2 research outputs found

    A clock network of distributed ADPLLs using an asymmetric comparison strategy

    Get PDF
    International audienceIn this paper, we describe an architecture of a distributed ADPLL (All Digital Phase Lock Loop) network based on bang-bang phase detectors that are interconnected asymmetrically. It allows an automatic selection between two operating modes (uni- and bidirectional) to avoid mode-locking phenomenon, to accelerate the network convergence and to improve the robustness to possible network failures in comparison to simple unidirectional mode

    Control law synthesis for distributed multi-agent systems: Application to active clock distribution networks

    Get PDF
    International audienceIn this paper, the problem of active clock distribution network synchronization is considered. The network is made of identical oscillators interconnected through a distributed array of phase-locked-loops (PLLs). The problem of the PLL network design is reformulated, from a control theory point of view, as a control law design for a distributed multi-agent system. Inspired by the decentralized control law design methodology using the dissipativity input-output approach, the particular topology of interconnected subsystems is exploited to solve the problem by applying a convex optimization approach involving simple Linear Matrix Inequality (LMI) constraints. After choosing the dissipativity properties which is satisfied by the interconnection matrix, the constraints are transformed into an H ∞ norm constraint on a particular transfer function that must be fulfilled for global stability. Additional constraints on inputs and outputs are introduced in order to ensure the desired performance specifications during the H ∞ control design procedure
    corecore