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Abstract— The design of a class of predefined-time stabilizing
controller for a class uncertain nonholonomic systems in
chained form is investigated in this paper. First, some
modifications to the classical fixed-time algorithms for first
and second order systems are introduced. These modified
algorithms, which are developed under the concept of
predefined-time stability, reduce the settling time overestimation
drawback suffered by the classical fixed-time algorithm. Unlike
current finite-time and fixed-time schemes, an upper bound of
the settling time is easily tunable through a simple selection
of the parameters of the controllers. Then, based on the
developed first and second-order algorithms, a switching control
strategy is designed to guarantee the predefined-time stability
of the chained-form nonholonomic system. Finally, a simulation
example is presented to show the effectiveness of the proposed
method.

I. INTRODUCTION

The study of the stabilization of nonholonomic systems
has received a lot of attention during the recent years due to
its wide range of applications, such as wheeled vehicles [1],
[2], underwater vehices [3], satellites and others. On the other
hand, the stabilization of nonholonomic systems represent
a significant challenge due to the nonintegrable constraints
from the point of view of control design. For instance, the
Brockett’s Theorem [4] says that this class of systems cannot
be stabilized using smooth (or even continuous) state feedback
controllers [5]. This problem has conducted to investigate
different control strategies based on smooth time-verying
feedback control [6] and discontinuous controllers [7], [8].

However, most of the mentioned works only induce
asymptotic stability, whereas in practice, control schemes
which induce finite-time stability are preferred [9], [10], given
that they allow a faster convergence and better disturbance
rejection properties [11]. The main issue of finite-time
schemes is that the convergence time (settling time) grows
unboundedly as the initial conditions of the system deviate
from the equilibrium point. Hence, as an extension of the
finite-time stability concept, the fixed-time stability concept
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has been developed mainly in [12], [13], allowing to eliminate
the unboundedness of the settling time. Although the fixed-
time stability concept represents a significant advantage over
finite-time stability, it is often complicated to find an explicit
and direct relationship between the system tunable parameters
and the settling time (for instance, for fixed-time stability
algorithms designed through the homogeneity in the bi-limit
property, an upped bound estimate of the settling time is not
obtained [12]).

To overcome this mentioned drawback, the predefined-
time stability concept has been studied in [14], [15], [16],
[17], [18]. For these systems, an upper bound (sometimes
the least upper bound) of the settling time is set explicitly as
a function of their parameters. A predefined-time controller
for nonholonomic systems was developed in [19].

Thus, this paper deals with the design of a class
of predefined-time stabilizing controller for chained-form
nonholonomic systems. The main contributions of this paper
are the following:
(i) based on modifications to classical fixed-time con-

trollers [13], predefined-time algorithms for first and
second-order systems are introduced. These algorithms
reduce the settling time overestimation drawback suf-
fered by the classical fixed-time algorithms;

(ii) based on the developed first and second-order algorithms,
a switching control strategy is designed to guarantee
the predefined-time stability of the chained-form
nonholonomic system.

II. NOTATION, PRELIMINARIES AND PROBLEM
STATEMENT

Some preliminaries, necessary for the main contribution
of this work such as the notation to be used throughout this
document and some basic definitions and results concerning
the Incomplete Beta function, and the predefined-time
stability concept, are introduced in this section. Moreover,
the predefined-time stabilization problem for nonholonomic
chained-form systems is stated.

A. Notation

We use the following notation throughout the paper: R is
the set of real numbers and R+ = {x ∈ R : x > 0} is the
set of positive real numbers. For x ∈ Rn, xT denotes its
transpose and ||x|| =

√
xTx denotes its Euclidean norm.

Br(x) = {y ∈ Rn : ||y − x|| < r} is the open ball
with radius r ∈ R+ and centered in x ∈ Rn. Wn

I =
{y : I → Rn : y is continuous} is the set of vector valued



continuous trajectories which map the interval I ⊆ R+∪{0}
to Rn. For any real number h, the function x → bxeh is
defined as bxe = |x|hsign(x) for any x ∈ R if h > 0, and
for any x ∈ R \ {0} if h ≤ 0.

B. On the Incomplete Beta function

First of all, recall the definition of the Beta function.
Definition 1 (Beta function [20]): Let α, β ∈ R+. The

Beta function is defined as

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt. (1)

Splitting the integral (1) at a point 0 ≤ r ≤ 1, two
incomplete beta functions are obtained. This motivates the
following definition.

Definition 2 (Incomplete Beta function [21]): Let
α, β ∈ R+ and 0 ≤ r ≤ 1. The Incomplete Beta function
and the regularized Incomplete Beta function are defined as

b(α, β, r) =

∫ r

0

tα−1(1− t)β−1dt, and (2)

I(α, β, r) =
b(α, β, r)

B(α, β)
, (3)

respectively.
Clearly, the Incomplete Beta function satisfies b(α, β, 1) =

B(α, β). Thus, the regularized Incomplete Beta function
complies to I(α, β, 1) = 1.

The following proposition related to the Incomplete Beta
function will be useful for an illustrative predefined-time
stablitiy example presented in the next subsection.

Proposition 1: Let ρ2, ρ3, ρ4, ρ5, ρ6 ∈ R+ be parameters
satisfying 0 < ρ4ρ5 < 1 < ρ4ρ6. Let r ∈ R+, hence,∫ r

0

dz
(ρ2zρ5 + ρ3zρ6)

ρ4 =

1

ρ
mρ6
2 ρ

mρ5
3 (ρ6 − ρ5)

b

(
mρ5 ,mρ6 ,

ρ3r
ρ6−ρ5

ρ2 + ρ3rρ6−ρ5

)
, (4)

where mρ5 = 1−ρ4ρ5
ρ6−ρ5 > 0 and mρ6 = ρ4ρ6−1

ρ6−ρ5 > 0.
Proof: The left side of (4) can be rewritten as∫ r

0

dz
(ρ2zρ5 + ρ3zρ6)

ρ4 =∫ r

0

(
ρ3z

ρ6−ρ5

ρ2 + ρ3zρ6−ρ5

)ρ4 dz
βρ4zρ4ρ6

,

which in turn, through the map t = ρ3z
ρ6−ρ5

ρ2+ρ3zρ6−ρ5
=: η(z),

takes the form∫ r

0

dz
(ρ2zρ5 + ρ3zρ6)

ρ4 =

1

ρ
mρ6
2 ρ

mρ5
3 (ρ6 − ρ5)

∫ η(r)

0

tmρ5
−1(1− t)mρ6

−1dt.

By Definition 2, of the Incomplete Beta function (2), the
result follows.

C. On predefined-time stability

Consider the nonlinear system

ẋ = f(x;ρ), x(0) = x0, (5)

where x ∈ Rn is the system state, the vector ρ ∈ Rb stands
for the system (5) parameters, which are assumed to be
constant, i.e., ρ̇ = 0. The function f : Rn → Rn is assumed
to be nonlinear and may be discontinuous, so the solutions
of (5) are understood in the sense of Filippov [22]. The origin
is assumed to be an equilibrium point of system (5).

Although under the above assumptions the solutions of (5)
may be non-unique, this study is concerned only with the
case when the predefined-time stability property holds for
all solutions. Let S(x0) be the set of all solutions x(t,x0)
of (5) starting from x0. Hence, all conditions presented
in the definitions below are assumed to be held for all
x(t,x0) ∈ S(x0).

Definition 3 (Lyapunov stability [23]): The origin of
system (5) is said to be Lyapunov stable if for all ε ∈ R+,
there exists δ := δ(ε) ∈ R+ such that for all x0 ∈ Bδ(0)

(i) any solution x(t,x0) ∈ S(x0) of (5) exists for all t ≥ 0,
and

(ii) x(t,x0) ∈ Bε(0) for all t ≥ 0.
Now, consider the functional T0 : Wn

R+∪{0} → R̄+ ∪ {0}
defined by

T0(y) = inf
τ
{τ ≥ 0 : y(t) = 0 ∀t ≥ τ}.

Note that if y(τ) 6= 0 ∀τ ∈ R+ ∪ {0}, then T0(y) = +∞.
Definition 4 (Settling-time function [23]): The settling-

time function of system (5) is defined as

T (x0) = sup
x(t,x0)∈S(x0)

T0(x(t,x0)). (6)

Definition 5 (Finite-time stability [23]): The origin of
system (5) is said to be globally finite-time stable if it is
Lyapunov stable and the settling-time function T (x0) is finite
on Rn, i.e., T (x0) < +∞ for x0 ∈ Rn.

Lemma 1: (Finite-time stability characterization for
scalar systems [10]) Let n = 1 in (5) (scalar system). The
origin of this system is globally finite-time stable if and only
if for all x ∈ R \ {0}
(i) xf(x;ρ) < 0, and

(ii)
∫ 0

x
dz

f(z;ρ) < +∞.
Sketch of the proof: A rigorous proof of Lemma 1 can

be found in [24]. Intuitively, condition (i) implies Lyapunov
stability (consider the Lyapunov function candidate V (x) =
1
2x

2 and apply the Lyapunov theorem [25]). Moreover, under
the conditions of Lemma 1, one can note that the settling
time function is T (x0) =

∫ T (x0)

0
dt. Since first-order systems

do not oscillate, the solution x(·, x0) : [0, T (x0)) → [x0, 0)
of system (5) as a function of t defines a bijection. Using
it as a variable change, the above integral equals (note that

1
f(x;ρ) is defined for all x ∈ Rn \ {0} from condition (i))

T (x0) =

∫ T (x0)

0

dt =

∫ 0

x0

dx
f(x;ρ)

. (7)



Thus, condition (ii) of Lemma 1 refers to the settling-time
function being finite.

Definition 6 (Fixed-time stability [23]): The origin of
system (5) is said to be globally fixed-time stable if it is
globally finite-time stable and the settling-time function T (x0)
is bounded on Rn, i.e., there exists Tmax ∈ R+ such that
T (x0) ≤ Tmax for all x0 ∈ Rn.

Assuming that the origin of (5) is fixed-time stable, the
bound Tmax in Definition 6 is trivially non-unique.

Definition 7 ([26]): Let the origin be fixed-time stable
for system (5). The set of all the bounds of the settling-time
function is defined as

T = {Tmax ∈ R+ : T (x0) ≤ Tmax ∀x0 ∈ Rn} .
Remark 1: For several applications such as state

estimation, dynamic optimization or fault detection, a
desirable property would be that the trajectories of system (5)
reach the origin within a time Tc ∈ T , which can be defined
in advance as function of the system parameters ρ, i.e.,
Tc = Tc(ρ).

Apparently, this could be a direct application of the fixed-
time stability concept. However, the important work [12]
shows that fixed-time stability is guaranteed if the vector field
of system (5) is homogeneous in the bi-limit. Nevertheless,
although it is assured that the settling-time function is
bounded, an upper bound estimate Tmax is usually not obtained
using this property.

To distinguish this case to the one where the designer can
actually set a settling time-function bound Tc in advance as
a function of system parameters ρ, the concept of predefined-
time stability is introduced.

Definition 8 (Predefined-time stability[14]): For the pa-
rameter vector ρ of the system (5) and an arbitrarily selected
constant Tc := Tc(ρ) > 0, the origin of (5) is said to be
predefined-time stable if it is fixed-time stable and the settling-
time function T : Rn → R is such that

T (x0) ≤ Tc, ∀x0 ∈ Rn.

If this is the case, Tc is called a predefined time.
Consider the system

ẋ = f(x;ρ)

= −γ(ρ2, ρ3, ρ4, ρ5, ρ6)

ρ1
bρ2 bxeρ5 + ρ3 bxeρ6e

ρ4 ,
(8)

where x ∈ R is the state of the system, ρ =
[ρ1, . . . , ρ6]

T ∈ R6 is the vector of parameters, which
comply to ρ1, ρ2, ρ3, ρ4 > 0 and 0 < ρ4ρ5 < 1 < ρ4ρ6,
and

γ(ρ2, ρ3, ρ4, ρ5, ρ6) := γ =
B(mρ5 ,mρ6)

ρ
mρ6
2 ρ

mρ5
3 (ρ6 − ρ5)

, (9)

with mρ5 = 1−ρ4ρ5
ρ6−ρ5 > 0 and mρ6 = ρ4ρ6−1

ρ6−ρ5 > 0.
Pretty similar systems have been studied in [12], [13] under

the concept of fixed-time stability. The following lemma states
that its origin is predefined-time stable.

Lemma 2 (Predefined-time stability example [13], [18]):
The origin x = 0 of the system (8) is predefined-time stable,
with predefined time Tc(ρ) = ρ1.

Proof: Note that the product

xf(x;ρ) = − γ

ρ1
(ρ2 |x|ρ5 + ρ3 |x|ρ6)

ρ4 < 0,

fulfills the hypothesis (i) of Lemma 1. On the other hand,
from (7), the settling-time function

T (x0) = −ρ1
γ

∫ 0

x0

sign(x)dx
(ρ2 |x|ρ5 + ρ3 |x|ρ6)

ρ4 ,

can be rewritten, through the map z = |x|, as

T (x0) =
ρ1
γ

∫ |x0|

0

dz
(ρ2zρ5 + ρ3zρ6)

ρ4 .

Using Proposition 1 and by the definition of γ, the above
yields

T (x0) =
ρ1

B(mρ5 ,mρ6)
b

(
mρ5 ,mρ6 ,

ρ3 |x0|ρ6−ρ5

ρ2 + ρ3 |x0|ρ6−ρ5

)

= ρ1I

(
mρ5 ,mρ6 ,

ρ3 |x0|ρ6−ρ5

ρ2 + ρ3 |x0|ρ6−ρ5

)
.

Additionally, note that the settling-time function complies to

T (x0) ≤ sup
x0∈R

T (x0) = lim
|x0|→∞

T (x0) = ρ1 < +∞

satisfying the hypothesis (ii) of Lemma 1. Thus the origin
x = 0 of the system (8) is globally finite-time stable. Indeed,
it is predefined-time stable since the settling-time function is
globally bounded by the arbitrary predefined time Tc(ρ) = ρ1.

D. Problem statement

Consider the following chained-form system

ẋ0 = u0 + ∆0(t)

ẋ1 = x2u0

ẋ2 = u1 + ∆1(t),

(10)

where x = [x0, x1, x2]
T ∈ R3 is the state of the system and

u = [u0, u1]
T ∈ R2 is the control input. For i = 0, 1,

the terms ∆i : R+ ∪ {0} → R unknown but bounded
perturbations, i.e., supt∈R+∪{0} |∆i(t)| ≤ δi with δi a known
positive constant.

Remark 2: The chained-form system (10) may represent
a large class of physical systems (wheeled mobile robots,
autonomous underwater vehicles, unmanned aerial vehicles,
hopping robots, etc.). Indeed, many mechanical and electrical
systems with first order nonholonomic constraints can
be locally or globally modeled as (10). Formally, any
kinematic model of first-order nonholonomic systems can be
transformed into (10) as long as the state space dimension is
three and the input space dimension is two [27].

The main objective is to design a controller u which
guarantees the predefined-time stability of the origin x = 0
of the system (10).



III. MAIN RESULT

The main result of this document, i.e. the solution to
the predefined-time stabilization problem for nonholonomic
chained-form systems, is carried out in this section. To this
end, the system (10) is split into the following two coupled
subsystems ∑

1 :
{
ẋ0 = u0 + ∆0(t) (11)

∑
2 :

{
ẋ1 = x2u0
ẋ2 = u1 + ∆1(t)

(12)

Using this decomposition, the controller u design will be
performed under the following sequential strategy:

1) First, on the one hand, a constant control input u0 =
ρ8 is applied. In this case, under the transformation
ξ1 = x1, ξ2 = ρ8x2 and v1 = ρ8u1, the subsystem Σ2

becomes:

ξ̇1 = ξ2

ξ̇2 = v1 + ρ8∆1(t).
(13)

Hence, on the other hand, u1 is designed as
a predefined-time stabilizing controller for the
transformed system (13), to ensure that its origin
is predefined-time stable in spite of the matched
perturbation term a∆1(t), with predefined time T1. This
is, to achieve the sub-objective{

x1(t) = 0
x2(t) = 0

, ∀t ≥ T1 (14)

2) Now, for t ≥ T1, the control input u1 is designed
such that x2 remains zero in spite of the presence
of perturbation term ∆1(t). Notice, from (12), that if
x1 is initially zero and x2 remains zero, x1 remains
also zero. The control input u0 is designed such that
the origin of the uncertain first-order subsystem Σ1 is
predefined-time stable.

It should be clear from the proposed strategy that the
first step requires the design of a robust predefined-time
stabilizing controller for second-order systems subject to
matched perturbation terms, while the second step requires
the design of a robust predefined-time stabilizing controller
for first-order systems subject to matched perturbation terms.
Hence, in the rest of this section, some predefined-time
controllers are proposed for a first and second order systems
subject to matcher perturbations; then, the switching strategy
that guarantees predefined-time stability of the origin of the
closed-loop nonholonomic system (10) is presented.

A. Robust predefined-time stabilization of first-order systems
with matched perturbations

Consider the controlled first-order system

ẋ = u+ ∆(t) (15)

where x ∈ R is the system state, u ∈ R is the control input
and ∆ : R+ ∪ {0} → R is an unknown perturbation term

bounded by supt∈R+∪{0} |∆(t)| ≤ δ, with 0 ≤ δ < ∞ a
known constant.

Lemma 3 ([18]): Let ρ = [ρ0, . . . , ρ6]
T ∈ R7 be a

vector of parameters such that ρ0, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 > 0,
0 < ρ4ρ5 < 1 < ρ4ρ6 and ρ0 ≥ δ, and let γ =
γ(ρ2, ρ3, ρ4, ρ5, ρ6) be as in (9). If the control input u is
selected as

u = φ1(x;ρ)

= −
[
γ

ρ1
(ρ2 |x|ρ5 + ρ3 |x|ρ6)

ρ4 + ρ0

]
sign(x),

(16)

then, the origin x = 0 of system (15) is predefined-time
stable with predefined time Tc(ρ) = ρ1.

Proof: Let z = |x|. The time-derivative of the variable
z ∈ R+ ∪ {0} satisfies

ż = − γ

ρ1
(ρ2z

ρ5 + ρ3z
ρ6)

ρ4 − ρ0 + sign(x)∆(t)

≤ − γ

ρ1
(ρ2z

ρ5 + ρ3z
ρ6)

ρ4 − ρ0 + |∆(t)|

≤ − γ

ρ1
(ρ2z

ρ5 + ρ3z
ρ6)

ρ4 − (ρ0 − δ)

≤ − γ

ρ1
(ρ2z

ρ5 + ρ3z
ρ6)

ρ4 .

By the comparison lemma [25] and Lemma 2, the trajectories
of the variable z(t) = |x(t)| over time are majored by the
solutions of (8), i.e. z(t) = 0 for t ≥ ρ1. Hence, the origin
x = 0 of the closed-loop system (15)-(16) is predefined-time
stable with predefined time Tc(ρ) = ρ1.

B. Robust predefined-time stabilization of second-order
systems with matched perturbations

Consider the controller second-order system

ẋ1 = x2

ẋ2 = u+ ∆(t),
(17)

where x1, x2 ∈ R are the state variables, u ∈ R is the control
input and ∆(t) ∈ R is an unknown but bounded perturbation
term of the form supt∈R+∪{0} |∆(t)| ≤ δ, with 0 ≤ δ <∞
a known constant.

Lemma 4: Let ρ1 =
[
ρ11, . . . , ρ

1
6

]T ∈ R6 and ρ2 =[
ρ21, . . . , ρ

2
6

]T ∈ R6 be vectors of parameters such that
ρi1, ρ

i
2, ρ

i
3, ρ

i
4, ρ

i
5, ρ

i
6 > 0, 0 < ρi4ρ

i
5 < 1 < ρi4ρ

i
6, for i = 1, 2.

Additionally, let ρ7 ≥ δ, and let γi = γi(ρ
i
2, ρ

i
3, ρ

i
4, ρ

i
5, ρ

i
6)

be as in (9), for i = 1, 2. Select the control input as

u = φ2(x1, x2;ρ1,ρ2, ρ7)

= −γ2
ρ21

(
ρ22 |σ|

ρ25 + ρ23 |σ|
ρ26
)ρ24

sign(σ)− ρ7sign(σ)−

2γ21ρ
1
4 |ξ(x1)|2ρ

1
4−1

(ρ11)2

(
ρ12ρ

1
5 |x1|

ρ15−1 + ρ13ρ
1
6 |x1|

ρ16−1
)

sign(σ),
(18)

where the sliding variable σ is defined as

σ = x2 + bϕ(x1, x2)e1/2 , (19)



with ϕ(x1, x2) = bx2e2 +
2γ2

1

(ρ11)
2 bξ(x1)e2ρ

1
4 and ξ(x1) =

ρ12 bx1e
ρ15 +ρ13 bx1e

ρ16 . Then, the origin [x1 x2]
T

= 0 ∈ R2

of the closed-loop system (17)-(18) is predefined-time stable
with predefined time Tc(ρ1,ρ2, ρ7) = ρ11 + ρ21.

Proof: The time-derivative of the sliding variable σ (19)
is

σ̇ = u+ ∆ +
|x2| (u+ ∆)

|ϕ(x1, x2)|1/2
+

2γ2
1ρ

1
4|ξ(x1)|2ρ

1
4−1

(ρ11)
2

(
ρ12ρ

1
5 |x1|

ρ15−1 + ρ13ρ
1
6 |x1|

ρ16−1
)
x2

|ϕ(x1, x2)|1/2

= −γ2
ρ21

(
ρ22 |σ|

ρ25 + ρ23 |σ|
ρ26
)ρ24

sign(σ)− ρ7sign(σ) + ∆−

2γ21ρ
1
4 |ξ(x1)|2ρ

1
4−1

(ρ11)2

(
ρ12ρ

1
5 |x1|

ρ15−1 + ρ13ρ
1
6 |x1|

ρ16−1
)

sign(σ)−

γ2
ρ21

(
ρ22 |σ|

ρ25 + ρ23 |σ|
ρ26
)ρ24

+ ρ7 −∆sign(σ)

|ϕ(x1, x2)|1/2
sign(σ)−

2γ2
1ρ

1
4|ξ(x1)|2ρ

1
4−1

(ρ11)
2

(
ρ12ρ

1
5 |x1|

ρ15−1 + ρ13ρ
1
6 |x1|

ρ16−1
)

|ϕ(x1, x2)|1/2
·

(|x2| − x2sign(σ)) sign(σ).

Then, the time-detivative of the nonnegative variable s = |σ|
complies to

ṡ ≤ −γ2
ρ21

(
ρ22s

ρ25 + ρ23s
ρ26

)ρ24
.

By the comparison lemma [25] and Lemma 2, the trajectories
of the variable s(t) = |σ(t)| over time are majored by the
solutions of (8), i.e. s(t) = 0 for t ≥ ρ21. Furthermore, once
on the manifold σ = 0, one gets the following reduced-order
dynamics for x1

ẋ1 = −γ1
ρ11

⌊
ρ12 bx1e

ρ15 + ρ13 bx1e
ρ16
⌉ρ14

.

Hence, the origin x1 = 0 of this reduced order system is
predefined-time stable with predefined time ρ11. Moreover,
from (19), if x1 = 0 and σ = 0, it must be that x2 = 0 also.
Thus, it is concluded that the origin [x1 x2]

T
= 0 ∈ R2 of

system (17) is predefined-time stable with predefined time
Tc(ρ

1,ρ2, ρ7) = ρ11 + ρ21.

C. A predefined-time stabilizing controller for nonholonomic
systems

Based on the above results for uncertain first and second
order systems, the switching strategy described previously is
introduced in the following theorem to guarantee predefined-
time stability of the closed-loop system for a class of uncertain
chained-form nonholonomic systems.

Theorem 1: Let ρ8 ∈ R and ρ9 ≥ δ1. Additionally, let
ρ be as in Lemma 3 with ρ0 ≥ δ0, and ρ1,ρ2 be as in
Lemma 4 with ρ7 ≥ |ρ8| δ1. Selecting the switching controller

for system (10)

u0 =

{
ρ8, if t ≤ ρ11 + ρ21
φ1(x0;ρ), else

u1 =

{
φ2(x1,ρ8x2;ρ

1,ρ2,ρ7)
ρ8

, if t ≤ ρ11 + ρ21
−ρ9sign(x2), else

(20)

where the functions φ1 and φ2 are defined in (16) (Lemma 3)
and (18) (Lemma 4), then, the origin of closed-loop system
(10)-(20) is predefined-time stable with predefined-time
Tc(ρ

1,ρ2,ρ) = ρ11 + ρ21 + ρ1.
Proof: Let us divide the proof into two steps.

• For t < ρ11 + ρ21, a constant control input u0 = ρ8 is
applied. Hence, following the decomposition introduced
in (11)-(12), subsystem Σ2 can be reduced to (13) with
ξ1 = x1, ξ2 = ρ8x2 and v1 = ρ8u1. From Lemma 4,
one can conclude that x1 and x2 converge to zero in
predefined-time ρ11 + ρ21 in spite of the presence of
perturbation ∆1.

• For t ≥ ρ11 +ρ21, the control input u1 is designed to keep
x2(t) = 0. Indeed, considering the candidate Lyapunov
function V = |x2|. Its time derivative is given by

V̇ ≤ − |x2| (γ − δ1)

It means that x2(t) = 0 for all t ≥ ρ11 + ρ21 in spite of
the presence of perturbation ∆1. Moreover, from (10),
x1 and x2 remain zero no matter what the control input
u0 is. Finally, from Lemma 3, x0 converge to zero in
predefined-time ρ11 + ρ21 + ρ1 in spite of the presence of
perturbation ∆0.

IV. SIMULATION RESULTS

Consider a unicycle-type mobile robot as in [19]. Under
the nonholonomic constraints, the kinematics of the wheeled-
mobile robot is

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(21)

where (x, y) is the center of mass, θ is the heading angle,
and v (resp. w) is the linear (resp. angular) velocity.

The nonsingular transformation given by x0 = x, x1 = y,
x2 = tan θ, u0 = v cos θ and u1 = w sec2 θ, transforms (21)
into (10). To test the robustness of the proposed scheme, the
perturbations ∆0(t) = 0.1 sin t and ∆1(t) = 0.3 sin t have
been added in the following simulations.

The control objective is the predefined-time stabilization
problem, i.e. parking problem, of the unicycle-type
mobile robot. In the simulation, the following control
parameters are selected: ρ = [0.1, 2, 1, 1, 1, 0.9, 1.1]

T , ρ1 =
[0.5, 1, 1, 0.6, 1, 3]

T , ρ2 = [5, 1, 1, 1, 0.9, 1.1]
T , ρ7 = 0.03,

ρ8 = −0.1, and ρ9 = 0.3.
From Theorem 1, the controller (20) guarantees the

predefined-time stability of the closed-loop system, with
predefined-time Tc = 7.5 s, in spite of the perturbations,
as can be seen in Fig. 1.



Fig. 1. State variables of wheeled-mobile robot.

V. CONCLUSIONS

This work was devoted to giving one solution to
the predefined-time stabilization of a chained-form class
of nonholonomic systems problem. In this path, we
proposed modifications to the classical fixed-time stabilization
controllers for first and second-order systems proposed,
mainly, in [12], [13]. These modifications allowed us to
achieve two intentions:
(i) to reduce the settling time overestimation issues

presented by the classical fixed-time algorithms;
(ii) since the modified algorithms were developed under the

predefined-time stability concept, an upper bound of the
settling time is easily tuned through a simple selection
of the controller parameters.

Finally, the solution to the stated problem was developed
as a switching contoller, which was designed based on the
proposed first and second-order controllers. A numerical
simulation was carried out to show the performance of the
proposed scheme.
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A. G. Loukianov, “Variable structure predefined-time stabilization of
second-order systems,” Asian Journal of Control, 2018.
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