1,485 research outputs found

    Modeling Decision Systems via Uncertain Programming

    Get PDF
    By uncertain programming we mean the optimization theory in generally uncertain (random, fuzzy, rough, fuzzy random, etc.) environments. The main purpose of this paper is to present a brief review on uncertain programming models, and classify them into three broad classes: expected value model, chanceconstrained programming and dependent-chance programming. This presentation is based on the book: B. Liu, Theory and Practice of Uncertain Programming, PhisicaVerlag, Heidelberg, 200

    Applying multiobjective evolutionary algorithms in industrial projects

    Get PDF
    During the recent years, multiobjective evolutionary algorithms have matured as a flexible optimization tool which can be used in various areas of reallife applications. Practical experiences showed that typically the algorithms need an essential adaptation to the specific problem for a successful application. Considering these requirements, we discuss various issues of the design and application of multiobjective evolutionary algorithms to real-life optimization problems. In particular, questions on problem-specific data structures and evolutionary operators and the determination of method parameters are treated. As a major issue, the handling of infeasible intermediate solutions is pointed out. Three application examples in the areas of constrained global optimization (electronic circuit design), semi-infinite programming (design centering problems), and discrete optimization (project scheduling) are discussed

    Evolutionary design of digital VLSI hardware

    Get PDF

    River Basin Water Quality Management Models: A State-of-the-Art Review

    Get PDF
    With the increasing human activities within river basins, the problem of water quality management is becoming increasingly important. Quality management can be achieved through control/prevention measures that have various economic and water quality implications. To facilitate the analysis of available management options, decision models are needed which represent the many facets of the problem. Such models must be capable of adequately depicting the hydrological, chemical and biological processes occurring in the river; while incorporating social, economic and political considerations within the decision framework. Management analyses can be performed using simulation, optimization, or both, depending on the management goal and the size and type of the problem. The critical issues in a management model are the nonlinearities, uncertainties, multiple pollutant nature of waste discharges, multiple objectives, and the spatial and temporal distribution of management actions. Literature on various management models were reviewed under the headings of linear, nonlinear and dynamic programming approaches; their stochastic counterparts, and combined or miscellaneous approaches. Dynamic programming was found to be an attractive methodology which can exploit the sequential decision problem pertaining to river basin water quality problems (downstream control actions do not influence water quality upstream). DP handles discrete decision variables which represent discrete management alternatives, and it is generic in the sense that both linear and non-linear water quality models expressing the relation between emissions and ambient quality levels can be incorporated. An example problem is presented which demonstrates the application of a DP-based management model to formulate least-cost strategies for the Nitra River basin in Slovakia. However, it is hardly possible for a single model to represent all the aspects of a complex decision problem. Different types of management models (e.g. deterministic vs stochastic models) have different capabilities and limitations. The only way to compensate for the deficiencies is to perform the analysis in a sensitivity style. The necessity for sensitivity analyses is further implied due to the fact that water quality problems are rather loosely formulated with respect to the quality and economic goals

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione

    Application of general semi-infinite Programming to Lapidary Cutting Problems

    Get PDF
    We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented

    Optimization. An attempt at describing the State of the Art

    Get PDF
    This paper is an attempt at describing the State of the Art of the vast field of continuous optimization. We will survey deterministic and stochastic methods as well as hybrid approaches in their application to single objective and multiobjective optimization. We study the parameters of optimization algorithms and possibilities for tuning them. Finally, we discuss several methods for using approximate models for computationally expensive problems
    corecore