7,134 research outputs found

    A class of predefined-time stabilizing controllers for nonholonomic system

    Get PDF
    The design of a class of predefined-time stabilizing controller for a class uncertain nonholonomic systems in chained form is investigated in this paper. First, some modifications to the classical fixed-time algorithms for first and second order systems are introduced. These modified algorithms, which are developed under the concept of predefined-time stability, reduce the settling time overestimation drawback suffered by the classical fixed-time algorithm. Unlike current finite-time and fixed-time schemes, an upper bound of the settling time is easily tunable through a simple selection of the parameters of the controllers. Then, based on the developed first and second-order algorithms, a switching control strategy is designed to guarantee the predefined-time stability of the chained-form nonholonomic system. Finally, a simulation example is presented to show the effectiveness of the proposed method.ITESO, A.C

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    On optimal predefined-time stabilization

    Get PDF
    This paper addresses the problem of optimal predefined-time stability. Predefined-time stable systems are a class of fixed-time stable dynamical systems for which the minimum bound of the settling-time function can be defined a priori as an explicit parameter of the system. Sufficient conditions for a controller to solve the optimal predefined-time stabilization problem for a given nonlinear system are provided. These conditions involve a Lyapunov function that satisfies a certain differential inequality for guaranteeing predefined-time stability. It also satisfies the steady-state Hamilton–Jacobi–Bellman equation for ensuring optimality. Furthermore, for nonlinear affine systems and a certain class of performance index, a family of optimal predefined-time stabilizing controllers is derived. This class of controllers is applied to optimize the sliding manifold reaching phase in predefined time, considering both the unperturbed and perturbed cases. For the perturbed case, the idea of integral sliding mode control is jointly used to ensure robustness. Finally, as a study case, the predefined-time optimization of the sliding manifold reaching phase in a pendulum system is performed using the developed methods, and numerical simulations are carried out to show their behavior

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties
    • …
    corecore