in time series, the right hand
side of Eqs. (4.7)(4.8)(4.9) are relaxed with the additions of three constants, i.e., -0.3, -0.15
and -0.25, respectively.
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Table 4.2 The overall accuracy of using LPSVDD+ over Yahoo A2Benchmark

Anomaly Type True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

F1-score

Overall 429 0 5 0.994
Point 406 16 28 0.948
Contextual 417 10 17 0.961

Note that, the datasets in Yahoo A2Benchmark are 100 synthetic time series that possess
simple linear trend, clear periodic patterns and uncomplex anomaly types. Therefore, it
is expected that most anomaly detection methods should perform nicely, e.g., near 100%
precision and recall, over all the time series in A2Benchmark. Table 4.2 presents the results
of exploiting LPSVDD+ over A2Benchmark datasets for anomaly detection. As is depicted,
the overall performance of LPSVDD+ is satisfactory. Using Eq. (4.7), LPSVDD+ accurately
detects 429 out of all the 434 anomalies with no false alarm. The discriminant of Eq. (4.9)
detect 422 point anomalies, 16 of which are erroneous. While 427 contextual anomalies
are identified with Eq. (4.8) and 10 of them are incorrect. It is worth stressing that all the
434 anomalies in the datasets are point anomalies and contextual anomalies at the same
time. This is because all the anomalous data not only have anomalous values or patterns
but also contain corresponding abnormal contexts. Either the correct identification of point
anomalies or that of contextual anomalies will contribute to the eventual anomaly detection
result, which has a F1-score of 0.994. Note again that, to calculate F1-score:

F1 = 2× precision× recall
precision+ recall

,

precision =
T P

T P+FP
, recall =

T P
T P+FN

.

(4.11)

In fact, if parameters are to be tuned for anomaly detection over each time series of Yahoo
A2Benchmark, better results are possible. However, in this part, the purpose is to demonstrate
the general capability of LPSVDD+. Thus, only a fixed parameter setting is employed. Next,
some details concerning the unsatisfactory anomaly detection results are examined for
pinpointing the reasons. As depicted in Fig.4.2, LPSVDD+ does not detect any anomaly in
time series “syn54”, because these is no anomaly score that is below the thresholds, i.e., red
dash lines in the first three subfigures. In this case, adjusting the thresholds accordingly will
support the identification of the most likely anomalies. However, the adjustments will also
lead to false positives which are contributed by the intrinsic noise within the time series. The
time series is too noisy that some normal points, e.g., the points marked by the red arrow, can
be considered as anomalous even by human judgments.
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Fig. 4.2 The performance of LPSVDD+ over time series “syn54” in Yahoo A2Benchmark

Yahoo A3Benchmark

This subsection presents the results of the experiments conducted to evaluate the proposed
approach over Yahoo A3Benchmark. The exact parameters are provided in Table 4.1. All the
other settings are the same as those utilised in last subsection. Compared with A2Benchmark,
datasets in A3Benchmark contain much more complex periodicity and time series patterns.
The usual methods, which are used to eliminate the trendings and identify the periodicity of
time series, may not work as expected. As a result, the performances of different anomaly
detection methods could be largely degraded in A3Benchmark. Table 4.3 presents the overall
accuracy of using LPSVDD+ over A3Benchmark. It is shown that, concerning the overall
anomaly detection accuracy, the F1-score is 0.936 and the numbers of false positives and
false negatives increase. The utilisation of discriminant Eq.(4.9) correctly identifies 774
point anomalies, while 766 contextual anomalies are pinpointed accurately through Eq.(4.8).
The degraded F1-scores of point anomaly and contextual anomaly identification are largely
due to the fact that not all the anomalies in A3Benchmark are point anomaly and contextual
anomaly at the same time. Some anomalies are just anomalous in terms of data patterns,
while their contexts are normal. On the other hand, some anomalies are normal in data
patterns but have abnormal contexts. Because of the lack of labels of the types of anomalies,
the time series “TS63” from A3Benchmark datasets is chosen to demonstrate the anomaly
interpretation process of LPSVDD+.
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Table 4.3 The overall accuracy of using LPSVDD+ over Yahoo A3Benchmark

Anomaly Type True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

F1-score

Overall 858 49 68 0.936
Point 774 74 152 0.872
Contextual 766 94 160 0.857

Fig.4.3 presents the experimental results of using LPSVDD+ over “TS63”. In the 5th
subfigure on the bottom, the original time series is demonstrated with manually marked
anomalies, which are also depicted in the 4th subfigure. From the 1st subfigure on the
top, it is clear that LPSVDD+ detects all the anomalies without false alarms and miss
alarms. The results in the 1st subfigure are obtained through checking Eq.(4.7), while
the results in the 2nd and 3rd subfigures are generated with the discriminant functions for
anomaly detection over primary information (Eq.(4.9)) and contextual information (Eq.(4.8))
respectively. Note that the 2nd subfigure also identifies all the anomalies, but further interpret
them as point anomalies. This is because these anomalies show strange patterns, e.g., an
abnormal combination of data instances or an abrupt spike. On the other hand, the results
in the 3rd subfigure identify 3 parts of contextual anomalies, stressing that the abnormality
of the corresponding data is also due to their anomalous contextual information, i.e., the
abrupt increment of the data value over that in the last period. With the identification of the
point anomalies and the contextual anomalies, the anomaly detection process provides more
informative details about why a data is marked as anomalous. Consequently, one would be
able to treat anomalies differently according to the additional information.

The experiments over all the other time series in Yahoo A3Benchmark obtain an average
F1-score of 0.93 and also demonstrate similar results as that in Fig.4.3, which reflects
the overall effectiveness of the proposed method in anomaly detection. More specifically,
according to the experiment results, the proposed method is effective for distinguishing the
contextual anomalies from typical point anomalies and, therefore, achieves better anomaly
interpretation for practical anomaly detection systems, e.g., intrusion detection systems.

4.5 Conclusion

In this chapter, an anomaly detection method, which can distinguish different types of
anomalies, is proposed for interpreting the anomalies. The method is based on integrating
two LPSVDDs to support the training of two different types of information, e.g. primary
information and contextual information. Experimental results on all the time series in Yahoo
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Fig. 4.3 The performance of LPSVDD+ over time series “TS63” in Yahoo A3Benchmark

A2Benchmark and A3Benchmark datasets demonstrate that the proposed method is of high
accuracy and capable of identifying different anomalies, thus enabling better interpretation
of the detected anomalies. As a result, the utilisation of the method in anomaly detection
systems will largely benefit the underlying decision-making systems in choosing the proper
reaction when an anomaly is witnessed.





Chapter 5

Convex Hull Data Description

5.1 Introduction

In Chapter 4, the proposed method succeeds in anomaly interpretation with the utilisation
of two discriminants for the identification of two different types of anomalies, i.e., point
anomaly and contextual anomaly. While, in many situations, the analysis of anomalies are
much more complex that point anomalies or contextual anomalies are required to be further
categorised for detailed analysis. This requirement desires the combination of the one-class
classification technologies, e.g., [209][157][45][196], and the clustering methodologies, e.g.,
[82][221], especially in situations where no label is provided for anomaly classification.
Nevertheless, for a long time, one-class classification and clustering are two research topics
that are treated separately. Related projects that consist of these two tasks normally solve
them separately with specific methods, which is comparatively complex and costs additional
resources. Therefore, methods that could solve both of these tasks under a consistent
framework are more appreciated and required to fill the research gap.

To this end, this chapter proposes Convex Hull Data Description (CHDD) to achieve
one-class classification and clustering under a same problem formulation. Specifically,
CHDD approximates the convex hull of a dataset by recognising the data representatives. The
description of the dataset using the representatives not only results in the criteria for one-class
classification but also reveals the internal relations among data instances which enable data
clustering. Therefore, CHDD solves the tasks of one-class classification and clustering at the
same time. To further summarise, this chapter makes the following contributions:

- A novel formulation of convex hull approximation is proposed and solved to find
the approximated extreme points in §5.3.2 and §5.3.3. The utilised solver, i.e., Semi-
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Nonnegative Matrix Factorisation (Semi-NMF), enables the kernel trick and is proved
to guarantee the valid solutions under the utilisation of the Gaussian kernel.

- In §5.3.4, Convex Hull Data Description (CHDD) is developed to address general
one-class classification and clustering tasks under the same problem formulation.

- The performance of CHDD is illustrated in one-class classification and clustering of a
variety of datasets with distinct features in §5.4. It is shown that CHDD is promising
in both of the tasks.

5.2 Related Work

5.2.1 Data Description

A significant related work of data description is the comprehensive toolbox provided by
Tax [207] for the purpose of one-class classification. In the toolbox, five different classes
of methods were implemented: 1) statistical methods that analyse the statistical proper-
ties of the dataset, e.g., Gaussian Mixture Model (GMM); 2) distance-based methods that
regard distance as the most relevant factor in measuring data similarity, e.g., K-Nearest
Neighbor (KNN); 3) density-based methods which leverage the density information of nor-
mal/abnormal data in a specific region for anomaly detection, e.g., Parzen density estimation;
4) model-based methods, typical examples of which include Self-organisation Map (SOM)
and SVDD; and 5) spectral analysis methods that investigate the attributes of the space
on which the data lie, for instance, Principal Component Analysis (PCA). Among all these
well-developed one-class classification methods, only few methods, e.g., GMM and SOM,
are also capable of clustering. However, the assumption of the data distribution made by
GMM and the difficulty of initialising SOM make them not practical under some scenarios
that more applicable methods are required. Moreover, although the up-to-date methods
of one-class classification, such as the Binary Decision Diagram-based one-class classifier
(BDD) [108], one-class classification with Gaussian Process (one-class GP) [119] and Isola-
tion Forest (iForest) [144], and the recent methods of clustering, e.g., mst_clustering [221],
Kernel K-means [82] and sparse subspace clustering [68], all exhibit their novelties and good
performances in one-class classification and clustering respectively, all these methods cannot
be immediately applied in both one-class classification and clustering problems. Therefore,
new methods are required to fill the gap.
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5.2.2 Convex Hull Analysis

Identifying the convex hull of a multivariate dataset has been a research topic for a long time.
Over the years, geometricians and many other researchers have developed numerous related
methods. The early idea of computing an approximated convex hull was proposed in 1982
when Bentley and Faust [26] introduced a set of algorithms for the problem. Since then,
convex hull identification and approximation have both experienced speedy development
due to their broad applications in data mining and machine learning [16][235]. Besides the
conventional methods, most of which find the convex hull from a geometric perspective, a
recent work [67] introduced the utilisation of spectral analysis for convex hull identification.
The method leverages the definition of the convex hull and solves an optimisation problem
to obtain a sparse coefficient matrix which encodes the identities of the extreme points. A
related formulation was also adopted in [203], where the authors proposed a greedy search
approach for selecting the extreme points according to some predefined constraints derived
from the formulation. It is worth noting that the convex hulls of general datasets are normally
not tight enough for data description. As a result, although both of these methods are elegant
in convex hull identification, they are not practically applicable in data description tasks.

5.3 Convex Hull Data Description

5.3.1 Problem Formulation

Let S = {x1,x2, · · · ,xN} be a dataset consisting of N D-dimensional data instances xi ∈ RD,
i∈ {1,2, · · · ,N}. From the perspective of simple geometry, there must be some data instances
in S that can be used as the representatives, e.g., extreme points, to describe any data instance
in the dataset. According to the concept of the convex hull, the process is expressed as:

xi = Xepci,

∀i, ci ≥ 0,

1T ci = 1,

(5.1)

where Xep ≜ [xep,1 · · ·xep,n] is a matrix that comprises n column vectors representing the
extreme points, and ci ∈ Rn denotes the coefficient vector that is employed in reconstructing
xi. Note that the 1 in this context is a n-dimensional column vector whose elements are all 1.
Essentially, the formulation tries to describe xi using a weighted linear combination of the
extreme points.
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In the task of convex hull identification or approximation, the essential problem is to
determine the extreme points Xep. A key observation of the problem is that the coefficient
matrix C ≜ [c1 · · ·cN ] encodes valuable information for the identification of the extreme
points while considering the following formulation with X ≜ [x1 · · ·xN ]:

X = XC,

C ≥ 0, 1TC = 1T .
(5.2)

For an extreme point x j, its corresponding coefficient vector has to be of the form: c j =

(0, . . . ,1, . . . ,0)T . The index of the position that 1 appears has to be j. In other words, the
diagonal elements of C indicate whether their corresponding data instances are extreme
points. As a concrete example, let us consider the situation where the coefficient matrix is
calculated for 4 data instances according to Eq.(5.2):

[
0 2 1 1
0 0 2 1

]
=

[
0 2 1 1
0 0 2 1

]
·


1 0 0 0.25
0 1 0 0.25
0 0 1 0.5
0 0 0 0

 . (5.3)

As the coefficient matrix indicates, the first three data instances, i.e., (0,0)T , (2,0)T , and
(1,2)T are extreme points, because it is not possible to find other linear combinations to
reconstruct the data without using themselves. However, (1,1)T can be described by the
other data, which reflects that it is not an extreme point.

In the next subsection, a novel method is proposed to find an approximated coefficient
matrix for the identification of extreme points in general datasets, through which I develop
Convex Hull Data Description.

5.3.2 Convex Hull Approximation

Based on the problem formulation, the essentials of CHDD rest on the convex hull approxi-
mation through solving an optimisation problem:

min
C

∥X−XC∥2,

s.t. C ≥ 0, 1TC = 1T .
(5.4)

This formulation is derived from Eq.(5.2). It relaxes the constraint of the equality, i.e.,
X = XC, and tries to describe the original dataset using itself in a best-effort way, i.e.,
minimising the squared differences between X and XC. To solve the formulation and
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enable wider classes of applicable algorithms, the equality constraint in Eq.(5.4) is merged
into the target function through appending a constant weight to each data instances. In
other words, a data instance xi is actually constructed as xi = [xT

i ω]T , where ω is the
weight. Thus, the target becomes minC ∥[XT ω1]T − [XT ω1]TC∥2 which is equivalent to
minC ∥X −XC∥2 +ω2∥1T −1TC∥2. It appends minC ω2∥1T −1TC∥2 to the original target
function and realises the requirement of 1TC = 1T with certain relaxation. Consequently, the
actual optimisation problem is simpler:

min
C≥0

∥X−XC∥2. (5.5)

As will be theoretically proved in Theorem 1, a good way to solve this problem is to regard
it as a Semi-NMF problem [54] and adopt the corresponding slover, i.e., the multiplicative
updating rule:

Ck+1 =Ck ◦

√
[XT X ]++[XT X ]−Ck

[XT X ]−+[XT X ]+Ck
, (5.6)

where Ck denotes the matrix C after the kth iteration of the updating. The notation A ◦B
and A

B represent the element-wise multiplication and division between matrices A and B
respectively. The operations [·]+ and [·]− are defined as:

[A]+ =
A+ |A|

2
, [A]− =

A−|A|
2

, (5.7)

where |A| is a matrix consisting of all the absolut values of the elements in matrix A.

Theorem 1. The multiplicative updating rule in Eq.(5.6) solves Eq.(5.5) with the guarantee
that the solution c j of an extreme point x j is of the form c j = (0, . . . ,1, . . . ,0)T , where the 1
is the jth element.

Proof. Without loss of generality, consider only the solution c j of x j = Xc j and X ≥ 0.

The updating rule is simplified as ck+1
i j = ck

i j ·
√

xT
i x j

xT
i Xck

j
because [XT X ]− = 0 and ci j denotes

the ith element in the vector c j. Semi-NMF is guaranteed to converge [54] and when it
converges, i.e., ck+1

i j = ck
i j, it must suffice that c j ≥ 0 because C≥ 0 and ∑i ci j = 1 because of

the minimisation of the target function minC ω2∥1T −1TC∥2. Also, the convergence means

∀i,
√

xT
i x j

xT
i Xck

j
= 1. Therefore,

x j = Xc j, (5.8)
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which leads to:
x j(1− c j j) = ∑

i ̸= j
xici j. (5.9)

If x j is an extreme point, it cannot be expressed by a convex combination of other data
instances, i.e., xi with i ̸= j. Thus, c j j = 1 and ci j = 0 for i ̸= j.

5.3.3 Convex Hull Approximation with Gaussian Kernel

When utilising the algorithm of Semi-NMF for convex hull approximation, the updating rule
only depends on the inner product of the original data matrix, i.e., XT X . Therefore, the kernel
trick can be employed to generalise the algorithm for the kernel convex hull approximation.
In this paper, I focus on the use of Gaussian kernel K(X ,X) = φ(X)T φ(X), whose elements
are defined as:

∀i, j, K(xi,x j) = φ(xi)
T

φ(x j) = exp
−∥xi−x j∥2

σ2 , (5.10)

where φ(·) denotes the projection function. Hence, the optimisation problem in Eq.(5.5) is
changed as:

min
C≥0

∥φ(X)−φ(X)C∥2. (5.11)

Due to the reasons that K(x,x) = 1 and K(x,y)≥ 0, the updating rule of Semi-NMF algorithm
can be modified accordingly:

Ck+1 =Ck ◦
√

K(X ,X)

K(X ,X)Ck
. (5.12)

Note that this Semi-NMF updating rule under the utilisation of Gaussian kernel has roughly
the same form as that in NMF [141]. With a further analysis of the algorithm, it is noted that
for each element ci j in C, the updating rule works as:

ck+1
i j = ck

i j ·
√

φ(xi)T φ(x j)

φ(xi)T φ(X)ck
j
. (5.13)

Theorem 2. The multiplicative updating rule in Eq.(5.13) solves Eq.(5.11) with the guar-
antees that the solution c j of an extreme point φ(x j) is of the form c j = (0, . . . ,1, . . . ,0)T ,
where the 1 is the jth element, and the solution of an non-extreme point is of a different form,
i.e., c j j ̸= 1, with the assumption that ∥φ(X)c j∥ ≤ 1 always holds.
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Fig. 5.1 Gaussian kernel space

Proof. It is straightforward from Theorem 1 that, for an extreme point φ(x j), c j j = 1 and
ci j = 0 for i ̸= j. Therefore, the first part of Theorem 2 is proved. For a normal point
φ(x j) and its estimation φ(X)c j, consider two known extreme points φ(xl) and φ(xr) in
the Gaussian kernel space (in Gaussian kernel space the boundary points are considered as
extreme points, see Fig.5.1) and ∥φ(X)c j∥ ≤ 1, it holds that if φ(xl)

T φ(x j)

φ(xl)T φ(X)c j
< 1:

∥φ(xl)∥∥φ(x j)∥cosθl j < ∥φ(xl)∥∥φ(X)c j∥cosθl ĵ

⇒ cosθl j < cosθl ĵ

⇒ cosθ −θl j > cosθ −θl ĵ

⇒ cosθ jr > cosθ ĵr

⇒ ∥φ(xr)∥∥φ(x j)∥cosθ jr > ∥φ(xr)∥∥φ(X)c j∥cosθ ĵr,

(5.14)

then it suffices that φ(xr)
T φ(x j)

φ(xr)T φ(X)c j
> 1. The property, i.e., ∥φ(x)∥= 1, of the Gaussian kernel

is used above. And θ = θl j + θ jr = θl ĵ + θ ĵr, where θl j,θ jr,θl ĵ,θ ĵr and θ indicate the
acute angles between the vectors in the pairs

(
φ(xl),φ(x j)

)
,
(
φ(x j),φ(xr)

)
,
(
φ(xl),φ(X)c j

)
,(

φ(Xc j),φ(xr)
)

and
(
φ(xl), φ(xr)

)
, respectively. Hence, the above inference shows that, to

construct a normal data instance φ(x j), the weights contributed by the extreme points will

not all reduce to 0, because when cl j decreases, i.e.,
√

φ(xl)T φ(x j)

φ(xl)T φ(X)c j
< 1, cr j will guarantee

to increase because of
√

φ(xr)T φ(x j)

φ(xr)T φ(X)c j
> 1. That means, there is at least one weight cl j or cr j

that is not 0 when Semi-NMF converges. In other words, ∑i ̸= j ci j ̸= 0 and c j j ̸= 1.
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Algorithm 1 (Kernel) Convex Hull Approximation
Input:

The dataset of D-dimensional N data instances, X ;
The parameter of Gaussian kernel, σ ;
The expected number of extreme points, n;
The convergence criteria;

Output:
The approximated extreme points, Xep;

1: initialise C, where c j =
1
N ·1 and j ∈ {1,2, · · · ,N};

2: append ω =
√

D to each data instance in X ;
3: set K = K(X ,X) using Gaussian kernel with σ ;
4: repeat
5: set C =C ◦

√
K

KC
;

6: until convergence criteria are met
7: set Xep as the set (matrix) of n data points whose values in diag(C) are among the top n.
8: return Xep.

Comments: to proof the theorem, the assumption is made that ∀c j,∥φ(X)c j∥ ≤ 1. In
other words, if CT φ(X)T φ(X)C =CT K(X ,X)C ≤ 1 holds during the optimisation process,
it is guaranteed that Semi-NMF can successfully identify the extreme points of the target
dataset. In practice, the elements in C are initialised to be all 1

N and it is optimistic that
CT K(X ,X)C ≤ 1 always hold as φ(X)c j moves slowly to φ(x j).

Therefore, it is summarised that the multiplicative updating rule of Semi-NMF achieves
convex hull approximation through identifying the extreme points based on the importance
of a data instance in describing itself, which is reflected by the diagonal elements in C, i.e.,
diag(C). The algorithm for identifying the extreme points of a dataset is formally presented
in Algorithm 1. In practice, convex hull approximation is adopted rather than identification
due to the reason that Semi-NMF takes too long to converge and approximated convex hull
are sufficiently useful in related tasks (Section 5.4).

Practically, the initialisation of C in Algorithm 1 is to set every element in C to 1
N , i.e.,

c j =
1
N · 1. For the assignment of the weight ω (see Section 5.3.2), I empirically adopt

ω =
√

D to make sure that the constraint 1TC = 1T will not be neglected when the dimension
of the data is high. Concerning the convergence criteria, the standard stopping criteria of
NMF is utilised, i.e., whenever the maximum change of the elements in C or that of the value
of the target function in Eq.(5.5) is below a certain threshold, the updating stops. These
settings are utilised in all our experiments for convex hull approximation, which is the basic
building block of the Convex Hull Data Description.
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Algorithm 2 Reconstruction Coefficient and Error
Input:

The target dataset, X ;
The source dataset, Xep;
The parameter of Gaussian kernel, σ ;
The convergence criteria;

Output:
The reconstruction coefficient, Cep;
The reconstruction error, E;

1: initialise Cep;
2: append a weight ω to each data instance in X and Xep;
3: set K1 = K(X ,X) using Gaussian kernel with σ ;
4: set K2 = K(X ,Xep) using Gaussian kernel with σ ;
5: set K3 = K(Xep,Xep) using Gaussian kernel with σ ;
6: repeat
7: set Cep =Cep ◦

√
K2

K3Cep
;

8: until convergence criteria are met
9: set E = diag(K1)−2 ·diag(K2Cep)+diag(CT

epK3Cep).
10: return Cep and E.

5.3.4 Convex Hull Data Description (CHDD)

Relying on convex hull approximation, CHDD is to extract the key features of a dataset in
order to (I) determine whether a new data instance belongs to the dataset, i.e., one-class
classification, and (II) separate the different groups in the dataset to form clusters, i.e.,
clustering. To this end, the whole dataset is once again described by only the approximated
extreme points using the same optimisation formulation:

min
Cep≥0

∥φ(X)−φ(Xep)Cep∥2, (5.15)

where Xep is a matrix obtained by running Algorithm 1 over the original dataset X and
contains the approximated extreme points, while Cep is the new coefficient matrix.

One-class Classification

To achieve one-class classification, the reconstructed error of each data instance is exploited
as the key feature. And it is defined that:

ε = max
i
∥φ(xi)−φ(Xep)cep,i∥2, (5.16)
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Algorithm 3 Convex Hull One-class Classification
Input:

The training dataset, Xtrn;
The testing dataset, Xtst ;
The estimated number of extreme points, n;
The parameter of Gaussian kernel, σ ;
The convergence criteria;

Output:
The reconstruction errors of Xtst , Etst ;
The threshold, ε;

1: run Algorithm 1 with Xtrn, n, σ and the convergence criteria: extract approximated
extreme points Xep;

2: run Algorithm 2 with Xtrn, Xep, σ and the convergence criteria: obtain the threshold
ε = maxE;

3: run Algorithm 2 with Xtst , Xep, σ and the convergence criteria: measure the anomality
of the data instances in Xtst using Etst = E;

4: return ε and Etst .

which is the upper threshold of all the reconstructed errors of the original data instances. Note
that, cep,i is the ith column vector in Cep. Hence, any new data instance whose reconstructed
error exceeds the threshold is considered to be a novelty. Formally, for a new data instance
xnew, it is regarded as a member of the original dataset if it satifies:

min
cnew
∥φ(xnew)−φ(Xep)cnew∥2 ≤ ε. (5.17)

The algorithms used to solve Eqs.(5.15) - (5.17) are essentially the same and formally given
in Algorithm 2. When the target and source datasets are X and Xep, respectively, the output
E maintains the reconstruction errors for all the original data. Therefore, ε is the maximum
element in E. While the target and source datasets are Xnew and Xep, respectively, the output
E maintains the reconstruction errors of all the new data instances. A data instance with
e ∈ E and e > ε is considered as an anomaly. It is summarised that the process of one-class
classification in CHDD follows three key steps as shown in Algorithm 3. The detailed
process starts with the utilisation of Algorithm 1 to obtain the approximated extreme points.
Afterward, Algorithm 2 is followed in order to extract the feature of the training dataset, i.e.,
the reconstruction errors of all the known data instances, assuming that they are within the
same class. The maximum reconstruction error is chosen as the threshold for identifying
anomalies. The second run of Algorithm 2 with a testing dataset will reveal the construction
errors of the data in the testing dataset. Therefore, a further comparison between the errors
and the threshold determines the result of one-class classification.
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In Fig.5.2, the performances and characteristics of convex hull one-class classification in
four toy datasets are displayed. The blue dots are the original data instances from the datasets
whereas the red circles emphasise the approximated extreme points. The green boundaries
are the decision boundaries for anomaly detection. Data instances outside the boundaries will
be detected as anomalies, while normal data instances should rest inside the boundaries. The
four subfigures on the top of Fig.5.2 firstly demonstrate convex hull one-class classification
without using the kernel trick. The four subfigures on the bottom exhibit the effects of the
Gaussian kernel with σ = 0.3. And the expected number of extreme points in all the tasks are
selected as n = 0.1×N. It is apparent that the employment of Gaussian kernel significantly
enhances the performance of convex hull one-class classification and generalises the method
to be applicable in various datasets.

Clustering

Besides one-class classification, another application of convex hull approximation, i.e.,
clustering, is made possible with a careful examination of the reconstruction coefficient
matrix Cep after the resolution of Eq.(5.15). Theoretically, Cep encodes the coefficients
of the extreme points for constructing the original dataset. Each column of Cep holds the
coefficients for constructing a specific data, while each row of Cep reveals how much the data
instances are dependent on the corresponding extreme point. According to the definition of
the convex hull, data instances that profoundly rely on a same extreme point are expected to
be in the same cluster. Therefore, based on this intuition, a thorough investigation of Cep can
identify clusters of the original dataset. This process is called convex hull clustering. The
details of convex hull clustering are given in Algorithm 4. Specifically, after the executions of
Algorithm 1 and 2, convex hull clustering examines each row of Cep to identify new clusters
or integrated known clusters that have intense connections. The intensity of the connections
is governed by a threshold ε . It is noted that the first two steps of convex hull clustering are
exactly the same as that in convex hull one-class classification. The actual work that forms
the clusters is inside the loop, which goes through the rows of Cep.
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Algorithm 4 Convex Hull Clustering
Input:

The target dataset, X ;
The estimated number of extreme points, n;
The parameter of Gaussian kernel, σ ;
The convergence criteria;
The threshold of data relationship, ε;

Output:
The clustering label, L;

1: run Algorithm 1 with X , n, σ and the convergence criteria: extract approximated extreme
points Xep;

2: run Algorithm 2 with X , Xep, σ and the convergence criteria: obtain the coefficient Cep;
3: initialise L, set the label of all data to 0;
4: for each row in Cep do
5: get the label set Lε of the elements in the row whose value is greater than ε;
6: if maxLε == 0 then
7: ∀l ∈ Lε , set l to a new label;
8: else
9: ∀l ∈ L whose value are in Lε , set l = maxLε ;

10: end if
11: end for
12: return L.

The performance of convex hull clustering in the same four toy datasets used in one-class
classification is demonstrated in Fig.5.3. The data instances are shown as dots and assigned
different colors according to the clusters they belong to. The circles, squares, diamonds and
triangles are emphasising the approximated extreme points in the corresponding clusters. It
is shown that it correctly identifies all the clusters of the toy datasets with the utilisation of
the Gaussian kernel and proper tuning of the parameters. In some situations, due to the fact
that CHDD chooses a set of approximated extreme points rather than the real ones, convex
hull clustering may generate clusters that have few data instances. These data instances
are normally outliers. In this paper, it is assumed that the training dataset does not contain
outliers. Therefore, in our experiments, all the clusters with few data are merged into their
most related clusters.
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Table 5.1 The datasets for one-class classification

Name #Dim #Class #Target #Outlier
iris 4 3 50 100
wine 13 3 59 119
breast 9 2 458 241
car 6 4 384 1344
biomed 5 2 67 127
diabetes 8 2 268 500
sonar 60 2 111 97
breastdiag 30 2 357 212
glass 9 4 70 214
liver 6 2 145 345
ionosphere 34 2 225 351
imox 8 4 48 192
auto_mpg 6 2 229 398
chromo 8 24 42 1143
ecoli 7 8 143 336

5.4 Experiment Results

In this section, experiment results1 are presented to demonstrate the capability of Convex Hull
Data Description (CHDD). The experiments are arranged in two parts: 1) the effectiveness of
CHDD in one-class classification and 2) The effectiveness of CHDD in clustering. Note that
in one-class classification and clustering all the CHDD experiments use the Gaussian kernel
for convex hull approximation. The tunable parameters are the parameter σ of the Gaussian
kernel, the estimated number of the approximated extreme points n, the convergence criteria
and the threshold ε for data clustering. All the parameters of CHDD and other compared
methods are selected by grid search from a set of candidates, which will be specified later, to
get the best possible results in the tasks.

5.4.1 One-class Classification

Datasets and Methods

To examine the effectiveness of CHDD in one-class classification, 15 different datasets from
the UCI data repository [123] are tested. The details of the selected datasets are illustrated in
Table 5.1. For each dataset, the data are firstly normalised and then the first class is picked as
the target class. All the data in other classes are considered as anomalies.

1The source codes are available in https://github.com/ chengqianghuang/convex-hull-data-description.
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Table 5.2 The results (AUC) of one-class classification in UCI datasets

CHDD SVDD GMM Parzen PCA K-means KNN LOF iForest
iris 1 1 1 1 1 1 1 1 1

wine 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98
breast 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.70 0.99

car 0.99 0.99 0.98 0.98 0.92 0.96 0.99 0.97 0.58
biomed 0.73 0.71 0.65 0.70 0.65 0.71 0.56 0.62 0.59

diab. 0.72 0.63 0.53 0.53 0.55 0.55 0.46 0.54 0.56
sonar 0.73 0.73 0.71 0.65 0.66 0.68 0.72 0.81 0.65

breast. 0.92 0.94 0.93 0.90 0.94 0.92 0.90 0.93 0.96
glass 0.81 0.82 0.83 0.72 0.80 0.79 0.81 0.87 0.82
liver 0.55 0.60 0.60 0.59 0.60 0.58 0.60 0.59 0.60
iono. 0.97 0.97 0.96 0.89 0.98 0.95 0.97 0.94 0.92
imox 0.91 0.97 0.98 0.96 0.88 0.94 0.97 0.90 0.92
auto. 0.84 0.88 0.92 0.92 0.81 0.91 0.93 0.64 0.92

chromo 0.95 0.96 0.94 0.96 0.94 0.95 0.95 0.95 0.95
ecoli 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

In each experiment, 90% of the data instances are randomly sampled from the target class
for model training. The remaining 10% of the target data and all the anomalies are used as the
testing dataset. The detailed list of the tested methods is provided in Table 5.2. Apart from
CHDD, 8 different methods from different categories are tested: (1) Support Vector Data
Description (SVDD); (2) Gaussian Mixture Model (GMM); (3) Parzen-Window Density
Estimation (Parzen); (4) Principal Component Analysis (PCA); (5) K-means; (6) K-Nearest
Neighbour (KNN); (7) Local Outlier Factor (LOF); and (8) Isolation Forest (iForest). In
each of the methods, there is one or several parameters. A set of candidates is prepared for
each of the parameters and a grid search is employed to find the best model parameter for
each method. During the grid search, for each parameter setting, a 5-folds cross-validation is
performed upon the training dataset to gain the average performance. For the methods that
use kernels, e.g., CHDD and SVDD, I employ Gaussian kernel and adopt the same parameter
σ2 ∈ [0.1,0.3, · · · ,1.9] ·D, where D indicates the dimension of the training dataset. The
parameter σ2 is also adopted as the width parameter in Parzen. For GMM, K-means, KNN
and LOF, k ∈ [1,2, · · · ,10] is utilised as the number of clusters or the number of neighbors.
PCA picks the number of primary component from the set c ∈ [1,2, · · · ,

√
D]. While, for

iForest, the default values in the Python scikit-learn library are adopted. The rejection fraction
(outlier fraction in training dataset) of all the methods are set to 0 because the training datasets
do not contain outliers. Additionally, CHDD considers the fraction of the extreme points
from the set n ∈ [0.05,0.1, · · · ,0.5] and uses the same convergence criteria as K-means.
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Results

The performances of all the one-class classification methods in the selected UCI datasets are
presented in Table 5.2. Each result is the average performance of AUC, i.e. area under the
curve, over 10 runs of the corresponding method. It is indicated by the results that there is no
“best” method in one-class classification because no method outperforms all the other methods
in all the datasets. For the datasets of “iris”, “wine”, “breast”, “car” and “ecoli”, CHDD is
among the methods that demonstrate the best performance. For the datasets of “biomed” and
“diabetes”, CHDD outperforms all the other methods. While, in “sonar”, “ionosphere” and
“chromo”, CHDD ranks the 2nd place in the performance. For the other datasets, CHDD
ranks 3rd to 5th places. Generally speaking, CHDD is competitive in the effectiveness of
one-class classification compared to other methods. From the perspective of time efficiency,
the computation complexity of Semi-NMF dominates the overall computation complexity
of CHDD. Due to the fact that Semi-NMF updates the entire coefficient matrix in CHDD,
the computation complexity is O(N3) in each iteration, where N is the size of the original
dataset.

5.4.2 Clustering

Datasets and Methods

Similar to one-class classification, 7 datasets are selected for the purpose of measuring the
effectiveness of CHDD in clustering tasks. The datasets are from UCI [123] and Comprehen-
sive R Archive Network (CRAN) repositories [27]. The first two rows in Table 5.3 present
the names of the datasets as well as their basic information, i.e., the number and dimension of
the data instances and the number of classes in each dataset. The compared methods contain
Kernel K-means [82], DBSCAN, and the mst_clustering[221] method. All these methods
are experimented after the normalisation of the datasets. A number of parameter settings are
tested for each method to find the best clustering results, which are measured by Adjusted
Mutual Information (AMI) [223].

To be more specific, CHDD selects the fraction of the extreme points from the set
[0.05,1, · · · ,1] and adopts Gaussian kernel with σ2 ∈ [0.1,0.3, · · · ,1.9] ·D∪ [0.05,0.1, · · · ,1],
where D is the dimension of the dataset. Kernel K-means has the same kernel setting and
sets the number of clusters k ∈ [1,2, · · · ,15]. DBSCAN picks the distance parameter from
[0.05,0.1, · · · ,1] and the minimum number of data points from the set [2,3,7,10,15,20,25,
50,75]. And, linkage clustering utilises default distance settings and pick its cutoff parameter
and neighbor parameter also from [0.05,0.1, · · · ,1] and [2,3, · · · ,75] respectively.
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Results

As indicated in Table 5.3, the clustering performance of CHDD is among the best in the
dataset “Motor” and it outperforms all the compared methods in 3 datasets, i.e., “Prest.”,
“Maps” and “DrivFaceD”. For datasets “Image”, “Pen” and “Libra”, Kernel K-means shows
outstanding performance. The performances of CHDD rank the second or third places for
these three datasets. To conclude with, the results demonstrate that CHDD has a good
capability in data clustering. On the other hand, with the solution of the coefficient matrix,
the clustering result of CHDD can be realised through a single scan over the coefficient
matrix which is of size N ∗n, where N is the size of the dataset, n is the number of extreme
points and n << N. Thus, the computation complexity of clustering is O(N ∗n).

5.5 Conclusion

In this chapter, a novel method called Convex Hull Data Description (CHDD) is proposed.
Three aspects of CHDD, i.e., convex hull approximation, one-class classification and clus-
tering are elaborated. The convex hull approximation is innovatively achieved through
Semi-Nonnegative Matrix Factorisation (Semi-NMF), which enables the utilisation of the
kernel trick to support one-class classification and clustering. Our experiment results have
demonstrated that CHDD successfully pinpoints the approximated extreme points and with
the Gaussian kernel it is highly competitive in both one-class classification and clustering
tasks in terms of the effectiveness. Consequently, CHDD is considered promising in anomaly
detection tasks where further anomaly categorisation is desired.





Chapter 6

Towards Experienced Anomaly Detector
with Reinforcement Learning

6.1 Introduction

Anomaly detection is a pervasive topic in various fields. In industry, it always serves as the
first messenger to trigger more complicated procedures such as anomaly localisation. As a
result, anomaly detection is very significant and, ideally, it should be highly applicable to
different scenarios and easily accessible by engineers. However, existing anomaly detection
methods, including the ones proposed in the previous chapters, do not necessarily satisfy the
requirements. 1) A thorough survey of anomaly detection methods is nicely presented in [29].
It clarifies the assumptions made by different types of anomaly detection methods, which
reveals that methods with strong assumptions of the anomaly patterns, e.g., distribution-based
methods, may not produce satisfactory results under scenarios where the assumptions do not
hold. 2) On the other hand, the anomaly detection methods are not always easily accessible.
In 2015, Yahoo published their time series anomaly detection system EGADS [125]. Within
the system, a set of methods are implemented and integrated to generate anomaly detection
results. Such a complex system requires the engineers to not only understand the components
but also comprehend the set of methods so that being able to tune the parameters for each
of them. 3) Additionally, few methods used in the industry consider the evolvement of
the anomaly patterns, which leads to static anomaly detection parameters that perform
poorly under dynamic scenarios. In this chapter, I consider the specific problem of time
series anomaly detection and emphasise that a satisfactory anomaly detector should have the
following features:
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• The anomaly detector makes no assumption about the concept of the anomaly, i.e.,
the definition of the anomaly, but it learns the concept solely from the training datasets;

• The anomaly detector is threshold-free, which means the anomaly detector is a
logical classifier with no tuning threshold. Preferably, except hyperparameters, e.g.,
the number of layers in a neural network, the detector does not have other tunable
parameters.

• The anomaly detector is dynamically improving with the accumulation of the anomaly
detection experience. In other words, the detector learns new anomalies and consis-
tently enhances its knowledge for anomaly detection.

Although a large number of anomaly detectors have been proposed in related works, previous
chapters show that few methods have accomplished all the expected features. Due to this
fact, a new problem formulation is proposed to change the problem of time series anomaly
detection to the problem of sequential decision making in an attempt to meet the criteria.
Related details will be provided in the following sections with further discussions and
extensive experiments.

6.2 Related Work

In typical anomaly detection problems, a group of data instances with no label information
is provided for direct outlier detection or building a normal behavior model in order to
achieve novelty detection. In either case, no clear information is witnessed to support the
differentiation of the concept of normality and abnormality. Consequently, assumptions
are made by various methods [29], which results in distinct implementations of anomaly
detection methods. On the other hand, due to the vague distinction between the concepts,
thresholds are required and tuned for practical fulfillment of an anomaly detector. These two
issues are fundamental in designing accurate anomaly detectors in various domains. However,
it seems that they could not be essentially solved without label information. Consider the
situation that labels are supplied to clearly mark the normal and abnormal data instances,
assumptions and thresholds could be inferred from the label information thus negating the
needs of assumption making and threshold tuning. With label information, the problem of
designing an effective anomaly identifier is converted into the problem of training an accurate
anomaly classifier which is much easier to solve. Nevertheless, the implementation of an
anomaly classifier is greatly hindered due to the lack of label information in diverse domains.
Luckily, owing to recent research outcomes in data generation, e.g., GAN [84], the strategy
of composing labeled data instances for anomaly classification is made possible.
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Besides the identifications of assumptions and thresholds, the dynamic evolvement of
the concept of normality is another critical issue that has a profound influence on accurate
detection of anomalies in an application. Incremental methods, such as incremental SVDD
[128] and sequential Bayesian learning [14], have been devised to efficiently process the
evolvement of different models in diverse tasks. In anomaly detection, however, relatively
few research work has been conducted to achieve model evolvement. One general framework
that naturally possesses the concept of model updating is Reinforcement Learning (RL) [243]
which has been applied in some application domains closely related to anomaly detection.
In [195], RL is utilised for detection and categorisation of Distributed Denial of Service
(DDoS) attacks. While in [28] the concept of RL is adopted to promote the training of a
neural network in order to rapidly learn new network attacks in network intrusion detection.
RL is also used in adaptive learning of parameters for sequential anomaly detection [242].
All these works are attempts at using RL to solve practical problems concerning anomaly
detection. However they do not target general time series data anomaly detection which is
the key topic in this chapter.

6.3 Problem Formulation

Time series anomaly detection is a sequential decision-making process. To concretely
understand this, let us consider that an anomaly is reported/detected at a time step t. This
action of anomaly detection changes the environment by stating that an anomaly happened
in time t. The anomaly detection in the following time steps has to take the environment
into consideration and performs appropriate actions according to system preferences, e.g.,
reporting duplicated anomalies or reporting only the first anomaly within a period of time.
In other words, the environment encompasses not only the target time series but also the
previous anomaly detection actions. Therefore, this decision-making process is sequential
and naturally fit into the framework of RL. This opens a novel path to solving time series
anomaly detection.

More specifically, in this chapter, a Recurrent Neural Network (RNN) based anomaly
detector is proposed that it is trained consistently through RL to meet the objectives mentioned
in Section 6.1. Following the framework of RL, the problem of time series anomaly detection
is casted as a Markov Decision Process (MDP) [193] and then the corresponding concepts
are defined mathematically.
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Definition 1: Anomaly Detector π

An anomaly detector is defined as a conditional probability distribution:

π := p(A|S), (6.1)

where S and A denote the sets of states and the set of actions in the target system respectively.
Typically, A = {0,1} in which 1 means the given state is anomalous and 0 otherwise. And
note that π(s,a) = p(A = a|S = s) is the probability of taking action a given state s.

Definition 2: Anomaly Detector Performance Vπ

The performance of an anomaly detector is measured through its capability of time series
anomaly detection, which is formalised as:

Vπ = ∑
s∈S

dπ(s) ∑
a∈A

Q(s,a) ·π(s,a), (6.2)

where dπ(s) is the probability of the target system being in the state s under the utilisation of
the anomaly detector π , and Q(s,a) represents the accumulated reward started from state s
with action a. In other words, the performance is the average accumulated reward in anomaly
detection following the anomaly detector π .

Definition 3: Optimal Anomaly Detector π∗

The optimal anomaly detector is the detector that satisfies:

π
∗ = argmax

π
Vπ . (6.3)

Considering a deterministic optimal anomaly detector, it should maximise the performance,
and, under the cases where dπ(s) is roughly the same for all s ∈ S and |S| is the number of
states in S, it has:

V ∗π = max
π

Vπ =
1
|S|∑s∈S

max
a

Q(s,a), (6.4)

In other words, the optimal anomaly detector π∗ is fully determined by the accumulated
reward function Q(s,a), i.e., π(s,a) = 1 if a = argmaxa Q(s,a). It is worth noting that
here two assumptions are made: 1) the preferred anomaly detector is deterministic; and 2)
dπ(s) = 1

|S| for all s ∈ S.
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Definition 4: Experience E

The experience E is a set of tuples each of which is defined as ⟨s,a,r,s′⟩. s,s′ ∈ S indicate the
states of the target system before and after the action a, respectively. r is the instant reward
obtained under the state s with the action a. In an anomaly detection system, the actions are
picked by the anomaly detector π . Therefore, the experience records all the behaviors of the
anomaly detector.

According to the definitions, an anomaly detector is to be improved consistently by
learning from the experience, which in principle is to gain a better estimation of Q(s,a).
This process is actually a key target of RL systems and can be achieved by existing RL
solutions. Specifically, one could adopt Q-learning method to train a model for estimating
Q(s,a). Under this problem formulation, it is worth stressing that the anomaly detector π

makes no assumption for anomaly detection, refrains from the cumbersome work of threshold
selection and is capable of consistently improving its capability through the advancement of
the estimation of Q(s,a).

6.4 System Architecture

According to the problem formulation of anomaly detection, the utilisation of the framework
of RL and the label information are the keys to construct the anomaly detector which features
the advantages mentioned in the introduction. To vividly demonstrate how RL helps shape
the anomaly detector, the overall architecture of the system is presented in Fig. 6.1 following
the general architecture of RL. Generally, the purpose of the architecture is to train an time
series anomaly detector, i.e., the agent, that could be leveraged in diverse applications and
also enhanced according to specific needs. In what follows, I will dive into every detail of
the architecture and discuss the validity of the designs.

Agent

As the most critical part of the architecture, the agent in the RL framework works as the time
series anomaly detector that takes the target time series and previous related decisions as
input, i.e., state s, and outputs the new decision made for the target time series, i.e., action
a. The agent obtains the feedback for its decision, i.e., reward r, from the environment E
and updates its model accordingly to enhance its accuracy in decision-making. This whole
process continues until the decisions made by the agent are satisfactory. Thereafter, the agent
could be applied in similar time series anomaly detection tasks.

In principle, the agent consists of three key components:
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Environment:
Labeled Time Series Repo

…

…

Agent: Anomaly Detector

LSTM ANN Decision

Action !State "

Reward #

Fig. 6.1 The architecture of the proposed system

• a RNN implemented using Long-Short Term Memory (LSTM). The purpose of the
RNN is to extract the sequential information within the input, i.e., state s, and output
encoded information to the next model. It could be regarded as a model that learns
effective representations of the inputs for better model performance;

• a fully-connected Neural Network (ANN) that takes the outputs from RNN as inputs
and yields two values, i.e., Q(s,a = 1) and Q(s,a = 0), indicating the preferences for
the action a. Therefore, the ANN endeavors approximating the action-value function
Q(s,a) which is critical in RL;

• a simple decision-maker that compares the outputs, i.e., Q(s,a = 1) and Q(s,a = 0),
from the ANN and gives the final output of the agent. Its output is the final decision of
the action for the current state s, i.e., a = 1 or a = 0.

These three components work closely together to support accurate action-value estimation.
While the final output of the agent is the action a, the RNN and ANN are trained through
utilising the feedback, i.e., reward r, to correct the action-value function Q(s,a). Formally,
the updating process follows Q-learning [74]:

Q(st ,at)← Q(st ,at)+α ·
(

rt + γ ·max
at+1

Q(st+1,at+1)−Q(st ,at)
)
, (6.5)

where t is the time step index, α is the learning rate, and γ is the discount factor.
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Environment

Another key component of the architecture is the environment that governs the training
of the agent. Essentially, the environment takes the action a produced by the agent as its
input and generates a reward r and the next environment state s for the agent. To train the
time series anomaly detector, the environment is a time series repository that maintains
a large population of time series with labeled anomalies. Using the labeled time series,
the environment is able to generate specific states for training the agent and determine the
goodness of the actions taken by the agent. The detailed formulation of the state and reward
are given in the following sub-sections.

State

The state s is the input of the agent. It maintains two sequences:

• the sequence of the target time series values, i.e., stime =< xt ,xt+1, · · · ,xt+n >;

• the sequence of the previous actions, i.e., saction =< at−1,at , · · · ,at+n−1 >.

Note that n here is the size of the sliding window which is leveraged to obtain a section of
the original time series for time series embedding. And it is worth stressing that the size of
saction is equal to that of stime. The action at+n is the target output of the agent in time step
t +n and is to be determined.

Based on the design, it is clear that the state s is dependent on the current time series
and also the previous actions. In other words, the previous actions made by the agent will
change the state and, thus, affect the decisions for subsequent actions. This design turns
the time series anomaly detection process into a MDP that enables the utilisation of the RL
framework.

Action

The action a is the output of the agent. It is determined by the comparison between the
two action-values, i.e., Q(s,a = 0) and Q(s,a = 1), produced by the RNN and ANN. More
formally, the action space is A = {0,1} where 1 stands for the detection of an anomaly and 0
otherwise. Given a state s, the action of the agent is selected as:

a = argmax
a

Q(s,a). (6.6)
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Reward

Based on the labeled time series, the reward r of the action a taken under the state s is
defined according to its correctness. From the perspective of anomaly detection, if the action
correctly identifies an anomaly, i.e., True Positive (TP), a positive reward will be granted. On
the other hand, if the action erroneously identifies a normal state as an anomaly, i.e., False
Positive (FP), or identifies an anomaly as normal state, i.e., False Negative (FN), a negative
reward is given to the agent. And for actions that correctly identify normal state, i.e., True
Negative (TN), a tiny reward is given. To summarise, the reward function is designed as:

r =


A, if the action is a TP

B, if the action is a TN

−C, if the action is a FP

−D, if the action is a FN

(6.7)

where A,B,C,D are all positive numbers and A > B. The different assignments of the
parameters A,B,C,D reveal the diverse preferences of the anomaly detector. For instance,
in situations where no false alarm is allowed, C is set to a large value for suppressing the
false positive of the anomaly detector. Therefore, in specific applications, A,B,C,D should
be adjusted for training a decent anomaly detector.

6.5 Discussion

Concerning the aforementioned architecture, there are some vital points that are worth
highlighting to clarify the initial motivation and ultimate purpose of the design. The points
mainly cover:

1. The relationship between time series anomaly detection and different types of MDP,
i.e., one-step MDP and multi-step MDP;

2. The current difficulties of online learning;

3. The potential utilisation of active learning.

These points respectively emphasise the reason why RL is adopted instead of typical classifi-
cation solutions, the difficulties of real-world online learning under the framework of RL and
the potential benefits and solutions of active learning. The first point focus on explaining the
validity of the current design, while the latter two points are issues that have to considered in
practical applications and await future research efforts.
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6.5.1 Time Series Anomaly Detection and Markov Decision Process

The process of time series anomaly detection is a decision process that typically takes the
current time series as input and decides whether the time series is anomalous. In real-world
applications, the decision process in a time step may also involve the consideration of the
previous decisions. For instance, in some situations where alarms are rare, a single alert of
the anomaly is sufficient to raise attention. Therefore, during an anomalous period, as long
as the very first anomaly is reported, it is not necessary to report the same anomaly again.
Nevertheless, in some other situations, users may want to report the entire period of the
anomaly to gain more detailed information. As a result, after the witness of the first anomaly,
a list of anomalies are reported to show the duration and intensity of the anomalies.

One-step MDP and Multi-step MDP

The key difference between the above-mentioned situations concerns how to report the
anomalies which features in the delay, the duration, the frequency and etc. of the alerts.
These features of reporting anomalies can be nicely captured by using multi-step MDP rather
than one-step MDP. In one-step MDP, the anomaly detector solely focuses on the current
decision of anomaly detection without taking into account its previous decisions, i.e., each
decision process has only one step. While in multi-step MDP, the decision process has
multiple steps and the previous decisions affect the later states and hence the later decisions.
Compared to one-step MDP, multi-step MDP is a better way to formulate time series anomaly
detection because it also captures the ways of reporting anomalies in the time series. The
utilisation of multi-step MDP converts the problem of time series anomaly detection into a
solid RL problem in which the agent, i.e., anomaly detector, is trained to perform nicely in
the environment, i.e., correctly identifying anomalies in the labeled time series repository.
Furthermore, the adoption of the framework of RL naturally empowers the anomaly detector
to improve consistently.

6.5.2 Online Learning and Manual Time Series Labeling

Generally speaking, the RL framework is a natural architecture to support the online learning
of the agent through interacting with the environment. The agent consistently searches over
the state space and action space in the environment to find the optimal policy. The searching
process is typically online, meaning that the states provided by the environment is available
in a sequential order and the agent has to learn sequentially to improve itself. Additionally, in
the setting of the time series anomaly detection problem, the notion of online learning refers
to another critical issue, i.e., learning from the environment which evolves online.
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Temporarily, the environment in the RL framework is stable, i.e., the labeled time series
repository is static and prepared beforehand. To support the online learning of a universal
agent, labeled time series datasets should be generated dynamically and added to the labeled
time series repository. This process is crucial for the agent, i.e., anomaly detector, to adapt
well in new application domains. Although this process is desired, currently there are several
difficulties. The primary difficulty comes from the cumbersome work of manual anomaly
labeling. This work typically requires solid experience of time series analysis that is not
easy to obtain, and the work itself is time-consuming and exhausting. In addition, the
process becomes even more difficult that, in some scenarios, few engineers can determine
the anomalies by simply observing the real-time time series. Therefore, the process is
troublesome if no strategy is employed to help engineers to improve the accuracy and
efficiency. At the first glance, active learning may help ease the problem. Active learning
will be discussed in the next sub-section. Note that, in the source code provided1, the
anomaly detector is currently trained with a static labeled time series repository. The online
evolvement of the environment is an issue that awaits practical solution.

6.5.3 Active Learning and Automatic Labeled Time Series Generation

Due to the difficulty of the labeling task, the introduction of active learning, which tries to
optimise the learning process with less training data, is of great benefit. The basic logic
of active learning under the scenario of time series anomaly detection is to preferentially
label the time series in which the anomaly detector produces unconfident results in order
to support the training with less labeled data. This could be a decent strategy when there
are bunches of unlabeled time series on hand. In situations where no further time series is
available, additional time series could be generated according to the existing time series in
which the anomaly detector performs poorly. In both of these situations, the unlabeled time
series are sent to human experts for labeling. To further reduce the burden of human experts,
the time series could be firstly labeled by the anomaly detector and the experts could focus
on the correction of the labeling results.

Another way to get rid of the manual labeling task is to generate labeled time series
automatically. This could be done by injecting anomalies into normal time series. To achieve
this, the easiest way is to find repositories of normal time series and anomalies respectively
and compose a new time series based on the known time series. A more complex way is to
train models for generating normal time series and time series anomalies. Both of these are
feasible solutions and will be examined in the future work.

1https://github.com/chengqianghuang/exp-anomaly-detector
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Table 6.1 The specification of the prototype

Item Value Description
n_steps 25 The number of LSTM cells in a RNN layer.
n_input_dim 2 The dimension of the input for each LSTM cell.
n_hidden_dim 64 The dimension of the hidden state in each LSTM cell.
n_rnn_layers 1 The number of RNN layers.
n_ann_layers 0 The number of ANN hidden layers.
n_output_dim 2 The dimension of the output in ANN.
A 5 The immediate reward for TP.
B 1 The immediate reward for TN.
-C -1 The immediate reward for FP.
-D -5 The immediate reward for FN.
γ 0.9 The discount factor for Q-learning
Learning method Adam The optimiser used to train the networks.
Learning rate 0.01 The initial learning rate to train the networks.

6.6 Experiment Results

To prove the validity of the design, a prototype of the architecture is implemented. Specifi-
cally, in the experiments, the RNN in the agent is realised using one layer of LSTM cells.
The last output of the LSTM cells is sent to the ANN which acts as a linear transformation
function, i.e., no hidden layer and activation function are implemented in the experiments. A
detailed specification is provided in Table 6.1. For more details, please check the Github2.

Based on the specification, several sets of experiments are designed targeting at 1) proving
the advantage of multi-step MDP over one-step MDP in anomaly detection tasks and 2)
examining the performance of the multi-step MDP anomaly detector in terms of F1-score in
two scenarios, i.e., anomaly detection with similar types of time series and that with different
types of time series.

6.6.1 One-step MDP and Multi-step MDP

In Section 6.5.1, a concise discussion concerning the relationship between time series
anomaly detection and MDP is presented. Generally speaking, the time series anomaly
detection problem is more a multi-step MDP rather than a one-step MDP. In one-step MDP,
the anomaly detection problem falls back to traditional classification, while multi-step MDP
captures the connections among anomaly detection decisions and supports more decision-
making policies.

2https://github.com/chengqianghuang/exp-anomaly-detector
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(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Fig. 6.2 Labeled time series datasets

(a) One-step MDP (b) Multi-step MDP

Fig. 6.3 Sample anomaly detection results by different MDPs

In what follows, an experimental example will be illustrated to demonstrate the advantage
of multi-step MDP over one-step MDP. Theoretically, the one-step MDP does not consider
the decisions made by previous steps and solely focus on the present time series for decision-
making, while the multi-step MDP takes previous decisions as inputs and decisions are made
accordingly to reflect the preference of reporting anomalies in training datasets. Consider a
training dataset in which all the time series are labeled as that in Fig.6.2. Note that anomalies
in the labeled datasets will not be reported consecutively for more than 5 times, which is a
potential rule used in labeling the datasets. The datasets are used to train one-step MDP model
and multi-MDP model respectively, which results in two styles of anomaly detection shown
in Fig.6.3. Specifically, when one-step MDP observes an abrupt change in the time series, it
reports anomalies and does not consider the previous actions. As a result, in Fig.6.3, one-step
MDP reports 5 anomalies for the sudden increase of the time series values and another
5 anomalies for the sudden drop of the time series values. Multi-step MDP, on the other
hand, takes the previous actions into consideration and decides to stop reporting anomalies
when 5 consecutive anomalies have been reported. This simple experiment confirms that the
multi-step MDP has its advantages over one-step MDP and is a better way to formulate time
series anomaly detection especially when people have expectations of how anomalies are
reported.
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(a) A2 Sample (b) A3 Sample

(c) A4 Sample 1 (d) A4 Sample 2

Fig. 6.4 Labeled time series datasets in A2Benchmark, A3Benchmark and A4Benchmark

6.6.2 Anomaly Detection with Similar Types of Time Series

To examine the capability of the anomaly detector trained through the proposed architecture,
in this part the performance of the anomaly detector in analysing similar types of time series
datasets is first considered. To this end, the training dataset and testing dataset are of similar
types in the experiments.

Datasets

More specifically, Yahoo A2Benchmark, A3Benchmark and A4Benchmark datasets are
selected as the target datasets for time series anomaly detection. Any of these datasets
includes 100 time series each of which is similar to the others in the pattern but different in
the anomalies. In the A2Benchmark dataset, most of the anomalies are point anomalies and
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Fig. 6.5 The results (F1-score) of anomaly detection in Yahoo A2Benchmark-A4Benchmark

the data patterns are easy to analyse. While in A3Benchmark and A4Benchmark datasets,
much more complex data patterns, change points and data noise are also included. Some
sample time series and the corresponding labels are given in Fig.6.4. Note that for each
benchmark dataset, 50 time series are utilised to train the anomaly detector and the remaining
50 time series are used for testing.

Results

Fig.6.5 shows the experiment results in Yahoo A2Benchmark, A3Benchmark and A4Benchmark
datasets. It is shown that, for A2Benchmark dataset, all the anomaly detection results
(F1-score) of the time series are 1, which shows that the anomaly detector has a perfect
performance in this dataset. In A3Benchmark dataset, most of the F1-scores remain high
and some of them are below 0.5, such as the 20th time series. Similarly, A4Benchmark
dataset experiences a slight drop in the average F1-score. This is mainly due to the increasing
difficulties of anomaly detection in the presence of various types of anomalies, e.g., change
points, high noise and complex data patterns.
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(a) Training Sample 1 (b) Training Sample 2

(c) Testing Sample 1 (d) Testing Sample 2

Fig. 6.6 Labeled time series datasets in A1Benchmark

6.6.3 Anomaly Detection with Different Types of Time Series

Generally speaking, after training, the anomaly detector shows promising performance in
detecting anomalies in similar types of time series. To further analyse its potential capability,
the anomaly detector is tested under the setting that the training dataset and testing dataset are
very different in the types of time series patterns and anomalies. This is to examine whether
the anomaly detector could generalise well to deal with unseen time series and anomalies.
Firstly, the Yahoo A1Benchmark dataset is separated into a training part and a testing part to
verify the capability of the anomaly detector. Secondly, all the Yahoo benchmark datasets,
i.e., A1Benchmark-A4Benchmark, are utilised as the training data, while Numenta dataset is
selected as the testing dataset. With the increment of training data, the anomaly detector is
expected to perform much better in Numenta dataset.
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Yahoo A1Benchmark First Half & Second Half

Some sample time series for training and testing are given in Fig.6.6. It is noted that time
series in A1Benchmark are relatively complex in time series patterns and each time series
has different patterns and anomalies that there does not exist a single anomaly detection
method which could accurately identify all the anomalies in the dataset. Table 6.2 shows the
F1-scores of four different methods in anomaly detection over Yahoo A1Benchmark dataset.
The column of “Index” presents the indexes of the testing time series in the dataset. The
columns of “Twitter”, “Numenta” and “Skyline” are the anomaly detection performances of
these three methods respectively. The detailed description of the methods could be found in
Table 3.2. The method proposed in this chapter is shown as “Ours” in the given table. It is
found that the proposed method achieves the best performances in 15 of the 33 time series
anomaly detection problems. A detailed analysis shows that the proposed method transcends
the other methods in situations where the anomalies are complex time series patterns and
change points, i.e., time series 20, 35 and 46. However, due to the limited training resources,
i.e., the 34 time series in A1Benchmark, the proposed method can not generalise well in
anomaly detection tasks. That is, in situations where the time series patterns are unseen,
the proposed method performs poorly. As a result, the proposed method has to leverage
the RL framework to update its model for better performance. Note that, although the
initial training process and the updating of the model both take a considerable amount of
time, the proposed method does not require any manual parameter tuning process during
the processes. Nevertheless, all the other methods compared here have to manually tune
their parameters for best capable performances. The tuning process could be a complex
procedure that asks for specific domain knowledge and intensive human interaction. Overall
speaking, the comparison results in Table 6.2 is acceptable and it is expected that with more
training resources, the proposed method could transcend other methods in anomaly detection
performance without the complex tuning of parameters.

Yahoo Benchmark Datasets & Numenta Dataset

To demonstrate the performance of the proposed anomaly detector in dealing with unknown
time series, the anomaly detector is trained with all the Yahoo benchmark datasets [249] and
tested using Numenta [126] dataset. This is to ensure that the training and testing datasets
are radically different so that the testing results reflect the essential capability of the anomaly
detector, i.e., the grasp of the concept of anomalies. Specifically, the Yahoo benchmark
datasets include 367 labeled time series with varying patterns and anomalies, while the
Numenta dataset contains 58 labeled time series.
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Table 6.2 The comparison among anomaly detection methods in Yahoo A1Benchmark

Index Twitter Numenta Skyline Ours
8 1 0.95 0.87 0.83
9 1 0.67 1 0.94
18 1 1 0 0.94
19 0.99 0.9 0.81 0.04
20 0.11 0.11 0 0.89
21 1 1 1 0.03
22 1 1 0.99 1
23 0.97 0.6 1 0.33
24 1 1 1 0.43
25 1 1 0.99 0.04
30 1 0.94 0.95 0.64
31 0.96 0.98 0.59 1
32 0.75 0.76 0.76 0.5
34 0.73 0.83 0.73 1
35 0 0 0 0.53
36 1 1 1 0.03
37 0.82 0.38 0.16 0.23
40 0 0 0 0.5
41 1 0 0.86 0.85
42 1 1 0.31 0.14
43 0.4 0.39 0.39 1
44 0.875 0.875 0.875 1
45 1 1 1 0.01
46 0 0 0 0.62
47 0 0.56 0 0.69
50 1 0.93 0.93 0.02
51 0 0 0 1
52 0.96 0.84 1 1
53 1 0.97 0.97 0.13
54 0.67 0.67 0.67 1
55 0 0 0.33 0.83
56 0.33 0.5 0 0.29
57 0 0 0.4 0.95
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Due to the distinct labeling strategy in Numenta dataset, which is inconsistent with that
in Yahoo benchmark datasets, one can not adopt the quantitative analysis of the anomaly
detection performance over the testing results. Instead, qualitative results are presented.
Fig. 6.7 shows the performances of the anomaly detector in some Numenta time series after
training through the memory replay of the anomaly detection experience in Yahoo benchmark
datasets. The original time series data are marked as blue lines and the green lines indicate
the actions performed by the anomaly detector. It is worth noticing that the anomaly detector
is capable of identifying shift of means, point anomalies and anomalous patterns of the target
time series, and achieves very high-quality results in the testing time series.

Although the anomaly detector performs nicely in most of the testing time series, there
are some of the time series that have unsatisfactory results, i.e., Fig.6.8a, 6.8b and 6.8c.
One of the reasons is that the concepts of the anomalies are shaped by the training dataset,
i.e., anomalies are reported whenever a known “anomalous” time series pattern occurs.
Therefore, the change points in Fig.6.8a and 6.8c are all detected as anomalous regardless of
the global/contextual information in the time series. In Fig.6.8b, the reason for the unexpected
results is because the time series pattern is unseen and closer to anomalous patterns. To
mitigate these issues, the involvement of the contextual information, e.g., periodicity, and
the overall time series pattern in the anomaly detection process is required. This is left as a
primary task in the future work.

6.7 Conclusion

To summarise, this chapter proposes a design of time series anomaly detector which is
fully determined by the experience of anomaly detection without explicit definitions or
assumptions of anomalies. No threshold is required for the anomaly detector. And, with
growing experience, it is expected that the anomaly detector can keep evolving and is able
to perform nicely in general and new anomaly detection problems. The experiment results
show that, in general, the anomaly detector is promising in achieving time series anomaly
detection with high-quality results and desirable benefits. To extend the applicability of the
method, the problem of generating accurately labeled time-series datasets of various types
for anomaly detection training is considered as the next step. And, at the same time, how
to integrate more information, e.g., contextual information, in the anomaly detection model
is another critical task that awaits investigation. Besides, it is argued in this chapter that
deep neural networks and active learning methods are also possible directions to improve the
results and make the method more practical.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

(e) Sample 5 (f) Sample 6

(g) Sample 7 (h) Sample 8

Fig. 6.7 The performance of the proposed method in Numenta dataset (Satisfactory)
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(a) Sample 1 (b) Sample 2

(c) Sample 3

Fig. 6.8 The performance of the proposed method in Numenta dataset (Unsatisfactory)



Chapter 7

Conclusion and Future Work

Recent years have witnessed intense research efforts in developing novel anomaly detection
strategies and methods that strive to meet various requirements of different applications. With
the ever-growing demands of existing applications, e.g., high-speed network traffic anomaly
detection, and the emerging research domains, e.g., anomalous event/behavior detection, the
research on anomaly detection is expected to experience much speedy advancement in the
upcoming years. In this thesis, several aspects of anomaly detection problems have been
examined, especially time series anomaly detection, and four primary contributions have
been made with the faith that they will give rise to more research ideas and benefit practical
anomaly detection applications:

• Related concepts concerning anomaly detection are clarified and an extensive survey
of existing anomaly detection strategies and methods is presented. More specifically,
the fine-grained explanations of outlier and novelty, the detailed taxonomies of the
anomaly types, inputs and solutions, and the classification of the anomaly detection
applications are all presented. Based on the solid understanding of the fundamental
concepts, the survey covers high-level anomaly detection strategies/tactics as well
as specific anomaly detection methods. Generally speaking, there exist four basic
strategies, i.e., rule-based, case-based, expectation-based and property-based strategies,
while anomaly detection methods are classified into five categories, i.e., distance-based,
density-based, boundary-based, partition-based and property-based methods. The
concepts and taxonomies present a rounded research background for general anomaly
detection. In addition, customary strategies and specific techniques for time series
analysis are also reviewed in order to provide a complete research background for time
series anomaly detection.
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• To response to the high false alarm rate of anomaly detection over network time series
and take contextual information into consideration, special attention has been focused
on the utilisation and modification of Support Vector Data Description (SVDD), a fa-
mous tool for one-class classification, in order to support more accurate or interpretable
anomaly detection in related applications. To be more specific, the high false positive
rate of SVDD in anomaly detection over noisy datasets is carefully investigated and a
countermeasure is taken to relax the decision boundary using additional density infor-
mation. With the theoretical analysis of the range of the parameter, which constraints
the relaxation, SVDD demonstrates high accuracy in anomaly detection. Besides,
coordinating contextual information in SVDD is also studied aiming at providing a
more clear explanation of the detected anomalies, i.e., anomaly interpretation. The
contextual information supplements additional ingredients and helps to distinguish
the root cause of the anomalies, i.e., original data or its contexts. Overall, featured
anomaly detection methods based on SVDD exhibits enhanced capabilities in accuracy
and interpretability.

• A novel featured anomaly detection method, i.e., Convex Hull Data Description
(CHDD), is developed in an attempt to achieve data description with profitable features,
the most important of which is the capability to realise one-class classification and
clustering tasks at the same time. Based on convex hull analysis, the principle of CHDD
is to describe a data with a linear combination of all the extreme points in the convex
hull of the given dataset. The principle has revealed several advantageous attributes: 1)
the identification of the convex hull helps with the description of the overall structure
of the given dataset, which benefits applications that favors data representatives; 2) a
data could be interpreted through the extreme points or, if it is an anomaly, the extreme
point will also provide valuable information concerning the reason why the data is
considered anomalous; 3) the handling of the convex hull emphasises the extreme
points while the other points could be neglected, which mimics the benefit brought
by Support Vectors (SV) and opens the possibility of incremental anomaly detection
through incremental analysis of extreme points. Therefore, it is argued that CHDD is a
featured method that has distinguished potentials in anomaly detection.

• For the purpose of processing the dynamic patterns in time series, based on the frame-
work of Reinforcement Learning (RL), an anomaly detector is designed that can be
consistently trained under the supervised setting so as to refrain from the cumbersome
work of threshold setting and the uncertain definitions of anomalies in time series
anomaly detection tasks. Specifically, the time series anomaly detection problem is
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reformulated as a Markov Decision Process (MDP) and, therefore, the concepts in
time series anomaly detection can be formulated under the general framework of RL.
With a repository of labeled time series datasets, the RL is to make the time series
anomaly detector learn the best possible strategy in reporting anomalies. In principle,
the time series anomaly detector learns not only the concept of a time series anomaly
but also the behavior of how to report anomalies. Through an initial training process,
the time series anomaly detector is expected to grasp the general strategy of anomaly
detection, while a specific online training could also be undertaken to fine-tune the
behavior of the detector in particular applications. It is argued that the online training
process could involve additional processes, e.g., active learning, to enhance the overall
performance of the framework.

Generally speaking, the techniques developed in this thesis aim to supply featured
anomaly detection methods in an attempt to meet distinct requirements and needs of various
applications. They are initially driven from the engineering point of view and expected to
reduce the labor work of human experts in anomaly detection processes. To make further
progress towards this direction, the future work will primarily consider the two following
aspects that may bring immediate consequences:

• Intrinsically, the fundamentals of CHDD point out that there should exist a dictionary
which could express the given dataset well so that anomalous data points could be
easily identified. However, recognising the best dictionary is a tough work that does
not directly apply to anomaly detection. Consequently, one possible direction to
circumvent this dictionary learning process could be utilising multiple sets of random
samples from the given dataset as the set of dictionaries. Thus, the process of anomaly
detection can focus on how well a data instance is expressed by the set of dictionaries.
With this approach, the significance of a learned dictionary is reduced and more
emphasis is placed on whether a data instance could be easily expressed in order to
support anomaly detection. A possible way to practice this idea is to implement a
Replicator Neural Network (RNN) with certain constraints on the outputs of the hidden
layer. In other words, the compressed version of a data instance in RNN should be able
to reconstruct the original data not only through the neural network but also with the
help of a certain dictionary.

• When using RL to back anomaly detection learning, a critical difficulty is witnessed that
the labeled time series repository is greatly limited according to certain applications
and domains. Therefore, a way to automatically generate the labeled time series
repository is in urgent demand. From an engineer’s point of view, a labeled time series
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could be composed by integrating a known normal time series with several known
time series anomalies. As a result, the generation of a labeled time series is converted
into the problems of producing normal time series and time series anomalies. Luckily,
recent advances in Generative Adversarial Network (GAN) have paved the path to
accurate data generation and shown great success in various domains. Therefore, one
natural way of constructing a labeled time series repository is to utilised GAN and fuse
generated normal and abnormal time series to fill the repository.

Although it still requires further efforts in improving the related methods and implement-
ing them in practical products, it is believed that the developments of these methods will
contribute positively to practical applications and drive the emergences of new ideas for more
competent anomaly detection methods with favorable features.
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