4,085 research outputs found

    A Classifier Based on Distance between Test Samples and Average Patterns of Categorical Nearest Neighbors

    Get PDF
    The recognition rate of the typical nonparametric method "k-Nearest Neighbor rule (kNN)" is degraded when the dimensionality of feature vectors is large. Another nonparametric method "linear subspace methods" cannot represent the local distribution of patterns, so recognition rates decrease when pattern distribution is not normal distribution. This paper presents a classifier that outputs the class of a test sample by measuring the distance between the test sample and the average patterns, which are calculated using nearest neighbors belonging to individual categories. A kernel method can be applied to this classifier for improving its recognition rates. The performance of those methods is verified by experiments with handwritten digit patterns and two class artificial ones.Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR\u2704), 26-29 Oct. 200

    Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

    Get PDF
    The recent development of more sophisticated spectroscopic methods allows acquisition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches

    Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

    Get PDF
    The recent development of more sophisticated spectroscopic methods allows acqui- sition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches

    Machine Learning Approach for Bottom 40 Percent Households (B40) Poverty Classification

    Get PDF
    Malaysia citizens are categorised into three different income groups which are the Top 20 Percent (T20), Middle 40 Percent (M40), and Bottom 40 Percent (B40). One of the focus areas in the Eleventh Malaysia Plan (11MP) is to elevate the B40 household group towards the middle-income society. Based on recent studies by the World Bank, Malaysia is expected to enter the high-income economy status no later than the year 2024. Thus, it is essential to clarify the B40 population through a predictive classification as a prerequisite towards developing a comprehensive action plan by the government. This paper is aimed at identifying the best machine learning models using Naive Bayes, Decision Tree and k-Nearest Neighbors algorithm for classifying the B40 population. Several data pre-processing task such as data cleaning, feature engineering, normalisation, feature selection: Correlation Attribute, Information Gain Attribute and Symmetrical Uncertainty Attribute and sampling methods using SMOTE has been conducted to the raw dataset to ensure the quality of the training data. Each classifier is then optimized using different tuning parameter with 10-Fold Cross Validation for achieving the optimal values before the performance of the three classifiers are compared to each other. For the experiments, a dataset from National Poverty Data Bank called eKasih obtained from the Society Wellbeing Department, Implementation Coordination Unit of Prime Minister's Department (ICU JPM), consisting of 99,546 households from 3 different states: Johor, Terengganu and Pahang are used to train each of the machine learning model. The experimental results using 10-Fold Cross-Validation method demonstrates that the overall performance of Decision Tree model outperformed the other models and the significance test specified the result is statistically significance

    Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes

    Get PDF
    Owing to their simple construction, cost effectiveness, and high thermal efficiency, pulsating heat pipes (PHPs) are growing in popularity as cooling devices for electronic equipment. While PHPs can be very resilient as passive cooling systems, their operation relies on the establishment and persistence of slug/plug flow as the dominant flow regime. It is, therefore, paramount to predict the flow regime accurately as a function of various operating parameters and design geometry. Flow pattern maps that capture flow regimes as a function of nondimensional numbers (e.g., Froude, Weber, and Bond numbers) have been proposed in the literature. However, the prediction of flow patterns based on deterministic models is a challenging task that relies on the ability of explaining the very complex underlying phenomena or the ability to measure parameters, such as the bubble acceleration, which are very difficult to know beforehand. In contrast, machine learning algorithms require limited a priori knowledge of the system and offer an alternative approach for classifying flow regimes. In this work, experimental data collected for two working fluids (ethanol and FC-72) in a PHP at different gravity and power input levels, were used to train three different classification algorithms (namely K-nearest neighbors, random forest, and multilayer perceptron). The data were previously labeled via visual classification using the experimental results. A comparison of the resulting classification accuracy was carried out via confusion matrices and calculation of accuracy scores. The algorithm presenting the highest classification performance was selected for the development of a flow pattern map, which accurately indicated the flow pattern transition boundaries between slug/plug and annular flows. Results indicate that, once experimental data are available, the proposed machine learning approach could help in reducing the uncertainty in the classification of flow patterns and improve the predictions of the flow regimes
    • …
    corecore