1,017 research outputs found

    High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Full text link
    We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving 2D Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-type approach, which rapidly rebuilds a new high quality mesh rearranging the element shapes and neighbors in order to guarantee a robust mesh evolution even for vortex flows and very long simulation times. The old and new Voronoi elements associated to the same generator are connected to construct closed space--time control volumes, whose bottom and top faces may be polygons with a different number of sides. We also incorporate degenerate space--time sliver elements, needed to fill the space--time holes that arise because of topology changes. The final ALE FV-DG scheme is obtained by a redesign of the fully discrete direct ALE schemes of Boscheri and Dumbser, extended here to moving Voronoi meshes and space--time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space--time control volumes combined with a fully-discrete space--time conservation formulation of the governing PDE system. In this way the discrete solution is conservative and satisfies the GCL by construction. Numerical convergence studies as well as a large set of benchmarks for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical results clearly show that the new combination of very high order schemes with regenerated meshes with topology changes lead to substantial improvements compared to direct ALE methods on conforming meshes

    Design, Analysis, and Applications of Iterative Methods for Solving Nonlinear Systems

    Get PDF
    In this chapter, we present an overview of some multipoint iterative methods for solving nonlinear systems obtained by using different techniques such as composition of known methods, weight function procedure, and pseudo-composition, etc. The dynamical study of these iterative schemes provides us valuable information about their stability and reliability. A numerical test on a specific problem coming from chemistry is performed to compare the described methods with classical ones and to confirm the theoretical results

    Large scale ab-initio simulations of dislocations

    Get PDF
    We present a novel methodology to compute relaxed dislocations core configurations, and their energies in crystalline metallic materials using large-scale ab-intio simulations. The approach is based on MacroDFT, a coarse-grained density functional theory method that accurately computes the electronic structure with sub-linear scaling resulting in a tremendous reduction in cost. Due to its implementation in real-space, MacroDFT has the ability to harness petascale resources to study materials and alloys through accurate ab-initio calculations. Thus, the proposed methodology can be used to investigate dislocation cores and other defects where long range elastic effects play an important role, such as in dislocation cores, grain boundaries and near precipitates in crystalline materials. We demonstrate the method by computing the relaxed dislocation cores in prismatic dislocation loops and dislocation segments in magnesium (Mg). We also study the interaction energy with a line of Aluminum (Al) solutes. Our simulations elucidate the essential coupling between the quantum mechanical aspects of the dislocation core and the long range elastic fields that they generate. In particular, our quantum mechanical simulations are able to describe the logarithmic divergence of the energy in the far field as is known from classical elastic theory. In order to reach such scaling, the number of atoms in the simulation cell has to be exceedingly large, and cannot be achieved with the state-of-the-art density functional theory implementations

    A Novel Third Order Numerical Method for Solving Volterra Integro-Differential Equations

    Full text link
    In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari technique (DJM) is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods

    An improved return-mapping scheme for nonsmooth yield surfaces: PART I - the Haigh-Westergaard coordinates

    Full text link
    The paper is devoted to the numerical solution of elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds on a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points, such as apices or edges at which the flow direction is multivalued involves only a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper (PART I) is focused on isotropic models containing: a)a) yield surfaces with one or two apices (singular points) laying on the hydrostatic axis; b)b) plastic pseudo-potentials that are independent of the Lode angle; c)c) nonlinear isotropic hardening (optionally). It is shown that for some models the improved integration scheme also enables to a priori decide about a type of the return and investigate existence, uniqueness and semismoothness of discretized constitutive operators in implicit form. Further, the semismooth Newton method is introduced to solve incremental boundary-value problems. The paper also contains numerical examples related to slope stability with available Matlab implementation.Comment: 25 pages, 10 figure
    corecore